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ABSTRACT

In this paper, we identify and discuss the features we
believe are key to the successful use of simulation as a
manufacturing support tool. The discussion begins with
three sample projects drawn from the authors' industrial
and consulting experiences. Using these projects as
motivation, we discuss the ideal project lifecycle —
model design, development, and deployment. For model
design, we emphasize the importance of a clear and
consistent specification, articulated in a written
document. This specification should identify project
customers, goals, and deliverables. We next review a
range of model development options, stressing the
existence of many non-simulation alternatives. We also
discuss methods for model verification and validation.
Finally, we consider the difficulties of model
deployment, including simulation output analysis. data
maintenance, and model integration. We close with
several suggestions on how best to present simulation
results to a management audience.

1 THREE SAMPLE PROJECTS

To motivate the remainder of this paper, we begin by
describing three sample manufacturing projects. These
projects are drawn from the authors' experiences.

1.1 Planning Toolset and Staffing Levels

In this project, the client is planning for a new factory,
and wishes to compare toolset and staffing levels
required to support a variety of different product mix
and volume scenarios. The results of the project will be
used for three purposes: 1) to determine how many of
each type of tool to order: 2) to decide how many
operators and maintenance engineers will be needed; and
3) to estimate the relative costs of producing the
different products. Because of the high likelihood of
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product mix changes, the model should allow for quick
analysis of multiple scenarios, and should provide
sensitivity information. The model will likely be used
throughout facility planning and construction.

1.2 Optimizing Cycle Time with Equipment

In this project, the client has already begun building a
new single-product factory, and wishes to optimize cycle
time by making additional capital equipment purchases.
The factory will produce the company's latest product,
which is expected to have high demand. A pilot line in
an existing facility is currently producing the new
product at very low volumes. However, the actual
process parameters are in a constant state of flux as
engineers make refinements. The client has developed
an in-house Excel capacity model. This model is
periodically updated with the latest process changes.
From this project, the client expects to get a list of
additional tools that should be ordered beyond the
minimum cost toolset, and an estimate of the expected
cycle time once the factory is operational.

1.3 Optimizing Cycle Time with Scheduling

In this project, the client wishes to implement a
scheduling system that will balance the competing
demands of many different customers for specialized
orders. The total production volume is high, and
between-product setup times are significant. The client
has a sophisticated in-house shop-floor tracking system
that is continuously updated with the location of all work
in process. The system also has product routing data and
equipment status information. The client needs to be
able to test out different dispatching strategies, to
minimize overall cycle time. Also, the client wishes to
be able to track the status of individual orders, so that
expected delivery dates can be given to customers based
on the latest available information.
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2 PROJECT LIFECYCLES

The sample projects outlined above pose questions that
can be answered a variety of ways. One such method is
physical experimentation — making changes in the real
factory and analyzing the results. An example might be a
new configuration of a workcell, which is tested out in a
small area before being implemented in the whole
factory. Physical experimentation is not always possible,
however, especially when planning for a new factory.
Even in an existing factory, it is often prohibitively
expensive to experiment with the real facility. Increasing
equipment quantities, for example, can require many
months of lead time, not to mention sizable capital
investment. Therefore, it is usually necessary to build a
model of the real factory, and perform experiments in
this virtual environment.

In an ideal world, modeling projects would progress
in an orderly fashion through three distinct phases —
model design, development, and deployment. In reality,
however, these phases often overlap, or are repeated as
later phases shed light on errors or omissions in earlier
work. Changes in project scope can also cause iterations
through these phases. Often, the later work cannot even
be clearly defined until the earlier phases are completed.
Interaction is usually needed between the client and the
analyst to clear up details and discuss new possibilities.
However, by following as closely as possible the model
design, development, and deployment phases, we
believe that it is possible to minimize false starts. In the
remaining sections of this paper, we outline some key
features that we have found contribute to successful
manufacturing simulation projects.

3 MODEL DESIGN

Building and using a factory model can be a daunting
task. The sheer size and complexity of most factories
makes it difficult to completely view and understand all
of the many elements found there. These elements
include products, processes, tools, material handling
systems, inventory, and operators. We believe that the
goal of any modeling project is to develop a model that
reflects enough, but not too much, of this complexity.
Models with excessive detail take longer to build, debug,
and understand, are harder to maintain, and have longer
run times than less detailed models. The guiding light in
determining how much complexity is necessary should
be the questions posed of the model. Clarification and
documentation of these questions, then, is of paramount
importance, and is the primary goal of the design phase.

3.1 Identifying Project Customers

The first step in the design phase is identifying who will
use the results the project is meant to create. Potential
customers might be from the shop floor, or from a
corporate planning department. In many cases, a project
will have several customers, each of whom has his or her
own expectations. Prioritizing among the needs of these
different customers is the client’s internal responsibility.
However, the analyst must sometimes consolidate
various customer objectives, and identify which of these,
if any, conflict.

For example, the customers for the scheduling project
outlined above probably include the computer integrated
manufacturing (CIM) group and the factory operations
manager. The CIM organization might want to
completely automate lot selection, while the operations
manager might wish for more operator empowerment.
Resolving these issues in the product design phase can
be much more cost effective than dealing with them after
the model is built.

3.2 ldentifying Project Goals

As indicated above, a project may have multiple
customers, and/or multiple goals. Trade-offs may be
necessary. The goals ultimately selected help determine
the planning horizon, and should be stated in terms of
quantifiable performance measures. The specification of
project goals should also include a project timeline with
deliverables highlighted. The three goals in our first
example are clearly stated in Section 1.1. The goal in the
second example is to optimize the cycle time of the new
factory by adding equipment. However, more specific
information such as how much the cycle time needs to
be reduced, or how much money can be spent to reduce
it, is also needed. The third example, the shop floor
scheduling model, is a potentially huge project that
requires the definition of smaller, tangible goals.

3.2.1 Identifying the Planning Horizon

The planning horizon to which the model will be applied
is important in determining the level of detail to include.
A common classification of planning horizons is
strategic, tactical, and operational. Although no formal
definition of these horizons exists, strategic models are
usually concerned with long-term questions like "should
[ build a new factory, and if so, what should I produce in
it?" The first two examples in this paper are primarily
strategic questions. Tactical models address questions
like "how many units should I start this quarter?"
Operational models are concerned with production over
the next day or week. The third example in this paper,
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the scheduling system, is mainly an operational model,
though questions such as "what is the best dispatch rule
to use every day?" might be considered tactical.

The way in which a model adds value is highly
influenced by the project's planning horizon. For
example, at the strategic level the analyst has the
opportunity to make recommendations that save (or cost)
the company millions of dollars in equipment purchases.
In this case, there is a large value to answering these few
key questions correctly. At the operational level, the
analyst has the opportunity to set in place a system that
will help with many day-to-day or hour-to-hour
decisions ("what job should I run next on this machine?"
or "when should I promise this order will be shipped?").
Here, there is a large cumulative value to making these
many small decisions correctly.

3.2.2 Identifying Performance Measures

Performance measures are necessary to quantify project
goals. Performance measures should be tracked in the
real world, not just in models. The performance
measures in the first example will likely be expressed
primarily in terms of cost, both toolset cost and product
cost. The primary performance measure in the second
example is cycle time, though toolset cost is also
important. Performance measures in a scheduling system
might include percentage of on-time delivery, product
cycle time, or average work-in-process (WIP).

3.3 Writing a Project Specification

Ideally, every project should have a document that
provides a black-and-white synopsis of project design.
This document should identify the customer or
customers, the planning horizon, the project goals (stated
in terms of quantifiable performance measures), and the
expected deliverables. Where possible, the expected
deliverables should be expressed in the form of mock
results charts. The analyst is then responsible for filling
in the charts with actual model output. This helps to
ensure that the results provided from the project are in
the format that the customer needs.

For example, Figure 1 displays a mock results chart
for the first sample project (planning toolset and staffing
levels with mix/volume uncertainty). This chart displays
two performance measures, toolset cost and annual
profit, for four candidate scenarios. Figure 2 displays a
mock results chart for the second sample project (cycle
time optimization via capital purchases). The third
sample project would have a mock results chart similar
to Figure 1, except the performance measures would
likely be cycle time or on-time delivery percentage.
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In addition to summarizing what the analyst will
deliver, the specification should also include client
responsibilities. In particular, the specification should
document what data the client will provide, and in what
basic format (electronically, on paper, in spreadsheets,
etc.). In our experience, misunderstandings about the
quality of the data available, and who is responsible for
improving it, can result in considerable project delays.

The specification should be a living document. As the
project scope or deliverables evolve, the specification
should be updated to reflect these changes and their
impacts. These changes, however, require that both the
client and the analyst are in agreement, and the
specification often serves as a good negotiation tool.
While the specification should not be changed radically
in the midst of the project, adding specific details and
refinements as they become apparent is beneficial.
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4 MODEL DEVELOPMENT

Once the project specification has been written, model
development can begin. This requires selecting a
methodology and tool, building the model, populating
the model with the necessary data, and verifying and
validating both the model and the data. Decisions in this
phase of the project depend in particular on whether the
model is intended for single use or for on-going support.
For the latter, the question of who will actually own and
maintain the model is important. Also of obvious
importance is the type of question being answered by the
model. Certain modeling methodologies are more
appropriate for certain types of questions. In some cases,
what types of tools are available can drive the questions
that are asked in model design. In other cases, the client
may specify the use of a particular tool or methodology.
In general, we feel that the client should identify
questions to be answered, while the analyst should be
primarily responsible for actual model selection and
development.

4.1 Selecting a Methodology and Tool

Many different methodologies and tools are available to
support manufacturing projects, including spreadsheets,
analytic models, data-driven simulation models,
simulation languages, and general-purpose programming
languages with simulation libraries. Some projects may
require the use of more than one tool to answer different
types of questions. Some strengths and weaknesses of
these tools for different applications are discussed
below.

Spreadsheet models are appealing for projects where a
large number of scenarios must be evaluated quickly.
They are fast, easy to understand and use, and easy to
modify. Managers are generally accustomed to
reviewing results presented in spreadsheet-based
formats. However, there are limits to the types of
questions that can be addressed with spreadsheet models.
Spreadsheet models are static, generally grouping time
into large buckets. They are also usually deterministic.
Though spreadsheets typically include the ability to
sample from distributions, this capability is not usually
exploited in manufacturing applications. Because of
these limitations, spreadsheet models are often not
capable of estimating cycle time or WIP.

Analytic models include capacity analysis, queueing,
linear programming, and other math programming
models. For an example of the successful application of
linear programming-based methods to manufacturing
production planning, see Leachman et al. (1996). Like
spreadsheet models, analytic models are useful for
evaluating multiple scenarios, because they are typically

very fast. Analytic models can also include detail
beyond that of spreadsheets. For example, capacity
analysis models can accurately capture complexity such
as rework, batch processing, and re-entrant flows.
Queueing models can improve upon spreadsheet models
by including variability with arrival and service time
distributions. Most of the results available in the area of
queueing models, however, are only applicable to long-
term, steady state behavior. Queueing models can thus
be used to estimate long-run average cycle times and
WIP, but not short-term behavior (although there is
active research in this area, we have not seen any
commercial applications of the methodology to date).

The results from analytical models are relatively easy
to interpret, because they consist of a single number for
each performance measure. However, the simplifying
assumptions necessary to get closed form results are not
always appropriate, especially in queueing models.
Analytic models are best suited to strategic and tactical
questions, where the emphasis for dynamic behavior is
on relative performance.

Discrete event simulation can capture virtually any
level of manufacturing detail, and is potentially very
accurate. It captures both dynamic (time-dependent) and
stochastic (random) behavior. Simulation is sometimes
used in the early stages of a project to help understand
how the system works. It has intuitive appeal for
managers, especially when animation is used, because
they can ‘see’ what is going on in the model. However,
there are several disadvantages to using simulation
models. They typically take much longer to run than
analytic models, and the results from a simulation model
can be difficult to interpret. Statistical analysis of the
output is necessary, because each simulation run
represents a single possible sample path. For these
reasons, simulation can be an expensive option.

When simulation is chosen for a project, it is also
necessary to decide between data-driven simulation
models (simulators), and user-developed models written
in a simulation or general-purpose programming
language. In our opinion, languages are more
appropriate for building small, detailed models, while
simulators tend to be more applicable for modeling
large-scale manufacturing systems. The decision also
depends on the modeler’s proficiency with different
tools, and on whether or not the model will be reused.

Overall, tool choice for a project should be most
heavily influenced by the needs of the client, particularly
if the model is to be used on an on-going basis after the
project is complete. Attention must be paid to what the
client will be able to learn, use, and modify as needed.
The planning horizon and the project goals will also
influence which tool is appropriate. Clearly, if accurate
cycle time estimation is critical, a spreadsheet model is
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probably not the best choice. If many different scenarios
need to be evaluated quickly, with comparisons based on
toolset capacity and cost rather than on cycle time,
simulation may not be the best choice. We think that it is
important to remember that simulation is not the only
tool available. In many cases, simulation may not be
required at all. The goal of the project is to answer the
questions posed by the client, using the simplest model.

For the first project in this paper, we would
recommend a spreadsheet or capacity analysis model.
The second project is better suited to a hybrid capacity
analysis and simulation model. The third probably
requires a simulation for evaluating potential dispatch
rules. Analytic models might also be embedded in
short-term dispatch support systems.

4.2 Developing the Model and Collecting
Information

Once the tool and methodology have been selected, the
basic structure of the model should be constructed. This
requires gathering information about the real system,
including things like the total number of products, the
number of tools, the general sequence of steps followed
by operators at the different machines, and the structure
of the material handling system. The analyst should rely
on the project specification to resolve disputes about
what the model should be able to do and what it will not
be expected to do. Tools that grow haphazardly over
time, as different functionalities are included in response
to input from various sources, are extremely difficult to
use. At this stage, it is important to keep in mind the
overall goals of the model. The actual detailed steps
followed in model development depend on the tool
being used.

4.3 Populating Model Data

Perhaps the biggest roadblock to building models for
real manufacturing applications lies in the difficulty of
obtaining the proper data. In our experience, there are
three classes of data: 1) the data you want; 2) the data
you need; and 3) the data you get. These sets are
typically decreasing in size, but are not necessarily
overlapping. That is, data may be provided that is not
needed for the model, even as data critical to building
the model is unavailable. One suggestion is to find out
what types of data will be available before spending
much effort designing and developing the model. In
many cases, the accuracy level of the data does not
justify a complex model. If some data is simply not
available, it may be possible to perform sensitivity
analysis to see how important the missing data is. Only
if the data will likely have a significant impact on the

model are new data collection efforts necessary.
Carrying this approach to its extreme, it is sometimes
advantageous to build a model with a bare minimum of
actual data. At that point, sensitivity analysis can be used
to determine the priority areas for data collection.

Of our three sample projects, only the third is likely to
have very detailed, accurate data. Of course, even with a
detailed shop floor control system, some information
may not be entered into the system at all, or may be
entered inaccurately. In some manufacturing facilities,
detailed information is only kept as it relates to the
bottleneck pieces of equipment. In such cases, it may
make more sense to only build a detailed model of the
top few bottlenecks. For the other two projects, it is
likely that any existing data will be stored in spreadsheet
form. Often, data for the same factory will be stored in a
variety of spreadsheets, and these spreadsheets will be
maintained by several different employees.

4.4 Verifying and Validating the Model

We distinguish between model verification and model
validation as follows: verification is the process of
ensuring that the model produces a correct output given
a specified input, while validation is the process of
ensuring the model accurately represents reality to the
necessary degree (100% accurate representation is
usually not required for a successful project).

For verification purposes, we recommend beta-testing
the model early and often. These tests should attempt to
produce solid, repeatable results with the smallest
possible set of input data. One way to assist this process
over time is to build up a library of verification tests, the
expected results of which are known in advance.
Whenever possible, such verification suites should be
automated. This reduces any temptation to cut corners.
Each model should also be stress-tested with a subset of
actual data from the facility being modeled (if possible).
The analyst should make changes to the input data and
examine the results to ensure that outputs move in the
expected direction, and that no counter-intuitive
situations arise. Counter-intuitive results can be
significant, however, since they sometimes provide
important new nsights into system behavior.

4.5 Verifying and Validating the Data

As with model beta-testing, we recommend starting data
verification and validation efforts as early as possible in
the modeling process. An example of data verification
might involve having end-users check data forms or data
summary charts to see that data has been entered
correctly. An example of validation would be reviewing
outputs with end-users to ensure that results look



Supporting Manufacturing With Simulation 119

reasonable. Often, it will take numerous passes before
bugs in the data are completely worked out. For existing
factories, another method of validation is a variant on
the Turing test (see Schruben 1980). This involves
taking model output data and transforming it into the
same format as typical manufacturing reports. If
manufacturing personnel cannot distinguish between the
model output and actual factory output, then the model
is probably a reasonable representation of reality. Tool
utilization, cycle time, and production volumes are
possible candidates for this method, as they are likely to
be included on existing production reports. In some
cases, there may be other models that can be used for
validation. For example, in our second project, a new
capacity and simulation model could be validated
against the existing spreadsheet-based capacity model.

5 PROJECT DEPLOYMENT

Frequently, model development and debugging consume
the lion's share of the project schedule. This is in spite of
the fact that the model itself is not the project's end goal.
The goal is to use the model to answer the questions
outlined in the project specification. For most simulation
projects, this requires analyzing the simulation output,
presenting the results to management, and setting up the
model for on-going data collection and analysis (if
needed). These topics are outlined below, followed by a
brief discussion of common simulation project pitfalls.

5.1 Analyzing Steady-State Simulation Output

Often, simulation projects do not require steady-state
analysis. When required, however, steady-state analysis
presents a variety of difficulties not found in finite-
horizon analysis. Simulation texts usually treat this topic
in depth (see, for example, Law and Kelton 1991).
Nelson (1992) also provides a helpful overview of
steady-state analysis. Two features often found in
manufacturing simulations cause special difficulties —
highly correlated output data and initialization bias.
Highly correlated data makes it difficult to produce
within-run  confidence intervals using traditional
statistical methods. If the correlation is not taken into
account, the width of confidence intervals is usually
biased on the low side. This bias can cause modelers to
predict significant differences between alternatives
where none exist. It may be possible to batch the output
data in such a way as to reduce the serial correlation to a
negligible level. Otherwise, the best way to avoid the
problem of correlated data is to make independent
replications and use cross-replication results to generate
confidence intervals. Using multiple replications,
however, can aggravate initialization bias problems.

Initialization bias is present in any simulation where
the initial simulation state is not drawn randomly from
its steady-state distribution. Since this steady-state
distribution is never known exactly (otherwise, the
problem would be trivial), and may not exist at all,
initialization bias is present to some extent in nearly all
steady-state manufacturing simulations. Since this bias
usually dies away over time, one popular method is to
run the simulation for a very long time and then truncate
the first portion of the output. Another option is to
initialize the factory with a certain amount of work-in-
process inventory. With the former method, the
difficulty lies in deciding how much to throw away; with
the latter method, it lies in deciding initial WIP levels.

Neither method is entirely satisfactory, but two
qualitative observations are in order. First, the best way
to determine if initialization bias is a problem is to look
at time series output. For example, Figure 3 displays
time series output for cycle time in a manufacturing
simulation. From this chart, it appears there is negligible
initialization bias. Figure 4, displays cycle time output
that appears to contain significant initialization bias.
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Our second qualitative observation is that the effect of
initialization bias in manufacturing simulations generally
increases as utilization rises. Thus, a truncation point
that successfully eliminates most initialization bias for a
highly loaded system will generally work quite well for
more lightly loaded systems. In fact, the two series
shown above are from simulations of the same model.
Figure 3 displays output from a 65% utilization run,
while Figure 4 displays output from a 95% utilization
run. Not only does the second run have a higher cycle
time, as we would expect, it also appears to have a
longer transient effect.

To set a truncation point, visually inspect output
charts of data averaged across multiple replications. This
averaging will smooth out random fluctuations and will
make the trend easier to pick out. For example Figure 5
displays the cycle time output series for 95% utilization
averaged across ten replications. From this chart, it
appears that a truncation point of six months or more is
required. At this point, we would recommend making
multiple replications of somewhat longer runs to confirm
that six months is in fact a reasonable truncation point.
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Figure 5: Cycle Time vs. Lot Exit Time Averaged
Across 10 Independent Replications

When it is not possible to visually examine all relevant
output, one can employ a statistical test, such as the one
described by Schruben, Singh, and Tierney (1983).

5.2 Presenting Simulation Results to Management

When presenting results to management, there are
several things to keep in mind that can increase the
likelihood of model acceptance. First, display results
graphically whenever possible. This makes it easier to
understand trade-offs in a short amount of time. The
graphs should follow the formats identified in the project
specification. Second, present only a few vital pieces of
output. Do not waste managers’ time by forcing them to
wade through a myriad of details. In particular, make

sure that the results presented answer the questions
asked in the original project specification. Finally,
whenever possible present results in terms of dollars.
Managers have a ready grasp of the bottom line. And,
ultimately, project success will be judged in terms of
tangible financial results.

5.3 Maintaining an On-Going Model

Considerably more work is required to build a model
that will be used on an on-going basis. Such a model
must be robust enough to be used by different people,
and flexible enough to be changed over time. Systems
that will be used on a daily basis will probably have to
be integrated directly into existing systems. For
example, a scheduling system, to be effective, must
receive at least periodic updates from the shop floor
control system. A strategic planning model, such as the
one identified in our first example, is more likely to exist
as a stand-alone model. A model like the one in the
second example, with a single process flow from an
existing product, could be integrated with the Excel
capacity planning model. This would have the advantage
of being able to automatically update the simulation
model when changes were made to the Excel model. If
the model is really only going to be used once, such
integration is probably not worth the effort. However,
models intended for a single use often end up being used
on an on-going basis. This can lead to much more work
than integrating the models in the first place, and can be
the source of many data maintenance nightmares.

5.4 Common Simulation Project Pitfalls

Simulation projects can fail for a variety of reasons.
Perhaps the most common problem is lack of a good
project design. Models are built without regard to the
questions that they will answer, and then they are not
able to adequately provide the answers that are needed.
Models built for single-use often end up being
maintained and used over time. If they have not been
designed to be used by someone other than the model
developer, inaccurate results can be generated. Lack of a
clear design can also result in insufficient buy-in and
participation from the client.

Another common problem is data. Sometimes the
necessary data does not exist, or is prohibitively
expensive to obtain. Other times inaccurate data is used
through oversight, or lack of clear lines of responsibility
for collecting the data. A prevalent problem with
simulation models is that they are too detailed. As a
result, they are not maintained, because data collection is
such an effort, or they are not run at all because the runs
take such a long time.
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A more subtle reason why simulation projects
sometimes fail is that the performance measures
optimized in the model are different from the
performance measures rewarded in real life. For
example, few simulation models will be able to motivate
workers to reduce cycle time when pay standards are
based upon throughput.

In general, we believe that more of these problems
stem from project management / environmental issues
than from lack of simulation expertise on the part of the
analyst.

6 SUMMARY

Despite the cautionary tone we have taken in this paper,
we believe it is possible to successfully use simulation in
a manufacturing environment. Based on our experience,
however, doing so requires more than just expertise in
simulation. First and foremost, it requires that the analyst
work with the client to prepare a written project
specification. This document should clearly spell out
project customers, goals, and deliverables. Once goals
are established (along with suitable performance
measures), the analyst should consider the entire range
of available analysis tools. Depending on the project
goals, a non-simulation methodology may be preferable.
Even within the class of simulation tools, there is usually
a spectrum of choices ranging from data-driven
simulators to full-blown simulation languages. No
matter the choice of tool, data-related problems should
never be ignored or underestimated, as they often cause
significant delays in model development. Model
completion, however, does not guarantee project
success. That comes only when the model is used to
answer the questions it was built to satisfy. Then, and
only then, will simulation be viewed by management as
an effective decision-support tool.
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