Proceedings of the 1995 Winter Simulation Conference

ed. C. Alexopoulos, K. Kang, W. R. Lilegdon, and D. Goldsman

AN OVERVIEW OF HI-MASS
(HIERARCHICAL MODELING AND SIMULATION SYSTEM)

Douglas G. Fritz
Robert G. Sargent

Simulation Research Group
Syracuse University
439 Link Hall
Syracuse, New York 13244, U.S.A.

ABSTRACT

The Hierarchical Modeling and Simulation System
(HI-MASS) is a prototype modeling and simulation
system that supports modeling based on the Hier-
archical Control Flow Graph Model paradigm and
simulation execution using a sequential synchronous
simulation algorithm. The prototype is an object ori-
ented C++ based system designed for a Unix environ-
ment and implemented using freely available software
tools. Models are specified using two complementary
hierarchical model specification structures, one to spe-
cify the components which comprise a model and how
those components are interconnected, and the other to
specify the behaviors of the individual components. A
graphical user interface provides for component and
interconnection specification using visual interactive
modeling. Behavior specifications are constructed us-
ing C++ classes and functions provided by HI-MASS.

1 INTRODUCTION

This is a companion paper to “An Overview of Hier-
archical Control Flow Graph Models” (Fritz and Sar-
gent 1995) contained in these proceedings. It is as-
sumed that a reader of this paper is familiar with that
paper.

The Hierarchical Modeling and Simulation System
(HI-MASS) is a prototype simulation system that sup-
ports the modeling and execution of discrete event
simulation models based on the Hierarchical Control
Flow Graph Model paradigm and uses a sequential
synchronous simulation execution algorithm.

Hierarchical Control Flow Graph Models use two
complementary types of hierarchical model spe-
cification structures. The first type of specifica-
tion structure, called a Hierarchical Interconnection
Graph (HIG), is used to specify the atomic and
coupled components that comprise the model and
how those components are interconnected. HI-MASS
provides a Graphical User Interface (GUI) for spe-

Thorsten Daum

Department of Computer Simulation
and Graphics
University of Magdeburg
D-39016 Magdeburg, GERMANY

cification of the HIG using “visual interactive mod-
eling”. The second type of specification structure,
called a Hierarchical Control Flow Graph (HCFG), is
used to specify the behaviors of the individual Atomic
Components (AC’s) of the model. HCFG’s are cur-
rently specified using a text editor to enter C++
programming language source code based on C++
classes and functions provided by HI-MASS. (GUI
support for HCFG specification is planned for a fu-
ture version of HI-MASS.)

An HCFG Model specification consists of one HIG
plus an HCFG behavior specification for each type
of AC used in the model. The HIG specification is
transformed into C++ code using utility programs
provided by HI-MASS. The elements of the model
specification are then compiled and linked with the
HI-MASS object library to form an executable model.
The executable model is then combined with ex-
perimental conditions specified by an “experimental
frame” to produce a simulation run. A high level
overview of this process is given in Figure 1.

and Component
Interconnection Behavior S;pzort
Specification Specification(s) oce

Executable Experimental
Model Frame

Simulation
Run

Figure 1: High Level Overview

1356



An Overview of HI-MASS 1357

HI-MASS is an object oriented C++ based system
which was developed specifically for a Sun SPARC
workstation running the SunOS (Unix) operating sys-
tem. HI-MASS makes extensive use of object ori-
ented programming features supported by C++, such
as encapsulation, inheritance, polymorphism, gener-
icity, and overloading (Stroustrup 1991). HI-MASS
was implemented using the freely available GNU C++
compiler (g++) and C++ library (libg++). The GUI
used for visual interactive modeling was implemented
using the freely available InterViews C+4+ user inter-
face toolkit. HI-MASS should compile and run on any
system on which this compiler, library, and toolkit are
installed. In addition to the Sun SPARC, we have run
HI-MASS on an IBM RS/6000, a DEC Alpha, and on
Intel 486 and Pentium based personal computers.

A user of HI-MASS needs to be familiar with mod-
eling using the HCFG Model paradigm and software
development using the C++ programming language
in a Unix based environment. An 82 page User’s
Guide (Fritz, Daum, and Sargent 1995) which in-
cludes several examples has been developed for HI-
MASS

The remainder of this paper is organized as fol-
lows. Sections 2 and 3 describe, respectively, the spe-
cification of the HIG and the HCFG behaviors. Sec-
tion 4 presents an overview of the use of experimental
frames. Sections 5 and 6 describe the construction
and the execution of a model, respectively. Section 7
summarizes this paper.

2 COMPONENTS AND CHANNELS

A HIG is used to specify the components which com-
prise a model and how those components are inter-
connected (i.e., the channels). A HIG is a hierarchical
structure of components which is defined by a set of
Coupled Component Specifications (CCS’s), each of
which specifies the internal view for a coupled com-
ponent type. (The internal view of an AC is a beha-
vior specification and is not part of the HIG.)

All model components have the following attributes:
a name (instance name), a type (type name), a set
of input ports, and a set of output ports. If mul-
tiple model components are “instances” of the same
type of component, then those components all share
the same type definition. A CCS for a coupled com-
ponent specifies a set of subcomponents and a set of
channels which define the routing pattern for all inter-
component messages between the subcomponents and
between the subcomponents and the “outside world”
(i.e., the external ports of the enclosing component).
The coupled component that encloses the entire model
(i.e., the root node of the associated HIG tree) is the
only component in a model that has no external ports.

The HIG for a model is constructed by specifying
the set of CCS’s for the coupled component types that
are contained in the model using the HI-MASS GUIL.
The GUI uses two different file formats for CCS’s:
visual and structural. The visual format is used by
the GUI to define the visual appearance of the mod-
eling elements of the CCS, such as shapes, locations,
and relations. The structural format defines the CCS
elements such as subcomponent name/type pairs, port
identifiers, and port interconnections and is used for
the generation of the C++ code for model construc-
tion. The GUI requires only the visual format for
saving and loading CCS’s. When the HIG is com-
plete, the GUI is then used to generate the structural
format for each CCS in the HIG.

2.1 Visual Interactive Modeling

HI-MASS supplies a GUI which allows a modeler to
construct the HIG using visual interactive modeling.
A HIG is constructed using the GUI’s “point and
click” environment to specify the set of CCS’s in the
HIG. A screen dump of a GUI window is shown in
Figure 2.

In Figure 2 the top line (containing “HI-MASS HIG
Graphical Interface”) is the X11 title bar. The next
line shows that the component type name for this CCS
is “System”. All components of type “System” in
the model will share this definition. Clicking on the
type name will pop up a dialog box which can be
used to modify the component type name. Just below
the type name is a menu bar with three “pull down”
menus: “File”, “Generate”, and “Info”. The “File”
menu contains operations that allow a modeler to save
and restore CCS’s. The “Generate” menu allows a
modeler to generate the structural format files when
the HIG is completed. The “Info” menu displays the
GUI development team and copyright notice.

To the right of the “canvas” area is a set of “tool”
buttons. A user “selects” a tool by clicking on the
appropriate button, and then “applies” the tool in the
canvas area. For example, the “Component” tool al-
lows the modeler to create a new component. After
selecting the “Component” tool, the modeler “clicks”
on the canvas at the desired location for the new com-
ponent. A “dialog box” then pops up for the user
to enter the name and type for the new component.
The GUI will then verify that the name is valid (e.g.,
no other component has the same name), and if so,
it will then place the new component (represented by
a rectangle) on the canvas. Both the instance name
and the type name of a component can be modified.
The names shown on components in the GUI’s canvas
area are the instance names. The “Component Array”
tool creates a homogeneous array of components. (A



1358 Fritz, Sargent, and Daum

[®] Hi-MASS HIG Graphical Interface §

Component Type : System

File Generate Info

w

3
Inspector
2

1

(::E::>
3z 1 2 5
2 4 Router
2
12
Svc_Center(2]
1 4

Component
2
Component Array

Channel

Multichannel

2 Connection Box

Joint

Atomic

Edit

Move

Delete

Open

Copy

Clone

Paste

Paste w/ new Size

Figure 2: Graphical User Interface Window

component 1s equivalent to a component array of size
one.) Figure 2 shows two components, “Router” and
“Inspector”, and one component array of size two,
“Svc_Center[2]”, for a total of four components. Indi-
vidual elements of a component array are referenced
using a zero based index (e.g., “Svc_Center[0]” and
“Svc_Center[1]”).

An atomic component is visually distinguished by
an additional horizontal line near the top of the com-
ponent (added using the “Atomic” tool). In Figure 2
“Router” and “Inspector” are AC’s, and the two ele-
ments of the component array are coupled compon-
ents.

The “Channel” tool is used to create and/or con-
nect component ports. A channel is represented
graphically as a polyline (open polygon) with its dir-
ection indicated via an arrow. “Joints” or “pivot
points” (small circles) in a channel’s graphical rep-
resentation are used to allow the modeler to position
the channels. The “Joint” tool allows a modeler to
add additional “joints” to existing channels. When
channels are created, ports are automatically added

to the appropriate components and unique port iden-
tifiers (numbers) are generated for the newly created
ports. The “Multichannel” tool is used to create a
“bundle” (array) of channels of a size specified by
the modeler; the bundle size is indicated on the mul-
tichannel. Bundles of channels create port arrays of
the specified (bundle) size which are referenced using
a zero based index.

Not all connections can be clearly represented using
a purely graphical notation (e.g., connections between
component arrays of different sizes). The “Connec-
tion Box” tool is used to specify such connections.
A connection box (represented by a diamond) is a
place-holder which is linked to a textual interconnec-
tion representation. By selecting the “Edit” tool and
clicking on a connection box, the GUI invokes an ex-
ternal text editor for the modeler to specify the in-
terconnections. The GUI will automatically generate
port identifiers for all channels that are connected to
the connection box and place them in the connection
file for the modeler to edit, thus a modeler has only
to “cut” and “paste” to specify the connections. The



An Overview of HI-MASS 1359

connection syntax is straightforward.

The “Edit”, “Move” and “Delete” tools provide
common editing capabilities. The “Edit” tool (in ad-
dition to its use with connection boxes) is used to
modify component names.

The “Open” tool allows the modeler to open
a coupled component to view and/or specify the
coupled component’s internal view (i.e., its CCS).
When the modeler clicks on a coupled component,
another GUI window containing the internal view of
the selected component automatically opens. For ex-
ample, if the CCS in a GUI window is as shown in
Figure 3 and we “Opened” the “System” component,
we would then get a second GUI window as shown in
Figure 2. Notice that the port identifiers, “1”, “2”,
and “3” from the external view of the “System” com-
ponent become the external port identifiers in the in-
ternal view (shown in the circles in Figure 2).

1
Source ! System 3 I Sink

Figure 3: Top Level CCS

The “Copy”, “Clone”, “Paste”, and “Paste w/new
Size” tools are used to create copies and clones of ex-
isting components and/or component arrays. A copy
creates a new instance of an existing component type
whereas a clone creates a new component type.

2.2 Generate and Flatten

Once the HIG specification is complete, the GUI's
“generate” function is then used to generate the set of
component specifications (structural representations)
required by later stages of the HI-MASS model con-
struction process. The structural representation con-
sists of one component specification for each type of
component used in the model.

In HI-MASS, the HIG is then “flattened” into an
Interconnection Graph (IG) using the HI-MASS “flat-
ten” utility program. This flattening removes the
coupled components from the model while preserving
the interconnection information of the original HIG.
The output of the flattener is a single CCS (the IG) in
which the subcomponents consist of all the AC’s of the
original HIG. In an HCFG Model all message traffic
originates and terminates at AC’s, but the messages
may pass through one or more intermediary coupled
component ports between the two AC ports. In the
IG all the coupled components have been removed and
the interconnections are directly between the original

AC’s of the HIG.

3 BEHAVIOR SPECIFICATION

The behavior for each type of AC is specified using an
HCFG. An HCFG is a rooted tree structure in which
the nodes represent Macro Control States (MCS’s).
The MCS is the basic building block for behavior
specification. In the current version of HI-MASS a
modeler specifies the behavior of each MCS via object
oriented C++ programming language code based on
classes and functions provided by HI-MASS. An AC
behavior specification (i.e., the HCFG) is defined by
the set of MCS specifications that constitute the nodes
of the AC’s HCFG tree.

3.1 Macro Control States

HI-MASS provides a C++ base class “MCS” from
which all MCS classes in a model are derived. This
base class defines the attributes and behavior com-
mon to all MCS’s. A modeler must create a MCS
class for each type of MCS used in a model. Each
type of MCS specifies any required parameters in its
C++ constructor declaration. (A constructor for a
C++ class is a special function that specifies how to
construct an object of that class.) Parameters that
an MCS might require include initial values for local
variables, pointers to external functions and variables,
and pointers to AC ports. All MCS’s of the same type
throughout a model share the same class definition.
Attributes common to all MCS’s include a “name”, a
“type name”, a set of pins, a set of control states, a
set of edges, and a set of child MCS’s.

The MCS class provides “helper” class member
functions which a modeler can use in constructing a
MCS. These helper functions allow a modeler to easily
create objects such as pins, control states, and edges.
Child MCS’s contained within a MCS must be created
by directly invoking the child MCS’s constructor as
MCS instantiation (construction) may require model
and/or context dependent parameters.

We illustrate the use of these helper functions by
constructing a MCS of type “(Simple)”. This MCS,
shown in Figure 4, can be specified using C++ code
resembling that shown in Figure 5. The helper func-
tions were designed so that even those who are unfa-
miliar with C++ syntax should be able to understand
the basic operation performed by each line of code in
Figure 3.

Lines 1 through 4 of Figure 5 create and add the
(external) pins and control states to the MCS. Line 5
creates the child MCS “child1” and line 6 adds it to
the current MCS (so that its pins can be referenced
when adding edges). Lines 7 through 12 add the
edges which interconnect pins and control states of
the MCS. The first two parameters specify the origin



1360 Fritz, Sargent, and Daum

(Simple)

Figure 4: A Simple MCS

1) Pinx in = add_Pin("in");
2) Pinx out = add_Pin("out");
3) CtrlStatex si1 = add_CtrlState(''s1");
4) CtrlStatex s2 = add_CtrlState("s2");

5) MCS* childl = new MCS_Child("child1l",...);

6) add_MCS(childl);

7) add_Edge(in,s1);

8) add_TimeEdge (s1,out,tDelay,el,1);

9) add_BoolEdge(s1,childi->get_Pin("a"),0,e2,2);
10) add_Edge(childi->get_Pin("b"),s2);

11) add_PortEdge(s2,s2,&port3,e3,1);

12) add_BoolEdge(s2,out,pred,0,2);

Figure 5: Code for a Simple MCS

and termination points for the edge. Edges origin-
ating from pins have no other attributes. For those
edges originating from control states, the third para-
meter specifies the condition, the fourth parameter
specifies the event, and the fifth parameter specifies
the edge priority. The condition and event paramet-
ers are pointers to functions that are called whenever
the edge’s condition attribute is tested or its event is
executed (during an edge traversal). This method of
passing a pointer to a function that is to be called
back at a later time is referred to as a “call back”.

As an example of the helper function semantics,
line 9 in Figure 5 adds a TrueEdge from control
state “s1” to the input pin “a” of the child MCS
“child1”. The “a” pin belongs to the child MCS
“child1” and thus we ask “childl” for a handle
(pointer) to its input pin named “a” using the con-
struct “childi->get Pin("a")”. The third para-
meter of “add BoolEdge()” is either a pointer to a
predicate function which returns true or false, or
a value “0” for a TrueEdge. (We are able to use
a pointer value of zero “0” for a TrueEdge because
“0” is an invalid pointer value in C++.) The fourth
parameter is a pointer to the event function that is
executed when the edge is traversed. The fifth and
last parameter is the edge priority. The TrueEdge
specified on line 9 has a priority value “2”.

We say that the code in Figure 5 “resembles” that
required in HI-M ASS because the code shown assumes
that the condition and event functions are regular

C++ functions. However, in HI-MASS, the condition
and event functions are encapsulated within the MCS
in which they are defined as class “member functions”.
Member functions require a different method for use
as “call back” functions. In HI-MASS we use a C4++
idiom, known as “Functors”, that allows “type safe”
call backs of member functions using objects that act
like functions. (See Hickey (1995) for a discussion on
“Functors”.)

In addition to the specification of the MCS graph
(pins, control states, MCS’s, and edges) given in Fig-
ure 5, we must also specify each condition and event
function used in the MCS and any member variables
that those functions may require. Time delay func-
tions (used by TimeEdges) are functions that return
a non-negative time delay value, and boolean pre-
dicate functions (used by BoolEdges) return true or
false. PortEdges require a pointer to an associated
input port (instead of a function) which is interrog-
ated for its empty/non-empty status. Event functions
for TimeEdges and BoolEdges are functions that take
no parameters. These functions are called whenever
the simulation execution algorithm traverses the as-
sociated edge. The event function for a PortEdge is
a function that takes as its only parameter, a pointer
to the associated port. For example, the event as-
sociated with the PortEdge referenced in line 11 of
Figure 5 might be defined as in Figure 6.

void e3(InPort* p) {
Msg* m = p->receive(); // get msg from port
message_count++; // increment count
delete m; // destroy message

}
Figure 6: PortEdge Event “e3” Definition

An overview has now been given on the specification
of MCS’s in HI-MASS. We next look at the messages
that are passed between the AC’s of the model.

3.2 Messages

All intercomponent messages in HI-MASS are derived
from a C++ base class “Msg” supplied by HI-MASS.
Message passing is handled in HI-MASS by dynam-
ically creating messages, passing pointers to the mes-
sages between AC’s, and having the receiving AC des-
troy the dynamically allocated messages after all re-
quired information has been extracted from them.

All messages in HI-MASS have a timestamp which
is set to the local simulation time of the sending AC
when the message is transmitted. Messages may also
have other attributes which are used to carry addi-
tional information between AC’s. The sender and re-
ceiver must use compatible message types.



An Overview of HI-MASS 1361

HI-MASS provides a message class “Msg_Proto”
(derived from base class “Msg”) which contains six
attribute fields: two integer, two floating point, and
two String. If all messages used in a model are of class
“Msg_Proto” then message compatibility between the
sending and receiving message types is assured. (HI-
MASS allows a modeler to define other message types,
but this requires the modeler to assume responsibility
for message compatibility.)

4 EXPERIMENTAL FRAME

HI-MASS supports the use of experimental frames.
The Experimental Frame (EF) concept separates a
model’s definition from the set of model parameters
used for a specific execution run of the model. This
allows a modeler to modify such items as initial condi-
tions, seed values for random number generators, de-
sired data collection, and termination conditions for a
specific simulation run without modifying the model
itself (which would require an edit, compile, and link
cycle). HI-MASS reads experimental frame informa-
tion from two text files during its initialization phase
prior to constructing the model objects (e.g., the AC’s
and MCS’s). One EF file contains information that
specifies the initial control state for each AC in the
model, and the other EF file contains information that
specifies the initial values for those model variables
that have explicit support for EF initialization. Set-
ting the initial control state for each AC is handled
entirely by HI-MASS support code (contained in HI-
MASS base classes) and thus involves no modeler ac-
tion other than selecting the initial control state for
each AC. Support for setting initial values for model
variables must be explicitly supplied by the modeler;
HI-MASS provides helper functions that simplify this
task. A modeler will generally have several sets of EF
files associated with a model (one set for each experi-
ment). The EF files used for a specific simulation run
are specified via command line options when invoking
the simulator.

We have now discussed the elements which com-
prise a HI-MASS model. In the next section we look
at how these elements fit together.

5 BUILDING A MODEL

An HCFG Model requires one HIG plus an HCFG for
each type of AC used in the model. In this section
we show how those two types of model specifications
are combined, along with HI-MASS support routines,
to build an executable model. This process is shown
in Figure 7. The steps a modeler takes to construct
a model are shown in solid boxes and the supporting
elements of HI-MASS that are utilized by the modeler

are shown in “dashed” boxes. Creating the HIG us-
ing the GUI and flattening the HIG into an IG were
covered in Section 2, an overview of MCS specification
was given in Section 3, and the use of experimental
frames was covered in Section 4. We now cover the
remaining steps for constructing a model.

LCreate the HIG using the GUI) ' Other 1

Figure 7: HI-MASS Modeling Tasks and Elements

5.1 Classes and Functions

A HI-MASS model (in its C++ representation) has
one object of type “Model”, one object of type “AC”
for each AC, and one object of type “MCS” for each
MCS in the model. The “Model” object is defined
by a class (e.g, “MyModel”) that is derived from
the HI-MASS base class “Model”. (Class inheritance
defines an “is-a-kind-of” relationship from the derived
class to the base class, thus “MyModel” “is-a-kind-of”
“Model”.) Each type of AC in the model is defined by
a class derived from base class “AC”, and each type
of “MCS” in the model is defined by a class derived
from base class “MCS”. The relationships between
the “Model”, “AC”, and “MCS” objects and the par-
titioning of information from the two types of spe-
cification structures (HIG and HCFG) between these
classes are shown in Figure 8.

The “Model” object constructs each AC in the
model and then interconnects the AC ports as spe-
cified by the IG. Each “AC” constructs its set of in-
put ports, output ports, and the top level MCS of its
HCFG tree. Each MCS constructs its pins, control
states, child MCS’s, and edges, and defines all condi-
tion and event functions required by its edges. (Since
MCS’s recursively construct any child MCS’s con-
tained within them, an HCFG tree is uniquely defined



1362 Fritz, Sargent, and Daum

Components
and
Interconnections

(HIG)

1
(HCFG's)

Component
Behaviors

Figure 8: Specifications and Classes

by specifying its top level MCS. Thus, an AC object
completely defines its behavior by specifying only the
top level MCS of its HCFG tree.)

Every C++ program also has a function “main”
which is the main entry point where program execu-
tion begins. All the C++ code in a HI-MASS model
that is not contained within one of the C++ classes
(as member functions) is contained within the “main”
function. A typical main routine for a HI-MASS
model (as shown in Figure 9) is a very simple routine
that performs only three functions: (1) it creates the
“Model” object, (2) it tells the “Model” object to ini-
tialize the model, and (3) it tells the “Model” object to
execute (simulate) the model. All “main” routines for
HI-MASS models are the same, except for possibly the
type name of the “Model” object (e.g., “MyModel”).

main(int argc, char *argv[]) {
Model* model = new MyModel(); // create
model->init(argc,argv); // initialize
model->execute(); // execute

»

Figure 9: Function “main()

5.2 Incorporating the IG

The HIG specifies the components and interconnec-
tions for a model. The HIG is then flattened into
an IG. Then the following information is extracted
from the IG for model specification: (1) a list of all
AC’s contained in the model and the associated type
of each, (2) a list of all AC port to port intercon-
nections (i.e., the channels), and (3) a separate list of
the set of input and output ports for each type of AC
used in the model. The types of information extrac-
ted from the IG are shown in Figure 10. (The “n”
on the arrow from the IG to the “List(s) of Ports” in
Figure 10 indicates that there are “n” lists of ports,
where “n” represents the number of AC types used in
the model.)

As stated in the previous subsection, a modeler
must create a class (e.g., “MyModel”) that is de-

Listof AC | List of ] \
Name-Type nterconnection i
P;u'rsyp Specifications List(s) of Ports

Figure 10: Information from the IG

rived from the base class “Model”. The only dif-
ference between base class “Model” and class “My-
Model” is that class “MyModel” provides definitions
for two functions; one function creates the AC ob-
jects in the model and the other function specifies the
AC port interconnections. A HI-MASS utility pro-
gram “ig-to—c++” converts the information from the
IG into the C4++ form required by these functions in
the “MyModel” class. A modeler can simply copy a
sample “MyModel” class supplied by HI-MASS and
then “cut” and “paste” the AC and interconnection in-
formation extracted from the IG into the appropriate
“MyModel” functions using a text editor. No other
modeler input is required for a class “MyModel”.

A modeler also creates a class for each type of AC
used in the model. All AC classes are derived from the
HI-MASS base class “AC”. These classes are identical
except for three elements: (1) the set of input and out-
put ports, (2) the behavior specification, and (3) the
set of AC (local to the AC) attributes. The set of
input and output ports for an AC type is extracted
from the IG using the “ig-to-c++” utility. The be-
havior specification is generated by creating the MCS
for the root node of the AC’s HCFG tree (child nodes
(MCS’s) in the HCFG tree are recursively generated).
The behavior specification in an AC class is typically
specified via a single line of code. The AC attributes
vary depending upon the type of AC; some attributes
(such as a local simulation clock) are standard among
all AC’s while others must be explicitly specified by
the modeler.

5.3 Compiling and Linking

A model consists of a function “main()”, a class “My-
Model”, a class for each type of AC used in the model,
and a class for each type of MCS used in the model.
The function “main()” and the “Model”, “AC”, and
“MCS” class definitions are compiled into object code
and then linked with the HI-MASS object library and
any other required libraries (e.g., libg++) to form a
single program (the executable model) as shown in
Figure 7.



An Overview of HI-MASS 1363

6 EXECUTING A MODEL

The user executes a model by simply running the pro-
gram (executable model) with appropriate command
line options. The command line options allow the user
to specify the experimental frame (control state and
variable initialization) files to use for the simulation
run, to turn on run time trace information, and/or to
specify single step event execution mode.

A simulation execution run has three main phases:
model construction, model execution, and end of sim-
ulation output. During model construction the model
objects (e.g., the AC’s and MCS’s) are constructed
and initialized as specified in the experimental frame.
The model then enters the simulation execution phase
where the model is simulated until simulation termin-
ation conditions are satisfied. After the termination
conditions are met, an end of simulation output phase
allows the “Model”, each AC, and each MCS to out-
put end of simulation data and state information. This
information includes the time of the last event ex-
ecuted in the model, the next event time for each AC,
the current control state for each AC, and any data
collection output specified by the modeler for an AC
or a MCS.

HI-MASS provides trace information during the
model construction and end of simulation output
phases. A modeler can add additional trace informa-
tion during each of these two phases if desired.

HI-MASS supports five types of run time trace
information during the simulation execution phase.
These include: (1) control flow (the flow of each AC’s
Point of Control over its HCFG), (2) intercomponent
message traffic, (3) event list operations, (4) data as-
sociated with events, and (5) other data (e.g., data as-
sociated with edge condition evaluation, such as ran-
dom variates returned by time delay functions). Con-
trol flow, message traffic, and event list trace inform-
ation is automatically generated by HI-MASS. Data
trace information, however, is model dependent, and
thus must be explicitly specified by the modeler in the
condition and event routines of the MCS’s.

7 SUMMARY

We presented the two complementary types of spe-
cification structures (components and interconnec-
tions, and behavior specifications) that are used by
HCFG Models. We described how a HIG is specified
by constructing a set of CCS’s using visual interactive
modeling via the GUI supplied by HI-MASS, and how
the behavior specifications (HCFG’s) are constructed
by specifying C++ code based on the object oriented
foundation supplied by HI-MASS. We then presen-
ted overviews of the use of experimental frames, how
the two types of specifications are transformed into

an executable model, and how a model is executed in
HI-MASS.

ACKNOWLEDGMENTS

HI-MASS was developed by the Simulation Research
Group at Syracuse University under contract to the
U.S. Air Force’s Rome Laboratory.

REFERENCES

Fritz, D., T. Daum, and R. Sargent. 1995. User’s
Manual for HI-MASS. Simulation Research Group,
439 Link Hall, Syracuse University.

Fritz, D. and R. Sargent. 1995. An overview of con-
trol flow graph models. In Proceedings of the 1995
Winter Simulation Conference.

Hickey, R. 1995. Callbacks in C++ using template
functors. C++ Report 7(2), 43-50.

Stroustrup, B. 1991. The C++ Programming Lan-
guage (Second ed.). Addison-Wesley.

AUTHOR BIOGRAPHIES

DOUGLAS G. FRITZ is a graduate student
at Syracuse University working towards a Ph.D.
in Computer Engineering. His research area is
hierarchical modeling for discrete event simulation.
He received M.S. degrees in Electrical Engineering
and Computer Science from Syracuse University
and a B.S. degree in Electrical Engineering from
The Pennsylvania State University. He was formerly
with IBM as a development engineer for high speed
switching systems.

ROBERT G. SARGENT is a Professor at Syra-
cuse University. He received his education at the
University of Michigan and has published widely. Dr.
Sargent has served his profession in numerous ways
and has been awarded the TIMS College on Simula-
tion Distinguished Service Award for long-standing
exceptional service to the simulation community.
His research interests include the methodology areas
of modeling and discrete event simulation, model
validation, and performance evaluation. Professor
Sargent is listed in Who’s Who in America.

THORSTEN DAUM is a graduate student at the
University of Magdeburg who is working towards
a degree in simulation and computer graphics. His
interests include the development of Graphical User
Interfaces for Visual Interactive Modeling. He was
a visiting researcher with the Simulation Research
Group and CASE Center at Syracuse University.



