Proceedings of the 1995 Winter Simulation Conference
ed. C. Alexopoulos, K. Kang, W. R. Lilegdon, and D. Goldsman

USING MATHEMATICA TO AID SIMULATION ANALYSIS

Paul A. Savory

Industrial and Management System Engineering
University of Nebraska
Lincoln, Nebraska 68588-0518, U.S.A.

ABSTRACT

As computer power has increased, so has the capability
of software developers to write programs that assist
people with time-consuming tasks. Mathematica is such
a program. The objective of this paper is to demonstrate
how Mathematica, a symbolic programming
environment, can be used to aid simulation analysis. In
addition to a general discussion of Mathematica'’s uses,
advantages, and disadvantages, several examples will be
presented. The examples include using Mathematica for
distribution fitting, queueing analysis, random number
generation, and creating a surface plot for optimization.

1 INTRODUCTION

Computer software and hardware advances have had an
important impact on discrete-event simulation. One
result of these advances is Mathematica, a general
software system and language for mathematical
applications. Wolfram (1991) describes Mathematica as
“A System for Doing Mathematics by Computer.”
Mathematica is an ideal general-purpose analysis tool
since it integrates several features into a unified,
interactive environment: numerical and symbolic
calculations, functional, procedural, rule-based, and
graphics programming. Additional features include:
- manipulating complicated symbolic expressions,
- graphing and animation,
- performing numerical
precision,
- its own programming language for constructing
elegant and efficient programs,
- portability of programs to a wide range of computer
platform without any modification.
The ability to perform symbolic as well as numerical
manipulations places Mathematica with programs such
as Derive, Macyma, Maple, and Reduce (Swain 1989).
In contrast, TK!Solver and MathCAD are primarily
numerical in their manipulations.

calculations to arbitrary

Mathematica is an interpreted language - it reads
and evaluates an expression and then computes and
prints out a result. Wickham-Jones (1994) describe that
Mathematica is split into two parts. The kernel is the
computational engine of the system that receives and
evaluates all expressions sent to it. The front-end
provides the program interface to the user and is
concerned with such issues as how input is entered and
how the results are displayed. Even though the front-
end differs between computer platforms, the underlying
kernel provides essentially the same set of functions.

The objective of this paper is to illustrate how
Mathematica can aid a simulation analysis. The next two
sections present numerical and graphical simulation
examples. The paper concludes with some final
comments on Mathematica and offers sources for further
information.

2 NUMERICAL EXAMPLES
2.1 Kolmogorov-Smirnov Goodness of Fit Test

The first example uses Mathematica to test whether a set
of data is modeled by a probability distributions. Figure
1 presents output resulting from testing a sample data
set.

Mean of data: 33.88

SD of data: 1.87427

Length of data: 10

D+:0.138257

D-:0.178486

D-Value = 0.178486

KS critical value is: 0.409

The data does follow the NORMAL distribution

1324

Figure 1: Output from executing function KSTest[]
which tests whether a set of ten data points (31, 31.4,
33.3. 334, 33.5, 33.7, 34.4, 349, 36.2, 38) follow a
normal distribution. The function concludes that there is
not enough evidence to reject the normality assumption

Mathematica for Simulation Analysis 1325

This output was generated using the function KSTest|].
which applies the one-sample Kolmogorov-Smirnov
Goodness of Fit test for determining if a data set follows
a normal distribution. The function works by asking the
user to enter the name of an ASCII data file and a level
of significance for the hypothesis test. The function
next computes K-S test statistics and calls the function
KSTable[] to look up the critical K-S value. Be aware
that KSTest[] only checks whether a data set follows a
normal distribution. Minimal effort is required to
extend the routine to test for additional distributions.
Appendix A contains the code for the KSTest[] and
KSTable[] functions.

2.2 Queueing Theory

One of \athematica's advantages is its ability to
effectively manage equations. To see this, consider the
function Queue[] which implements the queueing
formulas for describing an M/M/S queue. The function
works by prompting a user to specify the arrival rate
(e.g.. 0.1). the service rate (e.g.. 0.2) and the number of
servers (e.g., 3) to a queue. Using this information, the
function computes M/M/S summary statistics. Figure 2
presents the results from running function Queue[]. The
Mathematica code is given in Appendix B. It is
significant to note that only fourteen lines of code is
required. Programming the same algorithm in a
traditional programming language would required
approximately 100 lines.

Lambda=0.1 Mu=02 S=3

rho = 0.166667

W =15.0303 L=0.50303

Wq =0.030303 Lq =0.0030303

Figure 2: Output resulting from running the function
Queue[]. The arrival rate, service rate, and number of
servers are specified as 0.1, 0.2, and 3. respectively.

3 GRAPHICAL EXAMPLES

Mathematica represents graphics as expressions that
can be manipulated. Somectimes one can achieve a
desired graphical effect by using the options of the built-
in plotting commands: at other times, the only way to
accomplish a goal may be to modify the expressions
returned by a plotting command or even to create an
expression from scratch.

3.1 RANDU Generator

As discussed by Law and Kelton (1991), the RANDU
random number generator,

7,=65539Z,,(mod 2"

Z, =123,456,789
is biased when random numbers are used in groups of
three. Using Alathematica, it is easy to observe this
dependency. Figure 3(a) shows the default view of 6000
tuples generated from the RANDU generator. Based
only on this view, the generator appears to be
sufficiently random. By varying the orientation
parameters, Figures 3(b) and 3(c) show a different view
of the same cubic. In Figure 3(d), the dependency
among the three-dimensional lattice structure is clearly
evident. The code for the RANDU generator and for
the plotting the different views is given in Appendix C.

Figure 3(a): Default view of 6000 tuples from the
RANDU generator.

Figure 3(b): Different view of (a). Note the formation
of the parallel planes.

1326

Figure 3(c): Different view of (a). The parallel planes
are becoming more significant.

Figure 3(d): Different view of (a). Fifteen parallel
planes are clearly evident.

3.2 Surface Plot

Experimental design permits evaluating alternative system
designs by varying combinations of the decision variable
settings. Simulation is primarily concened with deciding
how to develop a set of simulation runs that allow an
analyst the ability to select which variables to measure and
how to test if they significantly affect the output/response
of the model. That is, perform optimization with
simulation. Mathematica can aid in this process.

Figure 4(a) presents the response surface resulting
from running 35 simulation models in which a number of
expert and apprentice mechanics are varied from 0 to 5
(the 0,0 combination was not run) to estimate the cost of
repairing a group of machine (Hoover and Perry 1989,
Illustrative Problem 10.7). Each model was replicated
five time for each combination of mechanics resulting in a
total of 175 simulation runs. Figure 4(b) is an alternate
view of the same response surface plot. Appendix D
contains the data and code used to create the two plots.

Savory

Cost

1000
800

600

Number of Experts 3

Figure 4(a): Response surface generated from
plotting the repair cost for various levels of expert and
apprentice mechanics. For instance, 5 experts and 1
apprentice mechanic has an approximate cost of $550.

2
Number of’ Apprentices 1 D

Figure 4(b): Another view of (a).
4 LEARNING MORE ABOUT MATHEMATICA

For more information on Mathematica, Wolfram
Research, Inc. can be contacted at:
Phone: 1-800-441-MATH
E-Mail: info@wri.com
World Wide Web: http: //www.wri.com/

Wolfram Research also maintains MathSource, an
electronic repository of Mathematica material. This can
be accessed by e-mail, anonymous ftp, Gopher, or
World Wide Web at mathsource.wri.com. In addition,
Mathematica is a frequent topic of discussion on many
Internet newsgroups; the sci.math.symbolic is one.

5 FINAL COMMENTS

Computers have brought about a fundamental change in
the nature of research and in science and engineering
education (Gaylord, Kamin, and Wellin 1993). One of
these changes is Mathematica, a useful tool for those
who do quantitative analysis, symbolic calculations and
manipulations, and need to visualize functions or data.
Mathematica has enormous power for aiding a
simulation analysis. In addition to the examples
presented in the paper, Mathematica provides functions

Mathematica for Simulation Analysis 1327

for computing confidence intervals, performing
hypothesis tests, estimating regression lines, solving
linear programming problems, and assisting with matrix
manipulations.

Mathematica is not without problems. Its key
disadvantages is that it is slow. Based on my own
experience, | estimate that a Mathematica program runs
50 to 100 times slower that a compiled version written in
a traditional programming language. This time delay is
primarily due to the interpretive nature of the software in
that a user’s input must be read and evaluated. An
additional drawback is that all programs must be run
within the Mathematica environment. A final hindrance
is the lack of sophisticated user input and output
routines. The current functions do not compare to those
offered by traditional programming languages. These
trade-offs are easily offset by Mathematica capability to
perform tasks that would be impossible to program
otherwise.

Mathematica does for simulation what robots do for
manufacturing: carry out menial chores. If you need a
flexible and extremely useful software for performing
mathematical computations, Mathematica is a good
choice.

ACKNOWLEDGMENTS

The author wishes to thank Ted McGlynn, a graduate
student at the University of Nebraska for developing the
KSTest[] and KSTable[] functions.

APPENDIX A: NORMALITY TEST

(* Kolmogorov-Smirnov test for whether data set is normally
distributed *)
KSTest[]:=
Module[{}.
(* Load statistics package *)
Needs["Statistics’ DescriptiveStatistics™"];

(* Prompt for and read in the data *)
datafile = InputString["Enter Data Filc to Test"]:
datalist=ReadList[datafile, Number]:

(* Sort data in ascending order *)
data = Sort[datalist];

(* Finds n, the number of data points *)
leng=Length[data]:

(* Compute Fn(Yi) *)

Y = Table[i/leng,{i,1.leng}];

ksvalue = Input{"Input alpha value to test at:\n
] =0.20\n 2=0.10\n 3 =0.05\n
4=0.02\n 5=0.01"]

(* Compute statistics *)

ave=Mecan[data];
sd=StandardDeviation[data];

(* cdf for normal distribution *)

std = Table[N[((data[[i]]-ave)/sd).4].{i,1.leng}].

X=Table[N[Nintegrate[.39894*Exp[-z"2/2].
{z,5.std[[i]]}].4].{i.1,leng}]:

(* Compute *)

Mm =Abs|Y-X];

Nn = Table[Abs{X[[i]] - Y[[i-1]]).{i.2.leng}]:
Dplus = Max[Mm]:

Dneg = Max([Nn];

Dval = Max[Dplus,Dneg]:

(* Look up KS critical table Value *)
KSTable[];

Print["Mean of data: ".ave];
Print{"SD of data: ",N[sd]]:
Print["Length of data: ",leng];
Print["D+ : ",Dplus];

Print["D- : ", Dneg]:

Print["D-Value =" Dval];

Print["KS critical value is: " ,value]:

[f[Dval>value,
Print["The data does NOT follow the NORMAL
distribution"],
Print["The data does follows the NORMAL
distribution"]

I]

KSTable[]:=
Module[{}.
(* K-S Table *)
ks =
{1.900..950..975,.990,.995}.{.684,.776..842,.900,.929},
1.565,.636,.708..785,.829}.{.493,.565..624,.689.,.734},
{.447,.509,.563..627..669}.{.410,.468..519,.577,.617},
1.381..436,.483..538,.576}.{.358,.410,.454,.507..542},
{.339,.387..430,.480,.513},{.323..369,.409,.457,.489},
1.308..352,.391..437..468}.{.296,.338,.375,.419,.449},
{.285,.325,.361,.404,.432}.{.275,.314,.349..390,.418}
{.266,.304,.338,.377,.404} .{.258,.295,.327,.366,.392},
{.250,.386,.318,.355,.381}.{.244,.279,.309,.346, 371},
{.237..271..301,.337..361}.{.232,.265,.294,.329,.352},
{.226,.259,287,.321,.344}.{.221,.253..281,.314,.337},
{.216,.247,.275,.307..330}.{.212..242,269,.301,.323},
{.208..238,.264,.295..317}.{.204..233..259,.290,.311},
{.200..229,.254,.284,.305},{.197..225,.250,.279,.300},
{.193,211,.246,.275,.295},{.190..218..243..270..290,
{.187.214,238..266,.285},{.184,211,.234,.262,.281},
{.182,.208,.231,.258..277}.{.179,.205,.227,.254, 273},
{.177.202.224,.251..269},{.174..199..221,.247,.265},
{ 1.{.170,.194,.215,.241,.258}.
{ +,{.165,.189,.210,.235,.252 }:}

172,.199..221,.247,.265},
168..191..213,.238..255},
(* Determine critical value *
If[leng<=40,value = ks[[leng.ksvalue]],
Iffksvalue==1,value=(1.073/leng".5).

1328

It[ksvalue==2,value=(1.2239/leng ".5),
Iflksvalue==3,value=(1.3581/leng".5).
[f[ksvalue==4, value=(1.5174/leng".5),
value=(1.6276/lceng ".5))
mhk)

APPENDIX B: M/M/S QUEUE

(* Summary statistics for M/M/S queuc *)
Queue|]:=
Module|{}.
L=Input|"Input the Arrival Rate "|;
m=Input["Input the Service Rate "];
s=Input["Input the Number of Servers "]
(* rho *)
r=L/(s*m);
(* probability in state zero *)
Po=1/((Sum[((L/m)*n)/Factorial[n},{n.0,(s-1)}])+
((L/m)*s)/(Factorial[s]*(1-(L/(s*m)))))):
(* average length of queu e*)
Lq=(Po*((L/m) “s)*r)/(Factorial[s]*((1-r)"2));
(* average length of system *)
LS=Lq+(L/m);
(* average wait time in queue *)
Wgq=Lq/L.
(* average wait time in the system *)
WS=Wq+(1/m),
Print["Lambda="L." Mu="m," S=".s].
Print["rho = ".r];
Print["W ="WS." L="LS].
Print["Wq =".Wq." Lq =".Lq]:

APPENDIX C: RANDU GENERATOR

(* RANDU random number generator *)
Randu[]:=
Module[{},
(* Initial seed *)
z[0]=123456789;
(* Generate uniform random numbers *)
For[i=1,i<=6500,i++,
z[1}=Mod[(65539*z[i-1]).(2"31)].
Uli]=N(z[i)/(2°31)]:
IR
(* Create 6000 overlapping tuples *)
data=Table[Point[{U[i],U[i+1].U[i+2]}],{i,1,6000}].
(* Figure 3-a *)
view |=Show[Graphics3D[data]];
(* Figure 3-b*)
view2=Show([Graphics3D[data],ViewPoint->{-2.-2.5.0}]:
(* Figure 3-c*)
view3=Show([Graphics3D[data],ViewPoint->{-2.-3,0}]:
(* Figure 3-d*)
viewd=Show|Graphics3D[data],ViewPoint->{-2,-2.52}].

Savory

APPENDIX D: RESPONSE SURFACE

(* Response surface for data set *)
(* average cost of the various mechanic combinations *)
data= {{1000,990,850,720,600,550},
{980,890,740,620,550,550},
{900,770.,630,550,540,570},
1780.650,550,540,560,590},
{660.560,530,540,570,610},
1560,520,530,560,590,630} };
(* Figure 4-a *)
wl=ListPlot3D[data,MeshRange->{{0,5},{0,5}},
Boxed ->False];
(* Figure 4-b *)
w2=ListPlot3D[data,MeshRange->{{0,5},{0,5}}.
ViewPoint->{-3.5.4..5}];

REFERENCES

Gaylord, R., S. Kamin, and P. Wallin. 1993.
Introduction to Programming with Mathematica.
New York: Springer-Verlag.

Hoover, S. and R. Perry. 1989. Simulation - A Problem
Solving Approach. New York: Addison-Wesley.
Law. A. and D. Kelton. 1991. Simulation Modeling and

Analysis. 2d ed. New York: McGraw Hill.

Swain, J. 1989. Review of MATHEMATICA. OR/MS
Today, 16: 34-36.

Wolfram, S. 1991. Mathematica: A System for Doing
Mathematics by Computer. 2d ed. New York:
Addison-Wesley.

Wickham-Jones, T. 1994. Mathematica Graphics. New
York: Springer-Verlag.

AUTHOR BIOGRAPHY

PAUL A. SAVORY is an Assistant professor in
Industrial and Management Systems Engineering at the
University of Nebraska - Lincoln (UNL). Prior to
joining the faculty of UNL, he eamed a Ph.D. in
Industrial Engineering from Arizona State University, a
Master’'s degree in Operations Research and a
Bachelor’s degree in Computer Science, both from
Oregon State University. In addition to having taught
university and industrial courses in simulation,
operations research, and applied statistics, he has held
positions as a software engineer and a quality control
inspector.

