Proceedings of the 1995 Winter Simulation Conference

ed. C. Alexopoulos, K. Kang, W. R. Lilegdon, and D. Goldsman

SIMULATION PROGRAMMING LANGUAGES: AN ABRIDGED HISTORY

Richard E. Nance

Systems Research Center and Department of Computer Science
Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24061-0251, U.S.A.

ABSTRACT

Knowing history can be protective; we have all heard
that those who do not are doomed to repeat it.
Considering one well regarded expert's estimate of 137
simulation programming languages (SPLs) created by
1981, many perhaps have already duplicated the numer-
ous mistakes of their predecessors. History can also be
informative, instructive and entertaining as hopefully
this abridged and differently focused approach can illus-
trate. Questions concerning the causes for so many
SPLs. the remarkably similar parallel developments, and
the role of the SPLs versus programming languages in
general might admit to historical answers. At the least,
sharing speculations could prove enlightening and
amusing.

1 INTRODUCTION

This abridged history of discrete event simulation pro-
gramming languages is taken from the more complete
version presented at the History of Programming
Languages II Conference in Cambridge, Massachusetts
20-23 April 1993. A preprint appcared in A CM
SIGPLAN Notices 28 (3): March 1993, pp. 149-175.

Discrete event simulation programming languages
(SPLs) must meet a minimum of six requircments: (1)
generation of random numbers to represent uncertainty,
(2) process transformers, to permit other than uniform
random variates to be used, (3) list processing capability,
so that objects can be created, manipulated, and deleted,
(4) statistical analysis routines, to provide the descriptive
summary of model behavior, (5) report generation, to
provide the presentation of potentially large reams of
data in an effective way for decision making, and (6) a
timing exccutive or time flow mechanism. Clearly these
requircments could be met by a general purpose lan-
guage (GPL), but developments of SPLs progressed with
the conviction that model complexity could be better ac-
commodated and modeling conveniences better provided
with a language reflecting the problem-solving domain.
Nevertheless, packages of simulation-specific routines in
numerous GPLs arc significant; some have emerged to a
very popular form in use historically and today.

Figure 1 shows the chronological development of
simulation programming languages from both a vertical
and horizontal perspective. The vertical perspective
follows the division among world views, the
"WELTANSICHT" of Lackner (1962, p.3). The "event
scheduling," "activity scan,”" and "process interaction"
categorizations are now termed the "classical" because
they were used very early by Lackner (1964) and Kiviat
(1967, 1969) as the basis for distinguishing and contrast-
ing SPLs. Overstreet (1986, p. 171) captured the dis-
tinctions best by using the concept of locality:

Event scheduling provides locality of time:
each event routine describes related actions
that may all occur in a single instant.

Activity scanning provides locality of state:
each activity routine describes all actions that
must occur because a particular model state is
reached.

Process interaction provides locality of ob-
ject: each process routine describes the entire
action sequence of a particular model object.

The horizontal perspective in the SPL chronology de-
scribes the organization of the remainder of this paper.
The five periods chosen, although somewhat arbitrarily,
reflect remarkably similar developments occurring in the
SPLs of that period. In fact, the earliest SPLs have con-
tinued, either in extended or modified forms or as gener-
ational successors. These five periods are labeled:

1955-60: The Period of Search,

1961-65: The Advent,

1966-70: The Formative Period,

1971-78: The Expansion Period,

1979-86: The Period of Consolidation and
Regencration.

Since some time is needed to develop a historical per-
spective, no attempt is made to include developments
beyond 1986.

1307

1308

LEGEND

D Graphical Specification
D Simulation Package
‘__—I Simulation Progiam

-
— ~ Non-SPL.
95 - - - - - - -
o
— o
E o
A o
R
— ¢ .
1 °
960 - - - - - - o
o
— — = o
A siMPAC.°
— D1 .\ |‘ . °
L EE?’ cse
N
T
1965 = - — - -
F ECSL
— O
P
R p OPS-4
— Mg .
Al
__ vy D
E
970 - - - -|- - -
T E
X
P
A P
— N E
S R
1975 1 |1
o O
— N D
A
— L
[EDsim
h— L]
1980
C
— 5 R
NG
— 5 G
) N
— L Ag
I N g
1985 D D o
AT
I
— 0o N
N

Nance

Activity
Scan
S

°°_____°g°______________o_°________
o o
o o o = o °
o o
R _ /{E(ZRTRAN °o °
- L
o \ N o o o
N o ° o
o \ N o °
o \ N N ° [«)
° o
P \ N °
<]
- - - N
- BN
I
< N
o ° N SPS-1
o ° N
GPSS I SOL sIMULA GasPll TcorRE! SIMSCRI
3 9 1 o (CORC, SIMSGRIPT
MILITRAN |7 |
I - -_— h— -
GPSS 1l CLP QUIKSCRIPT
_ e e e —- @ = m e e e e, e e e e e e - e = = s e o
r- -
| Flow GPSS/360 \
Simglalor
BQSS SIMULA 67] SIMSCRIPT 1l
JASP GASPII
GPSK GPSS/UCC J
[])
_GPSS/NORDEN GPSS V _ - 4 - - - - _ _ _L _GE.R_TS_ SIMSCRIPT il Plus_
s GPDS GPSﬁ'““ SIMSCRIPT IL.§
NGPS§ .~
SIMPL/
p
ASPOL GASP IV
* 1
GPSS.\'/(»IKK)
——
GASP_PL/I 1
CML d ECSS 11 | CSP I
L] * (]
‘ ‘ (C-SIMSCRIPT) added
APL GPSS GPSSH CONSIM SAINT
:PASICAL]
o~ _ 4 - 4 1 4 - _ opemos s _ SLAM
! E— _ - 4 - 4 - - -
I 9 | b
GPSS/FORTRAN LT SIMPAS] [PASSIM
. ‘——, | ®
PL/ GPSS SIMPLAIX
[°
I
INS INTERACTIV
°)
GPSSIPC
L]
(iPSS/8S
. NETWORK ILS

(SLAMID)
-

Figure I. The Geneological Tree for Simulation Programming Languages

SI?\IFACT.ORY ILS

COMNETILS
L]

Simulation Programming Languages: An Abridged History 1309

2 THE PERIOD OF SEARCH (1955-1960)

This period is marked by efforts to discover not only
concepts of model representation but the representational
needs for doing simulation analysis. Early groups at
General Electric, UCLA, and elsewhere were cited in
Conway (1967, p. 219). The Gencral Simulation
Program (GSP) of K.D. Tocher and D.G. Owen (Tocher,
1960) is considered the first "language ctfort." Tocher
describes his identification and reuse of routines needed
for each simulation application as a "simulation struc-
ture." The claim that such a structure would enable "au-
tomatic programming of simulations" (Tocher 1960, p.
51) seems a little inflated; however, the same claim was
made for assemblers about tive years earlicr.

3 THE ADVENT (1961-1965)

The forerunners of SPLs currently in use appeared dur-
ing the period of 1961-1965. GPSS was developed on
various IBM computers and the name changed to the
General Purpose Simulation System (from General
Purpose System Simulator). Originating in the problem
domain of communication systems, the original block
semantics were ideally suited for queuing models. An
interesting exercise demonstrating the importance of
graphical output for on-line validation occurred in 1965
with an IBM 2250 interactive display terminal tied to a
GPSS model (Reitman 1992).

At the Norwegian Computing Center the language
SIMULA was begun in 1963 by Ole-Johan Dahl and
Kristen Nygaard. The language was developed for the
Univac 1107 and represented an extension to Algol 60,
the most popular GPL in Europe. The early language
version proceeded through four stages: (1) a discrete
event network concept, (2) basing of the language on
Algol 60, (3) modifications and extensions of the Univac
Algol 60 compiler as the process concept is introduced,
and (4) the implementation of the SIMULA [compiler.
More follows concerning the impact of SIMULA, par-
ticularly the successor version, on programming lan-
guages in general.

The event scheduling SPL SIMSCRIPT appcared 1n
1963. Harry Markowitz, later to receive a Nobel Prize
for his work in portfolio theory, provided the major con-
ceptual guidance. The RAND corporation developed the
language under sponsorship by the US Air Force, and
Bernard Hausner was the sole programmer. Herbert
Karr authored the SIMSCRIPT manual (Markowitz
1963, p.iii). Both syntactically and organizationally,
SIMSCRIPT was hecavily influenced by FORTRAN.
The entire FORTRAN language was included as a sub-
set. Later SIMSCRIPT 1.5 was developed as a propri-
etary version by CACI (Karr 1965). A major difference
was that SIMSCRIPT 1.5 was compiled into assembly
language rather than FORTRAN.

The Control and Simulation Language (CSL), repre-
senting the activity scan world view, appearcd in 1963 as

a joint venture of Esso Petroleum Company Ltd. and
IBM United Kingdom, Ltd. The creators, John Buxton
and John Laski, readily acknowledged the contributions
of Tocher and his colleagues at United Steel Companies
(Buxton and Laski 1962, p. 198). A second version of
CSL, labeled C.S.L. 2 by Clementson (1966), is at-
tributed to P. Blunden, P. Grant, and G. Parncutt of IBM
UK (IBMUK 1965). CSL draws heavily on FORTRAN
for the implementation, but the conceptual basis is
clearly influenced by GSP. A simpler two-phase execu-
tive 1s used in CSL, in contrast with the three-phase ex-
ccutive adopted in GSP. The language became a favorite
for program generation techniques based on the entity
cycle or activity cycle diagrams, which were successors
to the wheel charts originally developed by Tocher
(Tocher 1966).

GASP (General Activity Simulation Program), devel-
oped by Philip J. Kiviat at the Applied Research
Laboratory of the United States Steel Corporation, was
begun in 1961, originally in ALGOL. Early on the deci-
sion was made to basc the GASP simulator on
FORTRAN II. Originally designed to bridge the gap
between operating personnel and computer program-
mers, GASP, like GPSS, utilized flow chart symbols
considered familiar to engineers. The set of FORTRAN
I1 subroutines that made up GASP included a random
number gencrator from the resident library. The GASP
executive controlled the timing following an event
scheduling view, and debugging help was provided in a
special subroutine.

OPS-3, while relatively unknown to current day users,
was an SPL ahead of its time. [t represented an innova-
tive technical effort at MIT to build simulation capability
on the time sharing system CTSS. Principal developers
were Greenberger, Jones, Morris, and Ness; however
many others contributed in various ways (Greenberger
1965). The OPS-3 system was intended to be a multi-
purpose, open-ended, modular, compatible support for
creative rescarchers that were not necessarily computing
experts. Additions to OPS-3 could be made in a varicty
of GPLs. Clearly, the influence of SOL and
SIMSCRIPT are present in the time flow mechanism,
but the power of interactive model execution was unique
to the language. The manifestation of the timing control
was more akin to the three-phase method in Tocher's
GSP than to any other form at the time.

Numecrous other SPLs appeared during this advent pe-
riod. Notable, although not a discrete cvent language,
was DYNAMO. Developed at MIT for systems dy-
namic modeling, DYNAMO influenced several of the
developers of discrete cvent SPLs (Kiviat 1991).
Significant in the cffect of DYNAMO was graphical
output, strong typing, and cxtensive crror detection
capability. Other languages of note were SIMPAC, with
a fixed-time-increment timing routine, developed at the
System Devclopment Corporation (Bennett 1962); SOL
(Simulation Oriented Language), created by Knuth and
McNcley as an extension to ALGOL and structured

1310

much like GPSS; and MILITRAN, produced by the
Systems Research Group of the Office of Naval
Research (Systems Research Group, Inc. 1964).

4 THE FORMATIVE PERIOD (1966-1970)

The period from 1966-1970 reflected the conceptual
clarification ot languages. Concepts, possibly consid-
ercd as secondary during the trials of bringing a SPL to
implemented form, were reviewed and refined to pro-
mote a more consistent representation of a world view
and to clarify its presentation to users. Rapid hardware
advancements forced some languages, notably GPSS, to
undergo major revisions. GPSS 11 and 11, both of which
cmerged during the advent period, were replaced by
GPSS/360, an extended version of the language. Other
vendors also began to produce look-a-likes: RCA with
its flow simulator (Grecnberg 1972, p. 8), from
Honeywell in 1969 (GPSK 1969) and GPSS/UCC. As a
measure of the change in the language from GPSS 111 to
GPSS/360, the number of block types increased from 36
to 44 and set operations werc expanded by the introduc-
tion of groups. A HELP block opening the simulator to
routines in other languages was also provided.

Major changes occurred in SIMULA, and the version
SIMULA 67 emerged as a principal player at least on the
conceptual level among programming languages. The
concept of "classes of objects was added; subclassing
and class concatenation to enable inheritance were pro-
vided; and direct, qualified references for object manipu-
lation was created. Standardization emerged with the
SIMULA 67 Common Base Language (Nuggard and
Dahl 1981).

SIMSCRIPT II, also dependent somewhat on
SIMSCRIPT L.5 for its basic concepts of entity, attribute,
and set, clearly represented a major advancement in
SPLs. An expressed goal of SIMSCRIPT II was to be
self-documenting. In fact, the language was written to
be used on five levels, and with its free-form, English-
like mode of communication, and "forgiving" compiler,
the user received major considerations in the language
design. Markowitz (1979) indicated that the language
was Initially intended to be used for two additional lev-
els, one that dcalt explicitly with database entities and
yet another to provide a language uscful for writing other
languages. (Markowitz 1979, p. 29).

ECSL, developed for Courtaulds Ltd. by the origina-
tors of CSL, became a popular language in the UK.
ECSL departed from the heavy emphasis on FORTRAN
of CSL, and Clementson (1966, p. 215) with the ex-
pressed intent to embrace users who were non-pro-
grammers relied heavily on the entity-cycle diagrams for
model input. ECSL was the target languagc for CAPS
(Computer Aided Programming System), the first inter-
active program generator (Mathewson 1975).

The careful reader has perhaps noted that GASP 1I ap-
pears twicc in the gencalogical tree of Figure 1. A pre-
liminary description of the revised version appears in

Nance

manual form in 1967 (Pritsker 1967) while a listing of
FORTRAN subprograms designated as a GASP II com-
pilation is dated "3/13/63." This early revision is due to
Kiviat alone.

OPS-4 is primarily the doctoral research of Malcolm
M. Jones (1967). Based on PL/I, OPS-4 encouraged in-
cremental construction in test of model components. All
threc world views were supported in the language.
Extensive debugging and tracing capabilities and on-line
diagnostic explanations were available. Model execu-
tion could be interrupted and attribute values redefined.

New languages introduced during this period included
BOSS (Burroughs Operational Systems Simulator) in
1967, Q-GERT in the early 1970s, and a number of oth-
ers described in the hallmark workshop on simulation
programming languages chaired by Buxton (1968).

5 THE EXPANSION PERIOD (1971-1978)

Major advances in GPSS during this period came from
outside IBM as the success of the language caused others
to extend either its capabilities or the host hardware en-
vironment. GPSS/NORDEN was an interactive, visual,
on-line environment programmed in COBOL. This ver-
sion permitted user interaction through a CRT terminal
and interruption by the user to redefine certain standard
numerical attributes and then resume execution. A sec-
ond version NGPSS (NORDEN GPSS) is described as a
superset of GPSS/360 and GPSS V for both batch and
interactive execution. Limited database capability was
provided.

GPSS V/6000, developed by Northwestern University
for Control Data Corporation, was completed in 1975.
Complete compatibility with the IBM product was
claimed. GPDS (General Purpose Discrete Simulator)
was developed as a program product of Xerox Data
Systems for Sigma Computers. Similarly, a UNIVAC
product labeled GPSS 1100 is referenced with a 1971
date (UNIVAC 1971a, 1971b). A major addition was
GPSS/H in 1975, created by James O. Henriksen and
produced in a compiled version. Released by Wolverine
Software Corporation, GPSS/H has become the principal
version of the language since that time.

This period of expansion for SIMULA took the form
of a pure system description language called DELTA
(Holbaek-Hanssen 1977). The DELTA project sought to
implement system specification for simulation execution
through a series of transformation from a high level user
perspective through an intermediate form called BETA,
culminating with an cxecutable language called
GAMMA.

A major departure from its roots was taken by
SIMSCRIPT with the adoption of a process interaction
world view in the mid-1970s. During this period, the
capability for combined (discrete event and continuous)
modeling was added to the language. This expansion pe-
riod marked the beginnings of the breakdown in concep-
tual distinctions among SPLs.

Simulation Programming Languages: An Abridged History 1311

Notable changes occurred to GASP during this period,
primarily through the work of Pritsker and his graduate
students at Purdue. GASP IV became available in 1974
(Pritsker 1974). GASP 1V provided combined modeling,
and differentiated between state cvents and time events
as a means for representing both the condition concept of
activity scan and the temporal change concept of event
scheduling. A transaction flow world view was
incorporated into GASP during 1975-1976 (Washam
1976a; 1976b). Pritsker and Young (Pritsker 1975) pro-
duced a PL/I version of the language, a phenomenon that
occurred repeatedly during this period (the mapping of
an SPL onto PL/I).

Interactive program generators were a major domain
of activity in the U.K. Although initially beginning with
Programming By Questionnaire in the U.S., CAPS-
ECSL, DRAFT/FORTRAN, DRAFT/GASP and others
sought to simplify the modeling task through the entity
cycle (or activity cycle) diagram as a means for con-
structing the basic outline of the model. Mappings to
different languages enabled a user to select the particular
implementation with which he or she was most comfort-
able. A related, but very different approach, was taken
by George Heidorn in the early 1970s in his work to
build a natural language interface to GPSS (Heidorn
1976). In addition to GASP noted above, other map-
pings to PL/I included SIMPL/I, a PL/I preprocessor
(SIMPL/1 1972), PL/I GPSS (Metz 1981) and SIMPL, a
descendant of OPS-4 (Jones 1971a; 1971b). Slightly
later SIML/I appeared in 1979, as a language for com-
puter system modeling (MacDougall 1979).

6 CONSOLIDATION AND REGENERATION
(1979-1986)

This final period in the chronology might be character-
ized as one where predominant SPLs extended their im-
plementation to many computers and microprocessors
while keeping the basic language capabilities relatively
static. However, two major descendants of GASP ap-
peared to play major roles: SLAM II and SIMAN. The
Simulation Language for Alternative Modeling (SLAM),
produced by Pritsker and Associates, Inc., sought to pro-
vide multiple modeling perspectives and combined
modeling capabilities (Pritsker 1979). SLAM is a
FORTRAN preprocessor, whereas its predecessors were
packages. The major structure of the SLAM design still
follows that of GASP; in fact, many of the identical
subroutine and function names in GASP IV are repeated
in SLAM.

SIMAN is derived from SIMulation ANalysis.
Originally couched in a manufacturing systems applica-
tion domain, SIMAN possesses a general modeling capa-
bility found in SPLs such as GASP IV. C. Dennis
Pegden developed SIMAN as a one person faculty pro-
ject in about a two year period. SIMAN is claimed to be
the first major simulation language executable on the
IBM PC and designed to run under MS-DOS constraints

(Pegden 1991). The marketing of SIMAN has recog-
nized the major advantage of output animation with a
companion product called CINEMA.

Almost as history repeating itself, the emergence of
PASCAL, yet another popular GPL, stimulated the ap-
pearance of a number of simulation packages based on
the language. SIMPAS (Bryant 1980; 1981) is an event
scheduling package that captures all the requirements
identified for simulation modeling. SIMPAS, imple-
mented as a preprocessor, was designed to be highly
portable yet complete in its provision of services. In
contrast, PASSIM (Uyeno 1980) provided less services,
requiring more knowledge of PASCAL by the modeler.
Yet another example was INTERACTIVE, described as
a network simulation language using graphical symbols
for model representation (Lakshmanan 1983).

INSIGHT was developed by Roberts (1983a) to model
health care problems and for general simulation use.
INSIGHT adopts the transaction flow world view and of-
fers a graphical model representation that must be trans-
lated manually into INSIGHT statements. A FORTRAN
preprocessor, INSIGHT provides the usual process trans-
formers and some assistance in output analysis.

7 CONCLUDING SUMMARY

Why do the simulation programming languages exhibit
remarkably similar periods of development? Perhaps it
is the intense commercial competition, more intense than
that for GPLs, which explains this fact. Perhaps many of
the ideas and concepts, recognized eventually as impor-
tant for general purpose use, in having their birth in
SPLs created the early conceptual clashes which are in-
evitable for new ideas. Consider the numerous concepts
and techniques that either originated with SPLs or gained
visibility through their usage in a language:

- the process concept,

- object definition as a record data type,

- definition and manipulation of sets of objects,

- implementation of the abstract data type concept,

- quasi-parallel processing using the co-routine
concept,

- delayed binding with run-time value assignment,

- English-like syntactic statements to promote self-
documentation,

- error detection and correction in compilation,

- dynamic storage allocation and reclaim, and

- tailored report generation capabilities.

The importance of simulation in its influence on pro-
gramming language development and concepts cannot be
denied. The claim of Sammet (1969, p.650) that her
justification for categorizing simulation languages as a
specialization warranting limiting description is, "their
usage is unique and presently does not appear to repre-
sent or supply much carry-over into other fields."
Clearly the above list serves to dispel that misperception.

1312

Now as we see simulation models at the core of analysis
and training rescarch, described as "virtual environ-
ments” or in entertainment applications using "virtual
reality” are we entering a new period of change? s the
significance of modeling and simulation on its effect in
sciences and business about to be universally recog-
nized? Is Licklider's (19670 prediction in 1967 about to
be realized:

In their static form, computer-program models
are documents. Thev preserve and carry infor-
mation just as documents printed in natural
language do, and they can be read and under-
stood by recipients who know the modeling lan-
guage. In their dvnamic form, however, com-
puter-program models appeal to the recipient's
understanding dircectly through his perception
of dvnamic behavior. That model of appeal is
bevond the reach of ordinary documents. When
we have learned how to take good advantage of
it, it may - indeed, I believe it will - be the
greutest boon to scientific and technical com-
munication, and to the teaching and learning of
science and technology, since the invention of
writing on a flat surface.

REFERENCES

Bennett, R. P., P. R. Cooley, S. W. Hovey, C. A. Kribs,
and M. R. Lackner. 1962. Simpac User's Manual,
Report #TM-602/000/00, System Devclopment
Corporation, Santa Monica, California.

Buxton, J. N., ed. 1968. Simulation programming lan-
guages. In Proceedings of the IFIP Working
Conference on Simulation Programming Languages.
North-Holland Publishing Company.

Buxton, J. N. and J. G. Laski. 1962. Control and simula-
tion language. The Computer Journal, 5:194-199.

Clementson, A. T. 1966. Extended control and simula-
tion language. The Computer Journal, 9:215-220.

Conway, R. W., W. L. Maxwell, and L. W. Miller. 1967.
Theory of Scheduling. New York: Addison-Wesley
Publishing Company.

Dclfosse, C. M. 1976. Continuous Simulation and
Combined Simulation in SIMSCRIPT 11.5. CACL
Arlington, Virginia.

Greenberger, M., M. M. Jones, J. H. Morris, and D. N.
Ness. 1965. On Dash Line Computation and
Simulation: The OPS-3 Svstem. Massachusetts: MIT
Press.

Heidorn. 1976. Automatic programming through natural
language dialogue, a survey. IBM Journal of Rescarch
and Development, 20:302-313.

Henriksen, J. O. 1976. Building a better GPSS: a 3:1 en-
hancement. In Proccedings of the 1975 Winter
Simulation Confcrence, 465-469. New Jersey: AFIPS
Press.

Holback-Hansscn, E., P. Hiandlykken, and K. Nygaard.

Nance

1977. System description and the DELTA language.
DELTA Project Report No. 4. Second Printing.
Norwegian Computing Center.

IBMUK. 1965. CSL Reference Manual. IBM United
Kingdom Ltd.

Jones, M. M. 1967. Incremental simulation on a time-
shared computer. Unpublished Ph.D. dissertation,
Alfred P. Sloanc School of Management,
Massachusetts I[nstitute of Technology.

Jones, M. M. and R. C. Thurber. 1971a. The SIMPL
Primer.

Jones, M. M. and R. C. Thurber. 1971b. SIMPL
Reference Manual.

Kiviat, P. J. 1967. Digital Computer Simulation:
Modecling Concepts, RAND Memo RM-5378-PR,
RAND Corporation. Santa Monica, California.

Kiviat, P. J. 1969. Digital Computer Simulation:
Computer Programming Languages, RAND Memo
RM-5883-PR. RAND Corporation. Santa Monica,
California.

Kiviat, P. J. 1991b. Personal Communication.

Knuth, D. E. and J. L. McNeley. 1964a. SOL - a sym-
bolic language for general purpose system simulation.
IEEE Transactions on Electronic Computers EC-
13:401-408.

Knuth, D. E. and J. L. McNeley. 1964b. A formal defini-
tion of SOL. [EEE Transactions on Electronic
Computers EC-13:4, 409-414.

Lackner, M. R. 1962. Toward a general simulation capa-
bility. In Proceedings of the SJCC, 1-14. San
Francisco, California.

Lackner, M. R. 1964. Digital simulation and system
theory. System Development Corporation, SDC SP-
12. Santa Monica, Califomia.

Lakshmanan, R. 1983. Design and implementation of a
PASCAL based interactive network simulation lan-
guage for microcomputers. Unpublished Ph.D. disser-
tation, Oakland University, Rochester, Michigan.

Licklider, J. C. R. 1967. Interactive dynamic modeling.
In Prospects for Simulation and Simulators of
Dynamic Systems, cds. G. Shapiro and M. Rogers.
New York: Spartan Books.

MacDougall, M. H. 1979. The simulation language
SIML/IL. In Proceedings of the National Computer
Conference, 39-44.

Markowitz, H. M. 1979. SIMSCRIPT: past, present, and
some thoughts about the future. Current Issues in
Computer Simuluation, eds. N. R. Adam and Al
Dogramaci, 27-60. New York: Academic Press.

Markowitz, H. M., B. Hausner, and H. W. Karr. 1963.
SIMSCRIPT: A Simulation programming language.
The RAND Corporation. Santa Monica, Califomia.

Mathewson, S. C. 1975. Interactive simulation program
gencrators. In Procecdings of the European
Computing Conference on Interactive Systems, 423-
439. Brunel University, U.K.

Metz, W. C. 1981. Discrete event simulation using PL/I
based general and special purpose simulation lan-

Simulation Programming Languages: An Abridged History 1313

guages. In Proceedings of the Winter Simulation
Conference, eds. T. I. Oren, C. M. Delfossc, C. M.
Shub, 45-52.

Overstreet, C. M. and R. E. Nance. 1986. World view
based discrete event model simplification. Modeling
and Simulation Methodology in the Artificial
Intelligence Eru, eds. M. S. Elzas, T. E. Oren, and B.
P. Zeigler, 165-179. North Holland.

Pegden, C. D. 1991. Personal Communication.

Pegden, C. D., R. E. Shannon, and R. P. Sadowski. 1990.
Introduction to Simulation Using SIMAN. McGraw-
Hill.

Pritsker, A. A. B. 1967. GASP II User's Manual.
Arizona State University.

Pritsker, A. A. B. 1974. The GASP IV Simulation
Language. New York: John Wiley and Sons.

Pritsker, A. A. B. and C. D. Pegden. 1979. Introduction
to Simulation and SLAM. New York: John Wiley and
Sons.

Pritsker, A. A. B. 1990. Papers, Experiences,
Perspectives. Indiana: Systems Publishing Company.
Pugh, A. L., IIl. 1963. DYNAMO User's Manual. The

MIT Press, 2nd Ed.

RCA. 1967. Flow Simulator. RCA publication #70-05-
008.

RCA. 1967. Flow Simulator Information Manual. RCA
publication #70-35-503.

Reifer, D. J. 1973. Simulation Language Survey. Hughes
Aircraft Corporation, Interdepartmental
Correspondence, Ref. 2726.54/109.

Reitman, J. 1992. How the hardware and software world
of 1967 conspired (interacted?) to produce the first in
the scries of winter simulation conferences. In
Proceedings of the 1992 Winter Simulation
Conference, eds. J. J. Swain, R. C. Crain, and J. R.
Wilson, 52-5§.

SIMPL/I. 1972. SIMPL/I (Simulation Language Based
on PL/I). Program Reference Manual. 1BM publica-
tion #SH19-5060-0.

Systems Research Group, Inc. 1964. Systems Research
Group, Inc. MILITRAN Programming Manual.
Prepared for the Office of Naval Research,
Washington, DC.

Tocher, K. D. 1966. Some techniques of model building.
In Proceedings IBM Scientific Computing Symposium
on Simulation Models and Gaming, 119-155. White
Plains, New York.

Tocher, K. D. and D. G. Owen. 1960. The automatic
programming of simulations. In Proceedings of the
Second International Conference on Operational
Research, eds., J. Banbury and J. Maitland, 50-68.

UNIVAC 1100. 1971a. UNIVAC 1100 Series General
Purpose Simulator (GPSS 1100) Programmer
Reference. UP-7883.

UNIVAC 1100. 1971b. UNIVAC 1100 General Purpose
Systems Simulator Il Reference Manual. UP 4129.

Uyeno, D. H. and W. Vacssen. 1980. PASSIM: a dis-
crete-event simulation package for PASCAL.

Simulation 35:183-190.

Washam, W. B. 1976a. GASPPI: GASP IV with process
interaction capabilities. Unpublished Master's thesis,
Purdue University, West Lafayette, Indiana.

Washam, W. B. and A. A. B. Pritsker. 1976b. Putting
process interaction capability into GASP 1V,
ORSA/TIMS Joint National Meeting, Philadelphia.

AUTHOR BIOGRAPHY

RICHARD E. NANCE is the RADM John Adolphus
Dahlgren Professor of Computer Science and the
Director of the Systems Research Center at Virginia
Polytechnic Institute and State University. He received
B.S. and M.S. degrees from N.C. State University in
1962 and 1966, and the Ph.D. degree from Purdue
University in 1968. He has served on the faculties of
Southern Methodist University and Virginia Tech, where
he was Department Head of Computer Science, 1973-79.
Dr. Nance has held research appointments at the Naval
Surface Weapons Center and at the Imperial College of
Science and Technology (UK). Within ACM, he has
chaired two special interest groups: Information
Retrieval (SIGIR), 1970-71 and Simulation (SIGSIM),
1983-85. He has served as Chair of the External
Activities Board and several ACM committees. The
author of over 100 papers on discrete event simulation,
performance modeling and evaluation, computer net-
works, and software engineering. Dr. Nance has served
on the Editorial Panel of Communications ACM for re-
search contributions in simulation and statistical com-
puting, 1985-89, as Area Editor for Computational
Structures and Techniques of Operations Research,
1978-82, and as Department Editor for Simulation,
Automation, and Information Systems of [/E
Transactions, 1976-81. He served as Area Editor for
Simulation, 1987-89 and as a member of the Advisory
Board, 1989-92, ORSA Journal on Computing. He is the
founding Editor-in-Chief of the ACM Transactions on
Modeling and Computer Simulation. He served as
Program Chair for the 1990 Winter Simulation
Conference. Dr. Nance received a Distinguished Service
Award from the TIMS College on Simulation in 1987.
He is a member of Sigma Xi, Alpha Pi Mu, Upsilon Pi
Epsilon, ACM. 11E, ORSA, and TIMS.

