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ABSTRACT

In this paper, we propose that proper metamodel specifica-
tion is far more important than the level of simulation effort
used in developing a metamode] to estimate the expected
response of a given system or simulation. In particular,
M/M/k queues with various configurations of arrival rate,
service rate, and number of servers were simulated using
different levels of simulation effort. The average queue
length for each configuration was computed, and then two
different metamodels were fit to the simulation data.
Analysis of the residuals from the fitted metamodels
indicates that metamodel specification has a significant
effect on the statistical quality of the estimated expected
queue length while the level of simulation effort used in
fitting the metamodel has virtually no such effect.

1 INTRODUCTION

Computer simulation is often used to predict the future
behavior of a real system as part of an overall experimental
modeling process (Shannon 1992, p. 65). This prediction
often takes the form of estimates of the expected outputs of
the system in response to a given set of inputs. In general,
the goodness or statistical precision of these estimates is an
increasing function of the amount of "simulation work"
performed. That is, their precision can be improved by
1. increasing the number of replications performed,

and/or
increasing the length of each replication, when the
objective is to estimate the long-run (or steady
state) expected output of the system.
Thus, "more work is better” and most simulation practitio-
ners would likely prefer to conduct the largest number of
replications with the longest run lengths that resources
would permit.

Unfortunately, it can be costly to run the simulation
model each time a new set of inputs is to be examined. In
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such cases, Kleijnen (1987) suggests the use of a "meta-
model"” as a surrogate for the simulation model. A meta-
model is generally a mathematical model that attempts to
empirically express the output from a simulation as a
function of its inputs. Its objective is to "effectively relate
the output data of a simulation model to the model's input
to aid in the purpose for which the simulation model was
developed" (Sargent 1992, p. 888), namely estimating the
expected output of the system. Once developed, a meta-
model can be used in lieu of the simulation to estimate the
desired system performance characteristic for each new set
of inputs.

The use of a metamodel as a surrogate for a simulation
model results in savings in terms of both computer run time
and analysis time. These savings are obtained. however, at
the expense of precision. A metamodel. being an empirical
representation of previously observed data from the
simulation, only provides estimates of the expected simula-
tion output.

The ability ot a metamodel to provide precise estimates
of the expected simulation output and. in turn. of the
expected output of the real system, would appear to be
dependent on how well the metamodel is specified , i.e.. on
how well it approximates the "true" input-output mapping
of the simulation model. A "good" metamodel also would
be parsimonious, providing acceptable estimates of the
simulation output while containing as few terms or parame-
ters as possible.

The quality of a metamodel would thus appear to
depend on both the statistical quality and the amount of the
data initially made available for its fitting which, in turn,
would depend on the amount of "simulation work" per-
formed in generating the data. Our initial conjecture was
twofold:

1. "more" simulation work would produce "better"
metamodels, and

2. "better" metamodels would produce "better" esti-
mates of the expected system output.
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2 A SIMULATION EXPERIMENT

The purpose of this research was to examine the effects of
simulation work and metamodel specification on the
statistical quality of the estimates of the mean output of the
system provided by a metamodel. Toward this end, a
simulation model was developed for an M/M/k queuing
system with the objective of estimating the expected length
of the waiting line. (This system was chosen since this
performance characteristic could be computed analytically
using standard queuing results.) The goal was to use this
simulation model to develop a database upon which meta-
models could be fit and subsequently be used to estimate
the expected length of the waiting line for queuing systems
within the design region specified by Table 1.

Table 1: Queuing System Configurations

Config- | Arrival | Service | Number | Utilization
uration Rate | Rate | of Servers Rate
1 1.0 2 0.5
2% 1.0 4 0.25
3* 1.25 2 0.4
4 1.25 4 0.2
5% 1.0 2 0.75
6 1.0 4 0.375
7 1.25 2 0.6
g * 1.25 4 03

* Configurations used in half-fraction design

Table 1 displays the eight different queuing configura-
tions that were used to develop the metamodel database.
These configurations differ according to the values of three
input parameters—the mean arrival rate, the mean service
rate, and the number of servers. The levels of these three
parameters were chosen to provide a reasonably broad
range of system utilization rates, as shown in the table.

This design was used as the basis for an experiment in
which two different metamodels were fit to the output from
the simulation model using different levels of simulation
work. The effects of simulation work and metamodel
specification were then assessed by comparing the esti-
mates of average queue length produced by the metamodels
with the expected queue length computed analytically.

2.1 Levels of Simulation Work

Table 2 shows how the levels of simulation work were
varied by setting the simulation run length and the number

of replications. In this table, the value shown for the
simulation "work" is the product of the simulation length
(measured in terms of the total time simulated) and the
number of simulation replications. This measure of
simulation work is somewhat arbitrary. Alternate measures
are certainly possible, including one in which simulation
length 1s measured in terms of the number of customers
served (which may more accurately retlect processing
time). Our particular measure was chosen for its simplic-
ity; we do not expect alternate measures to substantially
change the inferences made from our experiment.

Table 2: Final Simulation Work Combinations

| Number of | Simulation | Simulation

Case Replications Length Work
A 5 2,500 12,500
Al 5 1,500 7,500
A2 5 1,250 6,250
A3 5 1,000 5,000
A4 5 750 3,750
AS 5 500 2,500
A6 5 250 1,250
C 5 10,000 50,000
Cl 5 20,000 100,000
E 10 5,000 50,000
G 20 2,500 50,000
[ 20 10,000 200,000

The levels chosen for the simulation length were based
on Nelson's suggestion that a simulation length of 20 times
the length of the initial transient be used (Nelson 1992, p.
130). Preliminary analysis indicated that a conservative
estimate for the initial transient period was 500 time units.
Thus, the "acceptable” run length was set to 10,000 time
units. Further, since increasing the simulation run length
would only serve to improve an already acceptable simula-
tion estimate, this research focused on run lengths substan-
tially less than 10,000 time units.

The levels chosen for the number of simulation replica-
tions were based on the common acceptance of 30 as an
effective sample size by most statistical practitioners
(Mendenhall, Wackerly, and Scheaffer 1990, p. 319). To
examine the effect of simulation work on the statistical
quality of the metamodel estimates, this research consid-
ered sample sizes substantially less than 30.

The twelve combinations of run length and number of
replications shown in Table 2 were selected after some
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preliminary analysis associated with an initial 2-factor, 3-
level design in which the levels of run length were set to
2,500, 5,000, and 10,000 time units while those for the
number of replications were set to 5, 10, and 20. Of these,
five were retained for our experiment and are labeled as
cases A, C, E, G, and I in Table 2. The five cases were the
four combinations of the low and high factor levels and the
combination of the "middle" factor levels—the corners and
"center” point of the initial design.

Preliminary analysis suggested that it would be worth-
while to investigate seven additional cases. Six of these
(labeled as cases Al through A6) were obtained by de-
creasing the run length in case A (which had the smallest
amount of work in the preliminary design) in order to study
the effect of even less simulation work. In fact, cases A5
and A6 have run lengths that are less than or equal to our
conservative estimate of the length of the initial transient
period. The seventh additional case was obtained by
increasing the run length in case C and is labeled as C1. It
provides a run length well beyond that suggested by Nelson
and represents an extreme condition intended to assess the
validity of the original upper bound on run length in the
experiment.

2.2 Metamodel Data Bases

Two different data bases upon which metamodels could be
fit were generated for each case of simulation work shown
in Table 2. The first of these consists of the output from
the full-factorial experiment described by Table 1 while the
second consists of the output from the half-fraction whose
configurations are highlighted with an asterisk in Table 1.
The block generator for the half-fraction is the three-factor
interaction. The choice of the particular half-fraction
indicated was somewhat arbitrary—its only distinguishing
aspect is that its range of system utilization rates is broader
than that of the other half-fraction with the same block
generator. The output from the two designs will be re-
ferred to, respectively, as the Full and Fractional data
bases.

2.3 Metamodels Selected

The metamodels used in this paper were formulated by
Friedman and Friedman (1985), who validated the use of
the following multiplicative metamodel for estimating the
average queue length of M/M/k queues:
Lq - e Po grr P svc P Num ﬂ’,

where L, Arr, Svc, and Num respectively denote the
expected queue length, the mean arrival rate, the mean
service rate, and the number of servers. This multiplicative
metamodel is used in this research as an example of a

"well-specified” metamodel—one that can be expected to
provide an adequate fit of the simulation data. Addition-
ally, Friedman and Friedman's linear metamodel, which has
the form

Lq = By o+ ByArr « B,Svc « ByNum
is used in this research as an example of a "poorly speci-
fied" metamodel—one that would not be generally expected
to provide an adequate fit of the simulation data. Note that
the two metamodels are "equally parsimonious” in the
sense that each has the same number of parameters (four).

2.4 The Experiment

To illustrate the experimental process, we next show how
metamodels were developed for case A from Table 2.
First, for each of the eight configurations displayed in
Table 1, five replications of the simulation (each of length
2,500) were performed. The average queue lengths
observed in these 40 experiments are shown in Table 3.

Table 3: Average Queue Lengths, Case A

Config. \

Replication

0.361 | 0.356 | 0.328 | 0.366 | 0.376
0.003 | 0.008 | 0.005 | 0.008 | 0.005
0.186 | 0.155 | 0.157 | 0.139 | 0.146
0.005 | 0.003 | 0.003 | 0.002 | 0.004
2037 | 1.437 | 1.786 | 2.385 | 1.816
0.038 | 0.046 | 0.051 | 0.042 | 0.040
0.637 | 0.813 | 0.657 | 0.815 | 0.687
0.025 | 0.010 | 0.017 | 0.020 | 0.015
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For each configuration, the average queue length across the
five replications was computed. This was subtracted from
the expected queue length for that configuration (which
was computed analytically) to form a residual. The results
for case A are depicted in Table 4.

The simulation output was then used to fit both the
multiplicative and the linear metamodels to the data
developed within each case for each of the two databases.
The regression coefficients for the predictive metamodels
were estimated using least squares regression. The least
squares fit for the multiplicative metamodel was obtained
in reference to the transfomed model:

In(L) = By - Byln(drr) - B,In(Svc) + ByIn(Num).
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Table 4: Summary Statistics, Case A

Config. \

Analytical
Solution

Average
Length

o308 IENIN e NN IO, BN B0 S VS [ 5]

In both cases, the metamodels were fit using the simulation
data obtained from the full-factorial design depicted in
Table 1.

Once these metamodels were fit, they were used to
estimate the expected queue length for each of the eight
queuing configurations. A summary of the estimated
expected queue lengths for each configuration, metamodel,
and database is provided in Table 5.

Table 5: Estimated Expected Queue Lengths, Case A

Metamodel
Full Full Frac | Frac
Full Lin- Lin- Frac Lin- Lin-
[ Cfgf| Log N z Log N zZ

configuration 4). For this reason, the "Full Lin-N" and
"Frac Lin-N" sets of estimates are referred as the "linear-
negative" sets of estimates as fit over the full and fractional
databases, respectively. Further, since negative estimates
would be inappropriate or unacceptable in many practical
situations, we created a second set of linear metamodel
estimates wherein any negative values are reset to zero.
These estimates are provided in the columns headed "Full
Lin-Z" and "Frac Lin-Z" and are referred to as the "linear-
zero” sets of estimates. Thus, in the linear-negative sets,
any negative estimates of average queue length are retained
while, in the linear-zero sets, these are reset to zero. (No
preference is given to either of these sets in the following
analysis.)

Next, for each metamodel and configuration, residuals
were calculated as the differences between the expected
queue lengths (as computed analytically) and those esti-
mated using the corresponding metamodel. These residuals
are shown in Table 6.

Table 6: Residuals, Case A

Metamodel
Full Full Frac | Frac
Lin- Lin- Frac | Lin- Lin-
Cfg N 4 Log N Z

0.685] 0.685 | 0.3031 1.019 | 1.019
-.078 | 0.000 | 0.005 | 0.006 | 0.006
0.337| 0.337 ] 0.298 | 0.157 ] 0.157
-.426 | 0.000 | 0.005 | -.865 | 0.000

1 0.329 | 0.685] 0.685] 0.303 | 1.019| 1.019
0.007 | -.078 0 0.005 | 0.006 | 0.006
0.146 | 0.337 | 0.337 | 0.298 | 0.157 | 0.157
0.003 | -.426 0 0.005 | -.865 0

1.848 | 1.224 | 1.224 | 1.834 | 1.892| 1.892
0.038 | 0.461 | 0.461 | 0.033 ] 0.879 | 0.879
0.822 | 0.876 | 0.876 | 1.803 | 1.030 [ 1.030
0.017 | 0.113 | 0.113] 0.033 | 0.017 | 0.017

o<l IR o NN IV, T QNN RUSTY | 8]

In Table 5, the columns denoted "Full Log" and "Frac
Log" contain the estimates of expected queue length
computed using the multiplicative metamodel as fit over
the full-factorial and the fractional-factorial databases,
respectively. Similarly, the columns denoted "Full Lin-N"
and "Frac Lin-N" contain the estimates of expected queue
length computed using the linear metamodel fit over each
of the same two databases. It can be observed, however,
that the linear metamodel sometimes produces negative
estimates of the expected queue length (see, for instance,

1.224 | 1.224 ] 1.834 | 1.892 | 1.892
0.461 | 0.461 | 0.033 | 0.879 | 0.879
0.876 | 0.876 | 1.803 | 1.030 | 1.030
0.113 ] 0.113 | 0.033 ] 0.017 ] 0.017

wlN|lalwnw]|b]|lw]N

3 RESULTS & ANALYSIS

The preceding process was repeated for each of the
remaining 11 cases of simulation work shown in Table 2.
Summary statistics describing the residuals across the eight
configurations within each case are graphically presented
in Figures 1, 2, and 3. These figures, respectively, plot the
sample means, standard errors, and root mean squared
errors of the residuals across all configurations within each
case and metamodel type. As a basis for comparison, the
figures also include these same statistics for the estimated
queue length obtained directly from the simulation output
for each corresponding metamodel. These figures provide
a subjective means of evaluating the overall quality of the
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estimates provided by each of the different types of meta-
model as a function of the amount of simulation work
performed in developing that metamodel.
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Figure 1: Mean of Residuals by Simulation Work Case
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Figure 2: Standard Error of Residuals by Simulation Work
Case

3.1 Means of the Residuals

In particular, the sample means of the residuals for each
case of simulation work are depicted in Figure 1. The most
striking aspect of this figure appear to be that, once a
minimum amount of simulation work is performed, the
means of the residuals do not substantially change as the
amount of simulation work is increased. For example, the
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Figure 3: Root Mean Squared Error of Residuals by
Simulation Work Case

means of the residuals from the Full Linear-Zero case vary
around an average of about -0.05 over all cases of simula-
tion work in excess of 2,500 units (i.e., over all cases
except A6 and AS, which have means of -0.150 and -0.110,
respectively). Thus, once a minimum amount of simulation
work is performed, increasing the amount of work does not
appear to substantially affect the average quality of the
estimates provided by the metamodels.

It is also apparent that, for a specific case of simulation
work, the means of the residuals do differ substantially
between metamodels, as indicated by the fact that the
“curves" traced out by each metamodel tend to be parallel
to one another. This difference seems to suggest that the
specification of a metamodel does appear to affect the
average quality of the estimates provided by that meta-
model.

Finally, note that for all but the smallest three cases of
simulation work, both multiplicative metamodels (i.e.,
those developed using either the full- or fractional-factorial
databases) and the linear-negative metamodel appear to
produce estimates whose average residuals are nearly
identical to those produced by the simulation model itself.
This would suggest that each of these metamodels is well-
specified and could be used as a viable surrogate for the
simulation model.

3.2 Standard Errors of the Residuals

The standard errors of the residuals for each case are
graphically presented in Figure 2. It should be immediately
apparent that the standard errors tend to initially decline as
the amount of simulation work 1s increased but that these
quickly tend to level off. Thus, it again appears that, once
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a minimum amount of simulation work is performed,
increasing the amount of work does not appear to substan-
tially affect the average quality of the estimates provided
by the metamodels. Further, once this threshold of
simulation work is reached, the metamodels tend to reside
in one of two groups: those with standard errors of less
than 0.05 and those with standard errors greater than 0.10.
It is, perhaps, no surprise that the metamodels with the
smallest standard errors have a multiplicative form,
demonstrating that the multiplicative metamodels are
indeed "well-specified.” This price paid for mis-specifying
the metamodel is seen in the larger standard errors associ-
ated with the linear metamodels.

It is interesting to note additionally that, while the
linear-negative metamodel has very small residuals on the
average, it also has relative large standard errors. This
demonstrates that the average residual, by itself, may not be
a good measure of the quality of the estimates produced by
ametamodel. Finally, it is also interesting to observe that
the two multiplicative metamodels perform similarly with
respect to both their average residuals and their standard
errors, with the metamodel based on the full factorial
database consistently performing at least as well as that
based on the fractional factorial database.

3.3 Root Mean Squared Errors

In order to try to capture both of the preceding measures of
the quality (the mean and standard error) in one statistic,
we also computed the root mean squared errors of the
residuals. The root mean squared errors are depicted in
Figure 3. As perhaps should be expected, the root mean
squared errors initially decline as the amount of simulation
work is increased but level off rather quickly. This again
is evidence that, once a minimum amount of simulation
work is performed, increasing the amount of work does not
substantially affect the average quality of the estimates
provided by the metamodels. Interestingly, the effects of
small amounts of simulation work on quality appear to be
somewhat more pronounced here than in the previous
cases, demonstrating the importance of utilizing some
minimum level of simulation work. It is notable, however,
that this minimum appears to be much smaller than we
would have obtained had we decided to run our simulation
using a run length of 10,000 time units, as suggested by the
application of our conservative estimate of the warm-up
period to Nelson's criterion. (If five replications were
performed, this would correspond to 50,000 units of
simulation work, as depicted by our case C.)

As in Figure 2, once this threshold of simulation work
is reached, the curves in Figure 3 suggest that the meta-
models tend to cluster in one of two groups: those with root
mean squared errors of less than 0.10 and those with root
mean squared errors greater than 0.30. What is striking in

this case is that only one metamodel—the multiplicative
metamodel based on the full-factorial database—falls into
this first group. Further, its root mean squared errors are
similar to those produced by estimates derived from the
simulation itself, suggesting that this metamodel is in a
class by itself as a surrogate for the simulation. The fact
that the multiplicative metamodel based on the fractional
database now falls in the latter group demonstrates,
perhaps, the price paid for using a smaller database.
Further, since its root mean squared errors tend to exceed
those associated with the linear metamodels based on the
full-factorial database, it appears that the reduction in
quality associated with model mis-specification is compara-
ble to the reduction in quality associated with using a
smaller database.

3.4 Analyses of Variance

Since the preceding graphical analysis is somewhat subjec-
tive, one-way analyses of variance (ANOVA's) were
performed to determine if the statistical quality of the
estimates produced by the metamodels significantly differ
according to either

(1) the type of metamodel used,

(11) the database used, or

(i11) the amount of simulation work performed.

For the purpose of these analyses, we measure statistical
quality in terms of the root mean squared error.

The first ANOVA was performed to determine if the
root mean squared errors for the six types of metamodels
(Full-Log, Fractional-Log, Full-Linear-Negative, Full-
Linear-Zero, Fractional-Linear-Negative, and Fractional-
Linear-Zero) are not significantly different from each other.
The ANOVA table depicted in Table 7 shows that there is
quite clearly a difference between metamodel types and
establishes that the statistical quality of the estimates
produced by a metamodel does indeed depend on proper
metamodel specification.

Table 7: ANOVA Table-Types of Metamodels

Source of P-
Variation|] SS df | MS F value | Ferit

Between

Groups
Within

Groups
Total

1.008 | 5 10.201 | 24.33 | 0.000 | 2.354

0.547 | 66 | 0.008
1.554 | 71

The second ANOVA was performed to determine if the
root mean squared errors significantly differ according to
which database—full or fractional-was used in developing
a metamodel. The corresponding AVOVA table is
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presented in Table 8 and shows that there is a significant
difference attributable to the database used.

Table 8: ANOVA Table—-Metamodel Databases

Table 10: ANOVA Table—Seven Highest Levels of
Simulation Work

Source of P-
Variation|] SS df | MS F value | Fcrit

The third ANOVA was performed to determine if the
root mean squared errors significantly differed according
to the amount of simulation work performed. As seen from
Table 2, there are 10 different levels of work used in our
experiment—1,250, 2,500, 3,750, 5,000, 6,250, 7,500,
12,500, 50,000, 100,000, and 200,000. The corresponding
ANOVA table is presented as Table 9. These results in this
case are weak—the p-value of approximately 0.25 indicates
that we would fail to reject the hypothesis that there are no
significant differences as a function of the amount of work
at a level of significance of 0.25 or less.

Table 9: ANOVA Table—Levels of Simulation Work

Source of P-
Variation|] SS df | MS F value | Fcrit

Between
Groups: || 0.248 | 9 10.028 | 1.311 | 0.250 | 2.035

Within
Groups: [ 1.306 | 62 | 0.021
Total: 1.554 | 71

Since the preceeding conclusion is somewhat weak, and
since our graphical analysis suggested that the average
quality of the estimates provided by the metamodels does
not appear to be substantially affected by increasing the
amount of simulation work beyond a minimum level, we
next repeated the third ANOVA after deleting the three
smallest levels of work. The corresponding ANOVA table
is presented as Table 10. Here the results are quite strong—
the p-value of 0.9996 indicates quite convincingly that
there are no significant differences in the root mean
squared errors of the residuals for the different levels of
simulation work. We thus conclude that, overall, the
amount of simulation work does not affect the statistical
quality of the estimates produced by a metamodel, with the
caveat that this could generally be expected to apply only
after a minimum amount of simulation work is performed.

Source of’ P- Between

Vafiati0n| SS | df | MS | F | value | Ferit Groups [10.006 [ 6 [0.001 [0.043]0.999 | 2.299
Between Within

Groups: |1 0.564 | | ]0.564 | 39.85 | 0.000 | 3.978 Groups || 1.056 | 47 | 0.023

Within Total [| 1.062 | 53

Groups: |1 0.991 | 70 | 0.014

Total: 1.554 | 71

4 CONCLUSIONS

The graphical analyses and the ANOVA's support the
following two conclusions. First, the amount of simulation
work (beyond a reasonable minimum) has no significant
effect on the statistical quality of the estimates produced by
a metamodel while, second, metamodel specification does
have a significant effect on that quality. These conclusions
suggest that metamodel specification is more important
than the amount of simulation work performed in fitting a
metamodel. Thus, when using a metamodel as a surrogate
for a computer simulation, it appears to be more beneficial
to expend effort toward developing a better metamodel
than toward performing more simulation work in develop-
ing a database for fitting that metamodel. In other words,
a simulation practitioner is advised to work smarter, not
harder.
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