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ABSTRACT

General guidelines for selecting probabilistic input
models as part of a discrete-event sin1ulation study
are presented. Two short examples illustrating input
modeling decisions are also presented, as opposed to
a complete treatment of the subject.

1 INTRODUCTION

Discrete-event sill1ulation models typically have stoch­
astic cOll1ponents that mimic the probabilistic nature
of the system under consideration. Successful input
modeling requires a close 111atch between the input
model and the true underlying probabilistic mecha­
nism associated with the system. The general ques­
tion considered here is how to model an element (e.g ..
arrival process, service times) in a discrete-event Si1l1­
ulation given a data set collected on the element of
interest.

Since time and space for this tutorial is limited,
the following sill1plifying assull1ptions have been ll1ade.

• The modeler has access to a reliable source of
randoll1 numbers. Most introductory sill1ula­
tion textbooks (e.g., Law and Kelton 1991) con­
sider random number generation algorithn1s.

• An algorithm is available for converting these
random nUll1bers to randoll1 variates associated
with the input model to drive the simulation
(Devroye 1986).

• Data is available on the aspect of the simulation
of interest. For examples of input modeling in
the absence of data, see Schmeiser and Deutsch
(1977) or Law, McComas, and Vincent (1994).

With these assumptions lill1iting the scope of this
tutorial, the focus turns to selecting the appropriate
probabilistic models for the random cOll1ponents in a
simulation model. Many simulation textbooks have a

much broader treatll1ent of input 1110deling than pre­
sented here (e.g., Law and Kelton 1991). These texts
include more specific inforll1ation on statistical tests
for independence, graphical 111ethods for model selec­
tion, parameter estimation techniques, and goodness­
of-fit tests. Advanced input lnodeling is considered by
Nelson et al. (1995).

An input model can be specified in a variety of
\vays, such as a cUll1ulative distribution function, haz­
ard function, intensity function, or a variate-genera­
tion algorithm. An input model characterizes each of
the stochastic elell1ents of a discrete-event simulation.

Figure 1 contains a taxonoll1y whose purpose is to
illustrate the scope of potential input 1110dels that are
available to simulation analysts. There is certainly no
uniqueness in the branching structure of the taxon­
omy. The branches under stochastic processes, for ex­
ample, could have been state followed by time, rather
than tim.e followed by state, as presented.

Exalnples of specific models that could be placed
on the branches of the taxonomy appear at the far
right of the diagram. Mixed, univariate, time-in­
dependent input models have empirical/trace-driven
given as an possible model. All of the branches in­
clude this particular model. A trace-driven input
model simply generates a process that is identical
to the collected data values so as not to rely on a
parametric model. A sill1ple example is a sequence
of arrival tin1es collected over a 24-hour tillle period.
The trace-driven input model for the arrival process is
generated by having arrivals occur at the same times
as the observed values.

The upper half of the taxonomy contains models
that are independent of time. These lnodels could
have been called !v!onte Carlo models. Models are
classified by whether there is one or several variables
of interest, and whether the distribution of these ran­
dom variables is discrete. continuous, or contains both
continuous and discrete elen1ents. Exall1ples of uni­
variate discrete models include the binoillial distribu­
tion and a degenerate distribution with all of its
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mass at one value. Examples of continuous distribu­
tions include the normal distribution, an exponential
distribution with a random parameter A (see, for ex­
ample, Martz and Waller 1982), and Bezier curves
(Flanigan-Wagner and Wilson 1993). Bezier curves
offer a unique combination of the paranletric and non­
parametric approaches. An initial distribution is fit­
ted to the data set, then the modeler decides whether
differences between the empirical and fitted nl0dels
represent sampling variability (chance variation) or
an aspect of the distribution that should be included
in the input model.

Examples of k-variable multivariate input 1110d­
els (see Johnson 1987) include a sequence of k in­
dependent binomial random variables, a nlultivari­
ate normal distribution with Inean J1 and variance­
covariance lllatrix L and a bivariate exponential dis­
tribution (Barlow and Proschan 1981).

The lower half of the taxonomy contains stochas­
tic process models. These models are often used to
solve problems at the system level, in addition to
serving as input models for simulations with stochas­
tic elements. Models are classified by how tilne is
measured (discrete/continuous), the state space (dis­
crete/continuous) and whether the 1110del is station­
ary in time. For Markov models, the discrete-state/
continuous-state branch typically determines whether
the model will be called a "chain" or a "process" , and
the stationary/nonstationary branch typically deter­
mines whether the model will be preceded with the
term "homogeneous" or "nonhomogeneous". Exanl­
pIes of discrete-time stochastic processes include ho­
mogeneous, discrete-time Markov chains (Ross 1993)
and ARIMA time series models (Box and Jenkins
1976). Since point processes are counting processes,
they have been placed on the continuous-time, dis­
crete-space branch. Although the Poisson, renewal
and nonhomogeneous Poisson processes are all pure
birth processes, more general point processes, such
as one to model the number of custonlers in a queue,
can be placed on one of the continuous time, discrete­
space branches.

2 EXAMPLES

Two simple examples illustrate the types of decisions
that often arise in input modeling. The first exaln­
pIe determines an input model for service times and
the second example determines an input model for an
arrival process.

2.1 Service Time Model

Consider a data set of n = 23 service times collected
to determine an input model in a discrete-event sim-

ulation of a queuing systenl. The serVIce times In
seconds are

105.84 28.92 98.64 .55.56 128.04 45.60
67.80 105.12 48.48 51.84 173.40 51.96
.54.12 68.64 93.12 68.88 84.12 68.64

41.52 127.92 42.12 17.88 33.00.

[Although these service tinles COIlle from the life test­
ing literature (Lieblein and Zelen 1956), the sanle
principles apply to both input nl0deling and survival
analysis.]

The first step is to assess \vhether the observations
are independent and identically distributed (iid). The
data must be given in the order collected for inde­
pendence to be assessed. Situations where the iid
assumption \\Tould not be valid include:

• A new teller has been hired at a bank and the 23
service tinles represent a task that has a steep
learning curve. The expected service time is
likely to decrease as the new teller learns how
to perform the task more efficiently.

• The service times represent 23 conlpletion times
of a physically demanding task during an 8-hour
shift. If fatigue is a significant factor, the ex­
pected time to cOlllplete the task is likely to
increase with time.

If a sinlple linear regression of the observation num­
bers regressed against the service times shows a signif­
icant nonzero slope, then the iid assumption is prob­
ably not appropriate.

Assume that there is a suspicion that a learning
curve is present. An appropriate hypothesis test is

HI : PI < 0

associated with the linear model (Neter, Wasserman,
and Kutner 1989)

where X is the observation nunlber, }l" is the service
time, 130 is the intercept, /31 is the slope, and ( is an
error term. Figure 2 shows a plot of the (Xi, Yi) pairs
for i = 1, 2, ... , 23, along wi th the estimated regres­
sion line. The p-value associated with the hypothesis
test is 0.14, which is not enough evidence to conclude
that there is a statistically significant learning curve
present.

There are a number of other graphical and statis­
tical methods for assessing independence. These in­
clude analysis of the sample autocorrelation function
associated with the observations and a scatterplot of
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Examples of the interpretations of these sample statis­
tics are:

I n ( _)3Xi - X;?= -s- = 0.88.
t=l

• A coefficient of variation s / x close to 1, along
with the appropriate histogram shape, indicates
that the exponential distribution is a potential
input model.

adjacent observations. For this particular example,
assume that we are satisfied that the observations
are truly iid in order to perform a classical statistical
analysis.

The next step in the analysis of this data set in­
cludes plotting a histogram and calculating the values
of some sample statistics. A histogram of the obser­
vations is shown in Figure 3. Although the data set
is small, a skewed bell-shaped pattern is apparent.
The largest observation lies in the far right-hand tail
of the distribution, so care must be taken to assure
that it is representative of the population. The sam­
ple mean, standard deviation, coefficient of variation,
and skewness are

68.64 seconds, and the observation in the far right­
hand tail of the distribution, 173.40 seconds, tend to
indicate that a parametric analysis is more appropri­
ate. Since the input model is for service times, the
accurate modeling of the right-hand tail of the dis­
tribution is critical. These long service times signifi­
cantly impact queuing statistics. For this particular
data set, a parametric approach is chosen.

There are dozens of choices for a univariate para­
metric model for the service times. These include gen­
eral families of scalar distributions, modified scalar
distributions and commonly-used parametric distri­
butions (see Schmeiser 1990). Since the data is drawn
from a continuous population and the support of the
distribution is positive, a time-independent, univari­
ate, continuous input model is chosen. The shape
of the histogram indicates that the gamma, inverse
Gaussian, log logistic, log normal, and Weibull dis­
tributions (Lawless 1982) are good candidates. The
Weibull distribution is analyzed in detail here. Simi­
lar approaches apply to the other distributions.

Parameter estimates for the Weibull distribution
can be found by least squares, the method of mo­
ments, and maximum likelihood. Due to desirable
statistical properties, maximum likelihood is empha­
sized here. The Weibull distribution has probability
density function

s
- = 0.52xs = 37.49x = 72.22

• A sample skewness close to 0 indicates that a
symmetric distribution (e.g., a normal distribu­
tion) is a potential input model.

The next decision that needs to be made is whether
a parametric or nonparametric input model should be
used. One simple nonparametric model would repeat­
edly select one of the service times with probability
1/23. The small size of the data set, the tied value,

where A is a positive scale parameter and K is a posi­
tive shape parameter. Let Xl, X2, .•. ,Xn be the data
values. The likelihood function is
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The log likelihood function is

n

log L('x, K) == n log K + n:n log'x + (n: - 1) L log Xi

i=1
n

-,x~ ~ X~LJ z'
i=1

The 2 x 1 score vector has elements

alog L('x, K)
o,x
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When these equations are equated to zero, the simul­
taneous equations have no closed-form solution for ~

and K:

Figure 4: Empirical and Fitted Cunlulative Distribu­
tion Functions for the Service Times

2[-113.691-log L('x, K)] < 5.99.

evaluated at the maxinlum likelihood estimators is
logL('x,~) = -113.691. Figure 4 shows the empiri­
cal cUDlulative distribution function (a step function
with each step height l/n) along with the Weibull fit
to the data.

The observed inforl11ation matrix is

875 ]
10.4 '

O(~ ~'.) = [681, 000
1 h: 875

revealing a posi tive correlation between the elements
of the score vector. lJsing the fact that the like­
lihood ratio statistic, 2[log L(~,~) - log L('x, K)]' is
asymptotically ,,2 with 2 degrees of freedom and that
\~,O.05 = 5.99, a 95% confidence region for the pa­
rameters is all ,x and K satisfying

The 9591cl confidence region is shown in Figure 5. The
line K = 1 is not interior to the region, indicating
that the exponential distribution is not an appropri­
ate model for this particular data set.

As further proof that K: is significantly different
from 1, the standard errors of the distribution of the
parameter estimators can be computed by using the
inverse of the observed inforDlation 111atrix

To reduce the problem to a single unknown, the first
equation can be solved for ,x in terms of K yielding

n n

~ + nlog'x + Llogxi - L(Axi)" logAxi = o.
K i=l i=l

Law and Kelton (1991, p. 334) give an initial esti­
mate for K that can be used in Newton's lnethod to
numerically solve for the maximum likelihood esti­
mators. Qiao and Tsokos (1994) consider nUlllerical
problems with Newton's method and give an alterna­
tive algorithm for calculating the nlaxilllum likelihood
estimators.

The score vector has a mean of 0 and a variance­
covariance matrix I('x, n:) given by the 2 x 2 Fisher
information nlatrix

This is the asymptotic variance-covariance 111atrix for
the parameter estimators ~ and K. The standard er­
rors of the parameter estimators are the square roots
of the diagonal elements

The observed information matrix

can be used to estimate I (,x, K:).
For the 23 service times, the fitted Weibull dis­

tribution has maximunl likelihood estimators ~ =
0.0122 and K- = 2.10. The log likelihood function

0- 1 (~ ~.) = [0.00000165
,K: -0.000139

0->. = 0.00128

-0.000139]
0.108 .
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Figure 5: 95% Confidence Region Based on the Like­
lihood Ratio Statistic

Figure 6: A P-P Plot for the Service Times

or

Thus an asymptotic 95% confidence interval for f\, is

1.46 < Ii < 2.74,

2.10 - (1.96)(0.329) < f\, < 2.10 + (1.96)(0.329)

package also performs a goodness-of-fit test such as
the Kolmogorov-Smirnovor chi-square test, the dis­
tribution that best fits the data set can quickly be
determined.

p-p and Q-Q plots can also be used to assess
n10del adequacy. A P-P plot, for example, is a plot
of the fitted cumulative distribution function at the
ith order statistic X(i), i.e., F(X(i))' versus the ad­
justed empirical cumulative distribution function, i.e.
F(X(i») == i-~.5, for i == 1,2, .. . ,n. A plot where the
points fall close to a line indicates a good fit. For
the 23 service times, a P-P plot for the Weibull fit is
shown in Figure 6, along with a line connecting (0, 0)
and (1, 1). P-P plots should be constructed for all
competing models.

2.2 Arrival Process Model

Arrival times to a lunch wagon between 10:00 AM and
2:30 PM are collected on three days. The realizations
were generated from a hypothetical arrival process
given by Klein and Roberts (1984). A total of n ==
1.50 arrival times were observed, including n1 == 56,
n2 == 42 and n3 == 52 on the k == 3 days. Defining
(0,4.5] be the time interval of interest (in hours) the
three realizations are

Test statisticModel

since ZO.025 == 1.96. Since this confidence interval does
not contain 1, the inclusion of the Weibull shape pa­
rameter Ii is justified.

At this point, model adequacy should be assessed.
Since the chi-square goodness-of-fit test suffers from
arbitrary interval limits and should not be applied to
small data sets, the I(011l10gorov-SIl1irnov, Cramer­
von Mises, or Anderson-Darling goodness-of-fit tests
(Lawless 1982) are appropriate here. The I(oln10gor­
ov-Smirnov test statistic, for example, for this data
set with a Weibull fit is 0.152, which 111easures the
maximum difference between the empirical and fitted
cumulative distribution functions. This test statistic
corresponds to a p-value of approximately 0.1,5 (Law
and Kelton 1991, page 391), so the Weibull distri­
bution provides a reasonable 1110del for these service
times. The l\olmogorov-Smirnov test statistic values
for several potential 1110dels are shown below.

Exponential
Weibull
Gamll1a

Inverse Gaussian
Log norn1al

0.301
0.1,52
0.123
0.099
0.090

0.2152 0.3494 0.3943

0.3927 0.6211 0.7504

and

4.175 4.248,

4.044 4.374,

One preliminary statistical issue concerning this
data is whether the three days represent processes

Many of the discrete-event sin1ulation packages
exhibited at the ~Vinter Simulation Conference have
the capability of determining 111axin1UITI likelihood es­
tin1ators for several paran1etric distributions. If the

0.4499 0.5495 0.6921 3.643 4.357.
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Figure 7: Point and 95% Confidence Interval Estinla­
tors for the Cumulative Intensity Function

The trigonometric function is capable of modeling the
intensity function that increases, then decreases.

In all of the parametric nlodels, the likelihood
function for the vector of unknown parameters B ==
(B 1 , ()2, ... , Bp ) from a single realization on (0, c] is

L(()) = [g'\(td] exp [-1c ,\ (t )dt] .

A(I)

60

Maximum likelihood estimators can be determined
by maximizing L( B) or its logarithm with respect to
all unknown parameters. Confidence intervals for the
unknown parameters can be found in a similar man­
ner to the service time exanlple.

for A > 0 and K > 0, would certainly be an im­
proved choice. A more general EPTF (exponential­
polynomial-trigonometric function) model is given by
Lee, Wilson and Crawford (1991) with intensity func­
tion

set since the intensity function can only increase, de­
crease or remain constant, and can not model an in­
tensity function that increases, then decreases. Since
the intensity function is analogous to the hazard func­
tion for tinle-independent nlodels, an appropriate 2­
parameter distribution to consider would be one with
a hazard function that increases initially, then de­
creases. A log-logistic process, for example, with in­
tensity function

t > 0,

where A and K are positive parameters. This pop­
ular model would not be appropriate for this data

drawn from the same population. External factors
such as the weather, day of the week, advertisement,
and workload should be kept fixed. For this partic­
ular example, these factors have been fixed and the
three processes are representative of the population
of arrival processes to the lunch wagon.

The input model for the process comes from the
lower branch (stochastic processes) of the taxonomy
in Figure 1. Furthermore, the arrival times consti­
tute realizations of a continuous-time, discrete-state
stochastic process, so the remaining question con­
cerns whether or not the process is stationary.

If the process proves to be stationary, the tech­
niques from the previous example, such as drawing
a histogram, and choosing a parametric or nonpara­
metric model for the interarrival times are appropri­
ate. This results in a Poisson or renewal process.
On the other hand, if the process is nonstationary, a
nonhomogeneous Poisson process might be an input
appropriate model. A nonhomogeneous Poisson pro­
cess is governed by an intensity function A(t) which
gives an arrival rate [e.g., A(2) == 10 means that the
arrival rate is 10 customers per hour at time 2] that
can vary with time.

Figure 7 contains a plot of the empirical cumula­
tive intensity function estimator suggested by Leemis
(1991) for the three realizations. The solid line de­
notes the point estimator for the cumulative inten­
sity function A(t) == J~ A(r)dr and the dashed lines
denote 95% confidence intervals. The cumulative in­
tensity function estimator at time 4.5 is 150/3 == 50,
the point estimator for the expected number of arriv­
ing customers per day. If A( t) is linear, a stationary
model is appropriate. Since people are more likely
to arrive to the lunch wagon between 12:00 (t == 2)
and 1:00 (t == 3) than at other times and the cumu­
lative intensity function estimator has an S-shape, a
nonstationary model is indicated. More specifically,
a nonhomogeneous Poisson process will be used to
nlodel the arrival process.

The next question to be determined is whether a
parametric or nonparametric model should be chosen
for the process. Figure 7 indicates that the inten­
sity function increases initially, remains fairly con­
stant during the noon hour, then decreases. This
may be difficult to model parametri~ally, so a non­
parametric approach, possibly using A(t) in Figure 7
might be appropriate.

There are many potential paranletric models for
nonstationary arrival processes. The power law, or
Weibull process has intensity function
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