
Proceedings of the 1996 Winter Simulation Conference
ed. J. M. Charnes, D. J. Morrice, D. T. Brunner, and J. J. S,"vain

DESIGN OF OBJECT-ORIENTED SIMULATIONS IN C++

Jeffrey A. Joines
Stephen D. Roberts

Department of Industrial Engineering
Campus Box 7906

North Carolina State University
Raleigh, NC 27695-7906, U.S.A.

ABSTRACT

An object-oriented simulation (OOS) consisting of a set
of object classes written in C++ can be used to create
simulation models and packages. The simulations built
with these tools possess the benefits of an object-oriented
design, including the use of encapsulation, inheritance,
polymorphism, run-time binding, and parameterized
typing. These concepts are illustrated by creating a set of
object frames which encapsulate simulation require­
ments. Simulation modeling is contained within a set of
modeling frameworks. A network queuing simulation
language is developed which has several notable features
not available in other non-OOS languages. OOS pro­
vides full accessibility to the base language, faster exe­
cutions, portable models and executables, a multi-vendor
programming language, and a growing variety of com­
plementary development tools.

1 INTRODUCTION

Previous WSC tutorial papers (see Joines, Powell, and
Roberts 1992, 1993, 1994, 1995) described the benefits
of object-oriented simulation (OOS). This paper will
focus on the fundamental class structure (Section 2) and
the design of the simulation system (Section 3). The
network simulation language, YANSL, is presented as an
illustration within the context of this design (Section 4).
Everything is implemented in C++, which impacts the
implementation. C++ is an object-oriented extension to
the C programming language (Ellis and Stroustrup 1990).
The source code in this paper is available from anony­
mous ftp: f tp . eos . ncsu. edu/pub/ s irnul.

1.1 The Object-Oriented Context

The general conceptual design of the object-oriented
context for simulation, as conceived in this approach, is
illustrated in the following figure.

The lowest level construct is the C++ general program­
ming language. Specific simulation models are at the
highest level. The common notion of a simulation lan­
guage falls somewhere in the middle of this design.

"Users" may "relate" to this design at any of the de­
sign levels. Persons interested only in the results may
simply execute the models, while very knowledgeable
persons may employ "raw" C++. The concepts at each
level are "encapsulated" so that a simulation model user,
for example, needs not be concerned about the concepts
at a lower level. The more interested user, however, can
delve deeper into the design, ultimately reaching the C++
level. Implicit in this design is a "hierarchy" of infor­
mation, ranging from the behavior of specific models to
general program behavior.

One perspective on the contribution of object-oriented
simulation is that "simulation software engineering" is
now being added to "simulation applications engineer­
ing." This addition will provide simulation users with
not only a full array of simulation tools, but also the
means to add new or modify existing tools.

1.2 OOS Appeal to Simulation Application Users

The idea of an "object-oriented" simulation has great
intuitive appeal in applications because it is very easy to
view the real world as being composed of objects. In a
manufacturing cell, objects that should come to mind
include the machines, the workers, the parts, the tools,
and the conveyors. Also, the part routings, the schedule,
as well as the work plan could be viewed as objects.

66 Joines and Roberts

It is also easy to describe eXisting simulation lan­
guages using object terminology (see Joines, Powell, and
Roberts 1992). A simulation language provides a user
with a set of pre-defined object classes from which the
simulation modeler can create needed objects. The mod­
eler declares objects and specifies their behavior through
the parameters available. The integration of all the ob­
jects into a single bundle provides the simulation model.

1.2.1 Problems with Extensibility

Because many simulation languages offer pre-specified
functionality produced in another language (assembly
language, C, FORTRAN, etc.), the user cannot access the
internal function of the language. Instead, only the ven­
dor can modify the internal functionality.

Also, users have only limited opportunity to extend an
existing language feature. Some simulation languages
allow for certain programming-like expressions or state­
ments, which are inherently limited. Most languages
allow the insertion of procedural routines written in other
general-purpose programming languages.

None of this is fully satisfactory because, at best, any
procedure written cannot use and change the behavior of
a pre-existing object class. Also, any new object classes
defined by a user in general programming language do
not co-exist directly with vendor code.

The Arena software (Hammann and Markovitch 1995)
provides some upward extensibility by a template ap­
proach to representing blocks of Siman statements
(which may include the graphical representation). SLX
(Henriksen 1995) will provide both higher and lower
extensibility. Full object-oriented simulation systems
include Smalltalk (Goldberg and Robson 1989), Modsim
III (Belanger and Mullarney 1990), and Simple++
(Geuder 1995). C++ based simulation packages include
C++Sim (Little and McCue 1994), C++/CSIMI7
(Schwetman 1995) and Simpack (Fishwick 1995).

1.2.2 An Object-Oriented Simulation Approach

OOS deals directly with the limitation of extensibility by
permitting full data abstraction as well as procedural
abstraction. Data abstraction means that new data types
with their own behavior can be added arbitrarily to the
programming language. When a new data type is added,
it can assume just as important a role as any implicit data
types. For example, in the simulation language context,
a new user-defined robot class can be added to a lan­
guage that contains standard resources without compro­
mising any aspect of the existing simulation language,
and the robot may be used as a more complex resource.

2 CLASSES in C++

The class concept is fundamental to object-oriented
software. The class provides a "pattern" for creating
objects and defines the "type." An example (as it ap­
pears in C++) is the following Exponential class,
which is used to obtain exponential random variates:

#include "random.h"
/*Class Exponential describes inverse transfor­
mation generator for exponential variates. */

class Exponential: public Random {
private:

double mu;
public:

Exponential {double, unsigned int=O, long=O);
Exponential { int, unsigned int=O, long=O);
virtual double sample{);
void setMu{double initMu) emu = initMui}
double getMu{) { return mu; }

} ;

2.1 Class Properties

The class definition specifies the object's properties,
namely the data and functions, and are generally grouped
into "public" and "private" sections (C++ also permits
another grouping called "protected"). When the object is
created, the public properties can be accessed from out­
side the object. The private properties are information
kept strictly locked within the object and are available
only to object's functions. For example, the object mu
(exponential mean) is declared as a private data member
of type double and cannot be directly accessed. How­
ever, a public function called getMu () does return the
value of mu I while setMu () allows the user to change
the value of mu. Making a property private restricts use
outside the class and encapsulates the object's properties.

2.2 Inheritance

The Exponential class was not defined "from
scratch." It doesn't say anything explicitly about how it
obtains random numbers. Because the random number
generator establishes the source of randomness for all
random processes, it is defined in its own class. Hence,
the Exponential class is derived from the Random
class so it has access to all the public properties of the
Random class without having to re-code them.

This use of prior classes is called "inheritance." In
fact, inheritance makes the Exponential class a "kind
of' Random class. In object-oriented terminology this is
considered an "is-a" relationship. The other major kind
of relationships between two classes is the "has-a." In
the case of the Exponential, the exponential has a double
object called mu. A "has-a" relationship is not the result
of inheritance, but an act of composition.

Design of Object-Oriented Sirllulations in C++ 67

2.3 Construction and Initialization of Objects

When a class object is needed, the creation and initiali­
zation of it is provided by a function called a
"constructor." C++ will provide one if it isn't included in
the class definition. In the case of the Exponential
class, there are two constructors. One takes a double and
the other takes an integer. Notice that some of the argu­
ments have specified defaults, so the user doesn't have to
specify all the potential features of an exponential object
(these additional arguments pertain to the control of the
random number stream). Within the constructors (details
not shown), space is allocated for the object and parame­
ters are assigned. Although, not used in Exponential,
C++ permits user specified destructors. A destructor will
clean-up any object responsibilities (like collecting sta­
tistics) and deallocate the space.

2.4 Run-time Binding

The sample () function is specified as a "virtual" func­
tion in both the Random (not shown) and Exponen­
t ial class. Therefore, sampling can be specified as a
Random object and at run-time, the program will decide
from which random variate to sample. This approach of
tying the variate to the sample at run-time is also called
"delayed" or "run-time" binding. Run-time binding may
extract a small run-time penalty, but makes this entire
specification of sampling from variates much easier to
write, maintain, and use. With run-time binding, new
variate types can be added through inheritance without
altering existing simulation code.

2.5 Polymorphism

The Exponential class has two constructors, so users
may specify either floating point or integer arguments for
the mean interarrival time. Although it is not necessary
in this case (C++ will make the right conversions), it
does illustrate the use of polymorphism--where the same
property applies to different objects. Under other cir­
cumstances, polymorphism allows users to produce the
same behavior with different object types. For instance,
requesting a material handling does not depend on the
the device being sought. For example, one message
"request" can be used for AGV or Trucks (e.g. re­
quest("AGV") or request("Truck"»)rather than a message
for each type (e.g., requstAGV and requestTruck).

3 CLASS HIERARCHY AND FRAMES FOR OOS

A key to the creation of a fully integrated simulation
package is the use of a class inheritance hierarchy
(introduced in Section 2.2). With C++ being the most

abstract form (lowest level) of a simulation package, the
more concrete elements are added so that, at the highest
level, the final product may be a specific simulation
model. A specific simulation model is also a kind of
simulation model, which is a kind of simulation, which is
a kind of C++ program.

An inheritance hierarchy can be viewed as a tree. The
base of the tree is the most abstract class and the leaves
present the most specific class. In order to collect classes
into levels of abstraction, we introduce object-based
"frames." Aframe is a set of classes that provide a level
of abstraction in the simulation and modeling platform.
A frame is a convenient means for describing various
"levels" within the simulation class hierarchy and is a
conceptual term (not formalized within C++).

3.1 Foundation Frame

The foundation classes provide a base structure from
which more simulation-specific classes may be created.
These foundation classes are not simulation specific.

3.1.1 Abstract Objects

The Abs trac tObj ect forms the fundamental base
class for the entire design and all other classes are de­
rived from this base class. The AbstractObject
defines all the essential properties and gives unifonn
character to the design. It provides for the following
common properties and is called a "nice" class (see Car­
roll and Ellis 1995): a default constructor which con­
struct objects without user-specified parameters; a copy
constructor which establishes a mechanism for creating a
new object as a copy of another within this class; an as­
signment operator which allows objects to be the target
of an assignment using this operator; an equality opera­
tor which tests the "equality" of one object with another
using this operator; a less than operator which test
whether one object is "less than" another using this op­
erator; and a destructor which proviges for the orderly
destruction of an object.

3.1.2 Foundation Support Classes

The foundation support classes provide general manipu­
lation of objects important in the creation of simulation
languages/packages including classes for strings, arrays,
and linked lists. These are now available in the new
standard template library(STL) (Plauger 1995).

3.2 Simulation Frame

This frame provides basic simulation functionality in­
cluding random number and random variate generation,

68 Joines and Roberts

statistics collection, and base simulation elements as seen
below.

As can be seen, all the classes are derived from Ab­

stractObject in order to maintain a common class
design throughout any simulation project.

3.2.1 Random Numbers and Random Variates

Random number generation is obtained from the Ran­
dom class. Random variate generators are derived from
the Random class so that each source of variate genera­
tion has its own random number generator(or genera­
tors). This design has two benefits by facilitating the use
of inverse transform method of random variate genera­
tion and by associating each variate generator with its
own random number stream, variance reduction through
correlated sampling is possible. Random number and
variate generation properties include: (1) setting/getting
generator parameters, (2) obtaining random num­
bers/variates, and (3) creating antithetic sampling.

3.2.2 Statistics Collection

Basic statistics can be collected on Weighted, Un­
weighted, and TimeWeighted variables. Also,
statistics may be "batched" from any of the basic statistic
types. Tables, plots, and histograms may be displayed
for basic or batched statistics. Statistics collection prop­
erties include: (1) stopping and starting statistics collec­
tion, (2) clearing the statistics, and (3) reporting statis­
tics. Basic statistics are collected during the simulation
and provide: (1) observation base of (weighted) observa­
tions or time, (2) mean and standard deviation, and (3)
minimum and maximum observations. Batched statistics
are also collected during the simulation and provide both
over-batch and current batch results. Batches can be
based on time intervals or numbers of observations.

3.2.3 Simulation Component Classes

SimulationElement contains the simulation time
and manages the event calendar. It provides for event
and time management by being capable of: (1) schedul­
ing events, (2) getting the next event, and (3) getting and

setting the current time. This class provides an important
base class from which modeling classes are derived.

The Simulation class has the run control proper­
ties which manage the complete simulation and include:
(1) getting the current replication number, (2) setting the
number of replications, (3) setting the length of the run,
(4) stopping the simulation or current replication, and (5)
printing summary and individual output reports.

3.3 Simulation Modeling Frame

To aid in the construction of simulation languages and
packages, several simulation modeling classes have been
designed and implemented. The components of the
modeling frame are events, entities, processes, nodes,
and choices. These components are derived from both
the SirnulationElement and the Link classes. In
the following figure and subsequent figures, the solid
lines are inherited relationships ("is-a") while the dashed
lines are composition relationships ("has-a").

Events contain the properties related to simulation
event management and provide: (1) the means for setting
and getting the event time, (2) setting and getting other
event information, and (3) processing the event. Node,
Process, and Moni tor events provide specialized
properties that are needed when events occur within a
node or a process, or are independently specified.

Entities provide active elements for the simula­
tion, whether permanent or temporary. The properties of
entities include: (1) getting the entity's creation time, (2)
obtaining its status, (3) getting its current location, (4)
obtaining the entry time of the entity's current state, and
(5) getting the entity's time in the system. Transac­
tionBase and ResourceBase classes are derived
from Enti ties and extend the entities for use in gen­
eral networks. The TransactionBase class provides
entities that may need service and has properties for: (1)
getting/setting the node entry time, (2) getting the crea­
tion node, and (3) getting/setting the identification num­
ber. The ResourceBase class provides entities that
can provide service and has properties for: (1) get­
ting/setting the resource name, (2) getting/setting re­
source states, and (3) defining the resource states.

Design of Object-Oriented Sinlulations in C++ 60

Processes provide an encapsulated means for de­
scribing simulation processes (not computer tasks) such
as seizing and releasing resources and reneging at
queues. The process class is generally used to provide a
means of decomposing a complex simulation activity,
like preempting a resource, and is a form of a "helper"
class for the simulation.

Nodes are used for network modeling and contain the
properties which include: (1) getting/setting the node
count, (2) getting node identification number, (3) ob­
taining the node type, (4) accessing a list of all nodes in
the network, and (5) finding the entities at the current
node. Derived from Node are the Destination and
Departure nodes. A destination node can be entered
while a departure node may be exited. Often departure
nodes have branches connected to them and therefore
need a "BranchingChoice" and are called Branching­
Depa tureNodes The properties of the destination
node include the "entering process" while the departure
nodes provides the "exiting process", the branching
choice, and related branching specifications.

Choices are used to give the simulation model
"intelligence." Routes, rules, and policies may be mod­
eled through the various choices.

3.3.1 Frames and Frameworks

While frames provide a convenient means to describe the
levels of abstraction within the entire object-oriented
simulation platform, another means of encapsulation is
needed to deal with the broad simulation modeling con­
cepts and features contained within the design. In a
sense, the frames are quite similar to class libraries which
can be called upon in the development of an actual
simulation modeling language or package. However, for
the higher level modeling classes, these library-like col­
lections of classes are too complexly interrelated to be
represented simply as a single level of abstraction. A
better approach to the description of these higher level
complex interactions is the notion of "frameworks." For
our purposes, frameworks are used to describe those
collections of classes that provide a set of specific model­
ing facilities. The frameworks may consist of one or
more class hierarchies. These collections make the use
and reuse of simulation modeling features more intuitive
and provide for greater extensibility.

There are several frameworks that compose the model­
ing frame and include: (1) Transaction Framework
which establishes the basic properties of the transaction
and provides a means to create transactions, to bring
them into the network, to branch them from node to
node, to cause them to exit the network, and to destroy
them; (2) Resource Framework which establishes the
basic properties of resources, provides for resource

teams and resource groups, provides for preemption of
resources, seize resources, and release resources; (3)
Queuing Framework which stores transactions awaitin u

t:;,

resources, ranks transactions in the queue, provides
conditional and unconditional reneging from queues, and
gates transactions in queues until conditions are appro­
priate for their future movement; and (4) Activity
Framework which delays transactions for some specified
time, determines among resource alternatives and re­
quires resources, and abort transactions from the acti vity.

4 CREATING A SPECIFIC OOS

Special simulation languages and packages may be cre­
ated from these object classes. In this section we present
the YANSL network queuing simulation language that
has been presented in prior WSC papers. YANSL is an
acronym for "Yet Another Network Simulation Lan­
guage." YANSL is just one instance of the kind of
simulation capability that can be developed within an
object-oriented simulation environment.

4.1 Basic Concepts and Objects in YANSL

YANSL was developed to illustrate the importance of
object-oriented simulation. YANSL is a network queu­
ing simulation package of roughly the power of a GPSS
(Schriber 1991), SLAM (Pritsker 1995), SIMAN
(Pegden, Shannon, and Sadowski 1995), or INSIGHT
(Roberts 1983), but without the "bells and whistles." Us­
ers familiar with any of these languages should recog­
nize, however, that it is a very powerful alternative.

4.1.1 Classes Specific to YANSL

Several classes are chosen from the modeling frame­
works to create the YANSL modeling package. These
classes are collected together to form a "simple" model­
ing/simulation language which can be extended to create
more complicated features. The general simulation sup­
port classes, such as variate generation, statistics collec­
tion, and time management, are used indirectly through­
out the modeling frameworks. The network concepts are
somewhat enhanced, but are taken from the modeling
framework. The node hierarchy for YANSL is:

Sink

70 Joines and Roberts

ResourceGroup<ResSeIC>

The higher level nodes (Assign, Activity, Queue,
Source, and S ink) are used directly by the YANSL
modeler. Lower level nodes provide abstractions which
are less specific thus allowing specialization for other
simulation constructs (e.g., the QueueNodeBase class
excludes ranking and statistics). Sink and queue nodes
can have transactions branched to them and are therefore
destination nodes, while the source node is a departure
node. The delay and assign nodes are both departure and
destination nodes, so they inherit from both the departure
and destination node classes. This inheritance from mul­
tiple parents is called "multiple inheritance." An activity
is a "kind of' delay but includes resource requirements.
The properties of the YANSL nodes allow transactions
to be created at source nodes, wait at queue nodes, re­
ceive attribute assignment at assign nodes, be delayed at
activity nodes, and exit the network at sink nodes.

Resources may service transactions at activity nodes.
The resource framework for YANSL allows resources to
be identified as individuals, as member of alternative
groupings, or as members of teams.

When there is a choice of resource service at an activity,
then a resource selection method is used. The ability to
request a resource service at run-time without specifying
it explicitly is another example of polymorphism.

Choices available in YANSL extend those in the
modeling frameworks (see the following class hierarchy):

The choices available add broad flexibility to the deci­
sion-making functions in the simulation, without needing
different classes for each different function. Instead,
classes are parameterized with these choice classes and
the choices consist of several methods. Specifically in
YANSL, they allow for the selection of alternative
branches from a departure node, selection among alter­
native resources in requirements at an Ac t i vi ty, as
well as provide the decision making ability for resources
to choose what to do next, and ranking choices among
transactions at an Queue. The choices are used to rep­
resent the time-dependent and changing decisions that
need to be modeled

4.1.2 IVlodeling with YANSL

When modeling with YANSL, the modeler views the
model as a network of elemental queuing processes
(graphical symbols could be used). Building the simu­
lation model requires the modeler to select from the pre­
defined set of node types and integrate these into a net­
work. Transactions flow through the network and have
the same interpretation they have in the other simulation
languages. Transactions may require resources to serve
them at activities and thus may need to queue to await
resource availability. Resources may be fixed or mobile
in YANSL, and one or more resources may be required
at an activity. Unlike some network languages, resources
in YANSL are active entities, like transactions, and may
be used to model a wide variety of real-world items.

4.2 The TV Inspection and Repair Problem

As a portion of their production process, TV sets are sent
to a final inspection station (refer to Joines, Powell, and
Roberts, 1992 and to the harbor problem in Joines,
Powell, and Roberts, 1993). Some TVs fail inspection
and are sent for repair. After repair, the TVs are returned
for re-inspection. Transactions are used to represent the
TVs. The resources needed are the inspector and the
repairman. The network is composed of a source node
which describes how the TVs arrive, a queue for possible
wait at the inspect activity, the inspect activity and its
requirement for the inspector, a sink where good TVs
leave, a queue for possible wait at the repair activity, and
the repair activity. Transactions branch from the source
to the inspect queue, are served at the inspect activity,
branch to either the sink or to the repair queue, are
served at the repair activity and return to the inspect
queue. The data used in the simulation is that the inter­
arrival time of TVs, the inspect service time, and repair
service time are exponentially distributed with a mean of
5, 3.5, and 8 minutes respectively, and the probability
that a TV is good after being inspected is .85.

4.3 A YANSL Model

The YANSL network has all the graphical and intuitive
appeal of any network based simulation language. A
graphical user interface could be built to provide
"convenient" modeling with error checking and help of­
fered to the user. Whatever the modeling system used,
the ultimate computer readable representation of the
model would appear as follows:

#include "simulation.h"

main{) {

II SIMULATION INFORMATION

Design of Object-Oriented Simulations in C++ 71

II NETWORK NODES

II RESOURCES
Resource< PRIORITY> inspector, repairman;

1** Transactions Arrive **1
Source< Transaction, DETERMINISTIC >

tvSource(interarrival, 0.0, 480);
II Begin at 0.0 and quit at 480.0

II DISTRIBUTIONS
Exponential interarrival(5),

inspectTime(3.5),
repairTime(8.0);

There are two types of YANSL Hstatements." The
first is the declaration of objects in the model. These
statements describe the elements in the simulation. The
second type of statement is member function calls or
messages to structure the model. The same di vision of
statements occurs in existing simulation languages. The
only order requirement for statements is that an object
must be declared before it is used.

The objects in YANSL are declared in a form consis­
tent with C++. The object class is specified first, then
the objects are named. Initialization of specific objects
are done in parentheses. Some object declarations appear
more complex because the object class is also parameter­
ized by information in <>. In object-oriented terminol­
ogy, these are called "parameterized types" and provide
"has-a" relationships. Parameterized types are created by
class templates so that the ultimate specification of a
class is not known until that class is declared in the
model to create the object (both the class and the object
are created). Templates make it easy for a user to spec­
ify a kind of class rather than having a whole bunch of
classes whose similarities are greater than their differ­
ences. As an example, consider

tvSimulation(l); III replication

1** Repair **1
Queue< FIFO> repairQueue("Repair Queue");

repairman.addQueue(repairQueue);
Activity<RequirementSet,DETERMINISTIC>

repair (repairTime);
repair.addRequirement(repair);
repairQueue.addActivity(repair);

1** Inspection **1
Queue< FIFO> inspectQueue("Inspect Queue");

inspector.addQueue(inspectQueue);
Activity<RequirernentSet,PROBABILITY>

inspect (inspectTime);
inspect.addRequirement(inspector);
inspectQueue.addActivity(inspection);

Simulation

1** Transactions Leave **1
Sink finish;

IINETWORK BRANCHES

tvSource.addBranch(inspectQueue);
inspect.addBranch(finish, .85);

II 85% are good and leave
inspect.addBranch(repairQueue, .15);

II 15% need repair
repair.addBranch(inspectQueue);

Queue< FIFO> inspectQueue("Inspect Queue");

where the Queue class needs some ranking choice class
called FIFO, while the object inspectQueue is ini­
tialized with a string, the name of the queue. Notice that
a class will be parameterized with another class, while an
object is parameterized with another object.

4.5 Running the Simulation
IIRUN the Simulation
tvSimulation.run();
}

The previous model has an almost one-to-one correspon­
dence to the problem entities. The statements are highly
readable and follow a simple format. The pre-defined
object cla.sses give the user wide flexibility.

While the "statements" in YANSL are very similar to
those in SIMAN, SLAM, or INSIGHT, it is all legitimate
C++ code. Also this model runs in less than half the time
a SIMAN model runs on the same machine! But the real

advantage of YANSL is its extensibility.

4.4 The Objects and their Specification

The YANSL "statement" model is enclosed in the recog­
nizable C/C++ framework, namely having a #include
statement that includes all the simulation requires, a
main () function header, and {} which enclose the
block of code (YANSL statements). This framework is
left only to reveal it is C++ code since even this elements
could be camouflaged using the C preprocessor.

The prior model is compiled under a C++ compiler(a
compiler should be AT&T version 3.0 compatible),
linked with the YANSL simulation library, and executed.
Currently, the YANSL simulation library has been
compiled under Borland C++ 5.0 (Borland 1995). C++
is strongly typed, so error checking is very good. Also,
the simulation is easily linked into other C++ libraries.

4.6 Embellishments

The lack of distinction between the base features of
YANSL and any extensions illustrate the "seamless" na­
ture of user additions. Many embellishments are possi­
ble. For example, the embellishments shown in the ear­
lier papers (Joines and Roberts 1992, 1993) could be
applied here. Such embellishments can be added for a
single use or they can be made a permanent part of
YANSL, say YANSL II. In fact, a different kind of
simulation language, say for modeling and simulating
logistics systems, might be created and called LOG­
y ANSL for those special users. Perhaps the logistics

72 Joines and Roberts

users would get together and share extensions and create

a more general LOG-YANSL II. And so it goes! For

those familiar with some existing network simulation
language, consider the difficulty of doing the same.

5 CONCLUSIONS

Modeling and simulation in an object-oriented language
possesses many advantages. As shown, internal func­
tionality of a language now becomes available to a user
(at the discretion of the class designer). Such access
means that existing behavior can be altered and new ob­
jects with new behavior introduced. The 0-0 approach
provides a consistent means of handling these problems.

The user of a simulation in C++ is granted lots of
speed in compilation and execution. The C language has
been a language of choice by many computer users and
now C++ is beginning to supplant it. With the new
ANSI standard, all C++ compilers are expected to accept
the same C++ language. To take full advantage of object­
oriented simulation will require more skill from the user.
However, that same skill would be required of any pow­
erful simulation modeling package, but with greater
limitations.

REFERENCES

Borland. 1995. Borland C+ + version 5.0. Borland In­
ternational, Inc. 100 Borland Way, Scotts Valley, CA.

CACI. 1995. A quick Look at Modsim III. CACI Prod­
ucts Company, La Jolla, CA.

Ellis, M, and B Stroustrup. 1990. The annotated C++
reference manual. Reading, Massachusetts: Addison­
Wesley.

Fishwick, P. A. 1995. Simulation Model Design and
Execution, Englewood Cliffs, N.J. Prentice-Hall.

Geuder, D.. 1995. Object-Oriented Simulation Model­
ing with Simple++ In Proceedings of the 1995 Winter
Simulation Conference, ed., C. Alexopoulos, K. Kang,
W. R. Lilegdon, and D. Goldsman, 519-523. Institute
of Electrical and Electronics Engineers, Washington,
D.C.

Goldberg, A., and D. Robson. 1989. Smalltalk-80: the
language. Reading, Massachusetts: Addison-Wesley.

Hammann, J. E. and N. A. Markovitch. 1995. Introduc­
tion to Arena. In Proceedings of the 1995 Winter
Simulation Conference, op cit.

Henriksen, J. O. 1995. Introduction to SLX. In Pro­
ceedings of the 1995 Winter Simulation Conference.
502-509, op.cit.

Joines, J. A., K. A. Powell, Jr., and S. D. Roberts. 1992.

Object-oriented modeling and simulation with C++. In

Proceedings of the 1992 Winter Simulation Confer­
ence, ed., J. J. Swain, D. Goldsman, R. C. Crain, and

J. R. Wilson, 154-162. Institute of Electrical and
Electronics Engineers, Washington, D.C.

Joines, J. A., K. A. Powell, Jr., and S. D. Roberts. 1993.
Building object-oriented simulations with C++. In
Proceedings of the 1993 Winter Simulation Confer­
ence, ed., G. W. Evans, M. Mollagasemi, E. C. Rus­

sell, and W. E. Biles, 205-212. Institute of Electrical
and Electronics Engineers, Los Angeles, CA.

Joines, J.A. and S. D. Roberts. 1994. Design of Object­
Oriented Simulations in C++. In Proceedings of the
1994 Winter Simulation Conference, ed., Jeffrey Tew,
S. Manivannan, Deborah Sadowski, and Andrew
Seila, 157-165. Institute of Electrical and Electronics
Engineers, Orlando FL.

Joines, J.A. and S. D. Roberts. 1995. Design of Object­
Oriented Simulations in C++. In Proceedings of the
1995 Winter Simulation Conference, 82-92, op.cit.

Little, M.e. and McCue, D.L., 1994, "Construction and
Use of a Simulation Package in C++,"C User's Jour­
nal, 12(3).

Pegden, C. D., R. E. Shannon, and R. P. Sadowski.
1995. Introduction to simulation using SIMAN, Sec­
ond Edition, New York: McGraw-Hill.

Plauger, P. 1995. The draft C++ library, Englewood
Cliffs, N.J . Prentice-Hall.

Pritsker, A. A. B. 1995. Introduction to simulation and
SLAM II, Fourth Edition. New York: Halsted Press.

Roberts, S. D. 1983. Modeling and simulation with IN­
SIGHT. Indianapolis, Indiana: Regenstrief Institute.

Schriber, T. 1. 1991. An introduction to simulation using
GPSS/H. New York: John Wiley and Sons.

Schwetman, H. 1995. Object-Oriented Simulation
Modeling with C++/CSIM17. In Proceedings of the
1995 Winter Simulation Conference, 529-533, op.cit.

AUTHOR BIOGRAPHIES

JEFFERY A. JOINES is a Ph.D Candidate in the De­
partment of Industrial Engineering and a Research As­
sociate in Furniture Manufacturing and Management
Center at North Carolina State University. He received
his B.S.I.E, B.S.E.E, and M.S.I.E from NCSU. He is a
member of INFORMS, lIE, and IEEE. His interests in­
clude object-oriented simulation, cellular manufacturing,
and genetic algorithms.

STEPHEN D. ROBERTS is Professor and Head of the
Department of Industrial Engineering at NCSU. He re­
ceived his B.S.I.E., M.S.I.E., and Ph.D. from Purdue
University. He was the recipient of the 1994 Distin­
guished Service A ward. He has served as Proceedings

Editor and Program Chair for the Winter Simulation
Conference. He is an INFORMS/CS representati ve to
and past Chair of the Board of Directors of WSC.

