Proceedings of the 1995 Winter Simulation Conference
ed. C. Alexopoulos, K. Kang, W. R. Lilegdon, and D. Goldsman

A PICTURE-BASED OBJECT-ORIENTED VISUAL SIMULATION ENVIRONMENT

Anders I. Bertelrud

Osman Balci

Department of Computer Science
Virginia Polytechnic Institute
and State University
Blacksburg, Virginia 24061, U.S.A.

ABSTRACT

This paper introduces the Visual Simulation Environment
(VSE)—a new technology in visual simulation created as
a result of experimental research for over a decade.
Computer-aided support throughout the entire model
development life cycle is required to manage the ever-
increasing complexity of (visual) simulation modeling.
Ongoing research since 1983 has sought to provide such
support in the form of a computer-aided simulation
model development environment. Based on the expe-
rience gained from two major prototype environments,
the production version has been under development since
August 1992. The current status of the VSE is presented
herein.

1 INTRODUCTION

A simulation programming language supports only the
programming process—one of ten processes in the life
cycle of a simulation study (Balci 1994)—and does not
by itself provide adequate support for construction of
large and complex simulation models. Computer-aided
support throughout the entire model development life
cycle is required to manage the ever-increasing complex-
ity of (visual) simulation modeling. This support should
be provided in the form of an environment: a suite of
integrated software tools.

The research in building a discrete event Simulation
Model Development Environment (SMDE) started in
June 1983 at Virginia Tech under funding from the U.S.
Navy. The SMDE project has addressed a complex
research problem: prototyping a domain-independent
discrete-event SMDE. The SMDE provides an integrated
and comprehensive collection of computer-based tools to:
(1) offer cost-effective, integrated and computer-aided
support of simulation model development throughout the
entire model development life cycle; (2) improve the

Charles M. Esterbrook

Orca Computer, Inc.
VT Corporate Research Center
1800 Kraft Drive, Suite 111
Blacksburg, Virginia 24060, U.S.A.

1333

Richard E. Nance

Systems Research Center
Virginia Polytechnic Institute
and State University
Blacksburg, Virginia 24061, U.S.A.

model quality by effectively assisting in the quality assu-
rance of the model; (3) significantly increase the
efficiency and productivity of the project team; and (4)
substantially decrease the model development time.
(Balci and Nance 1987)

Guided by the fundamental requirements identified
by Balci (1986), incremental development, evolutionary
prototyping, and rapid prototyping approaches have been
used to develop the prototypes of SMDE tools. An over-
view of the SMDE architecture and prototype tools is
given by Balci and Nance (1992). A Visual Simulation
Support Environment (VSSE) research prototype was
completed on a Sun computer workstation in April 1992
(Derrick and Balci 1992, 1995).

Based on the experience gained from the use of the
SMDE and VSSE prototypes, development of the
production version of the environment, named the Visual
Simulation Environment (VSE), started in August 1992
under the object-oriented software engineering environ-
ment of the Unix-based NEXTSTEP operating system. A
beta version of the VSE has been used by the students in
the CS4214 Simulation and Modeling course in Spring
1995 and Fall 1995 at Virginia Tech. Beta testers at the
Naval Surface Warfare Center (Dahlgren, VA) started
using the VSE in July 1995. Technology transition is
enabled by the creation of Orca Computer, Inc. awarded
a contract by the Naval Research Laboratory to develop
an extremely complex visual simulation model of world-
wide air traffic control and satellite communication using
the VSE.

The purpose of this paper is to introduce the Visual
Simulation Environment—a new technology in visual
simulation created as a result of experimental research
for over a decade. Section 2 describes the VSE toolset
and major features of the VSE. Example visual simula-
tion models are presented in Section 3 to illustrate differ-
ent areas of application of the VSE and the VSE char-
acteristics. Conclusions are given in Section 4.

1334 Balci et al.

2 THE VISUAL SIMULATION ENVIRONMENT

The VSE currently runs under the Unix-based NEXT-
STEP operating system on the following hardware plat-
forms: Motorola 68040, Intel 80486/Pentium, Sun
SPARC, and Hewlett-Packard PA-RISC. It will be port-
ed to OpenStep which will run under Windows 95,
Windows NT, Solaris, OSF/1, and other operating
systems in 1996. A VSE model can be compiled as a
four-way fat-binary to execute with no change on Moto-
rola, Intel, SPARC, and PA-RISC hardware platforms
running NEXTSTEP or OpenStep.

2.1 The VSE Toolset

The VSE currently contains the following toolset:

VSE Editor: is used for building a model in three
phases. In Phase I, the editor provides computer-aided
assistance to the modeler in graphical picture-based spec-
ification of a model in a hierarchical manner. The top-
level model view is decomposed into components. Each
component is further decomposed into other components
as shown in Figure 1. Horizontal or vertical decomposi-
tion or a combination of the two can be used. Top-down
or bottom-up approaches or a combination of the two can
be employed in model construction. Each component can
be represented by a scanned picture or a drawing in

TIFF, EPS, GIF, JPEG, or many other formats. In Phase
I, the model classes are created by inheriting from the
built-in class hierarchy. Methods are named under each
user-defined class. In Phase III, the logic of each method
is specified by using an object-oriented scripting
language which is very high level and English-like.
Logic specification is localized to a particular method
and thereby the complexity is significantly reduced.

VSE Library: contains earlier developed model
components for reuse. Fully tested model components
are stored in the library and can be reused by the copy-
and-paste mechanism. Reusability is fully provided since
each VSE model is truly object-oriented. For example, a
particular type of satellite can be modeled by a dynamic
object encapsulating all of its behavior and services, and
can be made available for reuse in the library. Model
components can be stored in the library for a particular
problem domain such as manufacturing systems,
networks, and air traffic control. The availability of
model components for reuse facilitates the development
of a new model. The more model components are reused
from the library, the easier it gets to develop a new
model.

VSE Model Analyzer: is used to apply static analy-
sis on the model specification. All errors found are cate-
gorized by type and are listed in a scrollable window.
Clicking on an error message in the list displays the

Top Level (Level 1) Component N

<D Level 3 Components

Level 4 Components

Figure 1: Decomposition of the Model Static Architecture or a Dynamic Object

Visual Simulation Environment 1335

location of the error as highlighted in the model spec-
ification. Completeness and consistency checking arc
applied among other static analysis techniques.

VSE Model Tester: is used to apply dynamic analy-
sis on the executable version of the model. The use of
extensive assertion checking is advocated. Through
different modes, the Model Tester enables the modeler to
apply a variety of dynamic testing techniques. For exam-
ple, the life of a dynamic object can be monitored as it
moves from one component to another.

VSE Simulator: is used to run the simulation
model. Experiments can be conducted by using the meth-
od of replication, method of batch means, and other tech-
niques. Model execution can be started, paused,
resumed, and stopped. Visualization can be turned on
and off during model execution. As many viewers as
desired (as the screen space permits) can be displayed to
concurrently view the visualization of different model
components. Using the model browser, any model
component can be selected for visualization during the
course of execution.

VSE Data Analyzer: is used to perform statistical
analysis of simulation output data such as confidence
interval construction for an output variable or a graph
creation in EPS format for output data.

VSE Learning Support System: is a multimedia
system to assist the modelers in learning how to develop
a VSE model and how to conduct a successful simulation
study. Its hypertext capabilities enable cross linking
between the elements of different documents. The LSS
can play back prerecorded demonstrations on the
computer with all screen motions and sound. It provides
a glossary of simulation terms and a description of the
life cycle of a simulation study. It contains the complete
VSE Reference Manual with hypertext links.

VSE Simulation Study Evaluator: is used to assess
the credibility of simulation study results.

2.2 The VSE Major Features

The VSE is a multifaceted visual simulation model
development environment. Its major features are listed
below in no particular order. The VSE:

O s intended for discrete-event type of visual simula-
tion modeling for problem solving.

Q is general purpose and domain independent. Several
problem domains are illustrated by the sample
models shown in Figures 2 through 7.

QO can be used to visually simulate any complex
systemn at any level of detail desired.

Q provides the automation-based software paradigm
where the central focus is on creating and main-
taining the model specification and automatically
generating the executable code. The VSE Editor is

used for graphically building the model architecture,
defining the classes by inheriting from the built-in
class hierarchy, and specifying each class method
logic by using an object-oriented scripting language
which is very high level and English-like.
Thereafter, the model is automatically translated
into executable code using the built-in model trans-
lator in the VSE Editor.

traces execution errors to the source point in the
model specification. While the VSE Simulator is
running the model, if an execution error occurs, it is
mapped all the way back to the class method in
which the error occurs, the VSE Editor is launched,
and the location of the error is highlighted within
the method.

provides a picture-based approach to visual simula-
tion modeling. Graphical representation of any
model component can be an image composed of a
scanned photograph/picture, a painting, or a draw-
ing in TIFF, EPS, GIF, JPEG, or many other
formats. Images in TIFF, EPS, GIF, or JPEG format
can be clicked on, dragged, and dropped in the VSE
Editor window. Images in other formats can be
converted by using a variety of third party products
and shareware software under NEXTSTEP, Macin-
tosh, Windows, and other platforms.

employs a multifaceted conceptual framework for
guiding the modeler in model construction. The
conceptual framework is based on the DOMINO
conceptual framework (Derrick and Balci 1992;
Derrick, Balci, and Nance 1989). Under the VSE
conceptual framework, a model is viewed in terms
of a static and a dynamic architecture. The static
architecture is decomposed into a hierarchy of
components as shown in Figure 1. A dynamic object
is an object that physically or logically moves from
one component to another. Similar to the static
model architecture decomposition, a dynamic object
can also be decomposed into a hierarchy of compo-
nents as shown in Figure 1.

enables the creation of truly object-oriented models
exhibiting the properties of encapsulation, inher-
itance, and message passing.

facilitates the reuse of earlier developed and fully
tested model components stored in the VSE Library;
thereby, significantly reducing the model develop-
ment time.

facilitates the development of the model static archi-
tecture in top-down and/or bottom-up hierarchical
manner with vertical and/or horizontal decomposi-
tion.

facilitates the development of a dynamic object in
top-down and/or bottom-up hierarchical manner
with vertical and/or horizontal decomposition. For

1336 Balci et al.

example, a ship can be represented as a dynamic
object and can be decomposed into a hierarchy of
components similar to the decomposition of the
model static architecture as shown in Figure 1.

d facilitates the creation of “intelligent” moving
objects by cnabling logic specification for a dynam-
ic object. A dynamic object (e.g., vehicle, satellite,
airplanc, passenger) can have its own logic and
decide what action o take as opposed to a model
component telling the dynamic object what actions
to take.

(Q enables the creation of models using the machine-
oriented view, material-oriented view or a combina-
tion of the two views (Derrick and Balci 1992).

(3 enables the modeler to follow the paradigm “What
You See Is What You Represent.” The VSE concep-
tual framework enables the modeler to represent the
system elements as perceived by the modeler; there-
by, significantly reducing the complexity of model
specification. This capability in object-oriented
terms is called the “Principle of Association.”

O provides a state-of-the-art human-computer inter-
face.

O provides a very high-level English-like object-
oriented (with encapsulation, inheritance, and
message passing) scripting language for method
logic specification.

@ reduces the amount of model logic specification and
localizes it to a model segment.

Q supports all phases of visual simulation model
development and experimentation.

O facilitates the validation, verification, and testing of
simulation models with the VSE Model Analyzer
and VSE Model Tester software tools (Balci 1994).

A facilitates the credibility assessment of simulation
study results with the VSE Simulation Study Evalu-
ator software tool.

A provides a multimedia learning support system and
on-line assistance with the VSE Learning Support
System software tool.

3 provides 27 random variate generators for the 27
probability distributions of UniFit Il (Law and
Vincent 1994).

3 EXAMPLES

Six sample VSE simulation models arc presented in this
section to illustrate the VSE capabilities for a variety of
problem domains. All screen captures shown in Figures
2 through 7 are in 16-bit or 24-bit color.

Figure 2 shows the visual simulation of a Naval
combat scenario. The background image was down-
loaded from an Internet site in GIF format and was
dragged and dropped into the VSE Editor window to be

the top-level model representation. The ship, aircraft,
missile, and other images were selected from a Clip Art
library available on the Macintosh and they were
brought to NEXTSTEP and were used in model
construction using the VSE Editor.

Figure 3 shows the top-level view of the visual
simulation of the Washington DC metro system. The
metro system map was scanned in 24-bit color on a scan-
ner connected to a Macintosh and the TIFF image creat-
ed was brought to NEXTSTEP. The image was dragged
and dropped in the VSE Editor window. It was then
resized in the Editor to be the top-level model view.
Using the Editor’s tool palette, the metro stations were
defined as components (decompositions at level 2). Each
decomposition (metro station) is graphically represented
and decomposed further into the metro train tracks, train
stop areas, passenger waiting areas, and entry and exit
points. Train stop area is further decomposed. The metro
train is represented as a dynamic object that is decom-
posed into an inside view that is further decomposed into
seats and stand-up area.

The visual simulation can be viewed at model
component or dynamic object level. The model hier-
archy browser is shown in bottom-right corner of Figure
3. Clicking on a component name will show the visual-
ization of that component. By clicking on the eye-shaped
icon, another viewer can be displayed. As the screen
space permits, many viewers can be used to concurrently
watch the visual simulations of different components
and dynamic objects. During model execution, one can
double-click on a dynamic object to see the visual simu-
lation of its decompositions if the dynamic object is
further decomposed. In this model, the metro trains are
decomposed but not the passenger dynamic objects.

Figure 4 shows three viewers concurrently display-
ing the visual simulations of the three model compo-
nents. The globe component models the NAVSTAR
Global Positioning System with 18 satellites. In addition,
four geo-stationary satellites are included. The Asia and
Americas components are decomposed into cities and
ground control stations. Airplanes are present in the
visual simulation and are decomposed further.

The model shown in Figure 5 was the Spring 1995
semester project in the CS4214 Simulation and Model-
ing course at Virginia Tech. An aerial photograph of the
traffic intersection was obtained from the Town of
Blacksburg. The photograph was scanned using a scan-
ner connected to a Macintosh. The scanned image was
brought into Adobe Photoshop on the Macintosh and
was cleaned. Then, it was brought as a TIFF file into the
VSE Editor to be the top-level model view. The CS4214
students collected data at the intersection and used
UniFit IT (Law and Vincent 1994) for input data model-
ing. The objective of the simulation study was to

Visual Simulation Environment

)\ model ;'IIRVYCI].hIIlHI

Figure 3: Visual Simulation of Washington DC Metro System Using the VSE

1337

1338 Balci et al.

“Intersection” in moilel “trafficintersection”

Crez Rog /i i 5 Creeh foad
Traic Inter
Zlacishurg, Virg:

Figure 5: Visual Simulation of a Traffic Intersection in Blacksburg (Virginia) Using the VSE

6EET

gSA 2y Suis() woysAg uonenodsuel] sng jisuet], 31ngsyoe[g Jo UONE|NWIS [ENSIA [aIn3ig

Jejuplese]

7
[t |

juswruoIIauyy uonernuig [ensiA

1340 Balci et al.

determine which ol the three light timings (the currently
used and two alternatives) is the best in terms of reduc-
ing the average waiting times of vehicles at the inter-
section. The VSE Data Analyzer was used to construct
confidence intervals for the response variables.

Figure 6 shows the visual simulation of a computer
system. Figure 7 shows the visual simulation of the
Blacksburg bus transportation system. Double-clicking
on the bus dynamic object displays visual simulation of
the inside of the bus and the movements of passengers.

4 CONCLUSIONS

A general-purpose, picture-based, object-oriented visual
simulation model development environment is presented.
The VSE provides computer-aided assistance in the crea-
tion of complex visual simulation models and signif-
icantly reduces the model development time. It guides
the modeler under a multifaceted conceptual framework
and facilitates the pictorial and hierarchical model devel-
opment. Logic specification is localized to a class meth-
od and is done by using an object-oriented, very high-
level, English-like scripting language.

ACKNOWLEDGMENTS

The research that has led to the creation of the VSE since
1983 has been sponsored in part by the U.S. Navy
through the Systems Research Center at Virginia Tech.
Contributions of Emilio Arce, Rick Shangle, and Ken
Young in developing some of the sample models are
gratefully acknowledged.

REFERENCES

Balci, O. 1986. Requirements for model development
environments. Computers & Operations Research
13:53-67.

Balci, O. 1994. Validation, verification, and testing tech-
niques throughout the life cycle of a simulation
study. Annals of Operations Research 53:121-173.

Balci, O. and R. E. Nance. 1987. Simulation model
development environments: a research prototype.
Journal of Operational Research Society 38:753-
763.

Balci, O. and R. E. Nance. 1992. The simulation model
development environment: an overview. In Proceed-
ings of the 1992 Winter Simulation Conference, ed.
J. J. Swain, D. Goldsman, R. C. Crain, and J. R.
Wilson, 726-736. IEEE, Piscataway, New Jersey.

Derrick, E. J. and O. Balci. 1992. DOMINO: A multi-
faceted conceptual framework for visual simulation
modeling. Technical Report TR-92-43, Department
of Computer Science, Virginia Tech, Blacksburg,
VA.

Derrick, E. J. and O. Balci. 1995. A visual simulation
support environment based on the DOMINO
conceptual framework. The Journal of Systems and
Software, to appear.

Derrick, E. J., O. Balci, and R.E. Nance. 1989. A
comparison of selected conceptual frameworks for
simulation modeling. In Proceedings of the 1989
Winter Simulation Conference, ed. E. A. MacNair,
K. J. Musselman, and P. Heidelberger, 711-718.
IEEE, Piscataway, New Jersey.

Law, A. M. and S. Vincent. 1994. UniFit Il user’s guide,
Averill M. Law & Associates, Tucson, AZ.

AUTHOR BIOGRAPHIES

OSMAN BALCI is an Associate Professor of Computer
Science at Virginia Tech. He is also President and CEO
of Orca Computer, Inc., developer of the Visual
Simulation Environment. He received B.S. and M.S.
degrees from Bogazici University in Istanbul, Turkey in
1975 and 1977, and M.S. and Ph.D. degrees from
Syracuse University in 1978 and 1981. Dr. Balci is the
Editor-in-Chief of Annals of Software Engineering and
serves on seven editorial boards. His current research
interests center on software engineering and simulation.
Dr. Balci is a member of Alpha Pi Mu, Sigma Xi,
Upsilon Pi Epsilon, ACM, IEEE CS, and INFORMS.

ANDERS I. BERTELRUD is a Vice President of Orca
Computer, Inc., developer of the Visual Simulation
Environment. He received B.S. and M.S. degrees in
Computer Science from Virginia Tech in 1993 and 1995.
He is a member of Phi Beta Kappa, Upsilon Pi Epsilon,
and ACM.

CHARLES M. ESTERBROOK is a Vice President of
Orca Computer, Inc., developer of the Visual Simulation
Environment.

RICHARD E. NANCE is the RADM John Adolphus
Dahlgren Professor of Computer Science and the
Director of the Systems Research Center at Virginia
Tech. He received B.S. and M.S. degrees from N.C.
State University in 1962 and 1966, and a Ph.D. degree
from Purdue University in 1968. He is also Chairman of
the Board of Orca Computer, Inc., developer of the
Visual Simulation Environment. Dr. Nance is the
founding Editor-in-Chief of the ACM Transactions on
Modeling and Computer Simulation. He served as
Program Chair for the 1990 Winter Simulation
Conference. Dr. Nance received an Exceptional Service
Award from the TIMS College on Simulation in 1987.
He is a member of Alpha Pi Mu, Sigma Xi, Upsilon Pi
Epsilon, ACM, IIE, and INFORMS.

