Proceedings of the 1995 Winter Simulation (‘onference
ed. (' Alexopoulos, K. Kang, W. R. Lilegdon, and D. Goldsman

AN OPEN SIMULATION ARCHITECTURE FOR FORCE XXI

John A. Hamilton, Jr.

Dept. of Electrical Engineering & Computer Science
United States Military Academy
West Point, New York 10996, US.A.

ABSTRACT

Force XXI will be America' s Army in the 21st century.
New technology, a post-Cold War world and a declining
force structure have made simulation a critical means for
defining and implementing Force XXI. Military
organizations are hierarchical. In combat, these
command levels operate simultaneously with varying
levels of coupling. A platoon on platoon operation can
be significantly affected by unilateral actions of higher
level friendly or enemy headquarters. A high-fidelity
simulation must be able to represent the simultaneous
actions of several command echelons.

A multi-level simulation approach is presented in
which different echelons of command can view objects at
varying levels of detail consistently. A task force
commander should be able to view the position and
movement of a tank platoon on a map or a virtual view
of the battlefield as seen from the platoon leader's hatch
or real-time live video from an actual tank on the ground.
Each view must be logically consistent with each other,
so that the mountain on the map sheet affects movement
in the same manner as the virtual mountain and the
actual mountain seen via live video.

Various combinations of live, virtual and constructive
simulations will run concurrently in the same simulation
infrastructure. Expert systems will control constructive
simulation nodes lacking human players. At any level
in the simulation human players and cxpert system
players may be interchanged. The opposing force will be
similarly configured. Force on force virtual simulations
will be supported in the simulation infrastructure. The
resulting open simulation architecture (OSA) is discussed
in detail.

1 INTRODUCTION

Event driven simulation is used to produce high
resolution models. Probability distribution based
simulations run considerably faster with some loss of
resolution. An Army Corps of 100,000+ soldiers may
have more than two thousand platoon-sized cquivalcnt
units. A simulation that represents the entire corps as
platoon size elements will be extremely unwieldy.
Performance constraints will limit the number of

1296

Udo W. Pooch

Department of Computer Science
Texas A&M University
College Station, Texas 77843-3112, U.S.A.

platoon-sized elements that can be represented by a high-
fidelity event driven simulation.

The US Army uses live simulation, i.e. soldiers on
exercises, vehicle/aircraft simulators or virtual
simulation and computer simulations or constructive
simulation. A seamless integration of live, virtual and
constructive simulations at multiple echelons of
command is requircd. A plug and play design is
necessary to allow for both automated players and human
in the loop players at various echelons of command for
both the friendly forces and the opposing forces.

2 THE SIMULATION ENVIRONMENT

Operations research came into its own during the Second
World War. The roots of the American military
requirement for operations research can be traced back
well before the war. In 1934, then Colonel George C.
Marshall supervised the preparation of Infantry in Battle,
which stated the following on page 1:
The art of war has no traffic with rules, for the
infinitely varied circumstances and conditions of
combat never produce exactly the same situation
twice. Mission, terrain, weather, dispositions,
armament, morale, supply, and comparative
strength whose mutations always combine to form
a new lactical pattern. Thus, in battle, each
situation is unique and must be solved on its own
merits (Marshall 1939).

Clausewitz noted that the art of war is based upon "a
play of possibilities, probabilities, good and bad luck,
which spreads about with all the coarse and fine threads
in its web, and makes War of all branches of human
activity the most like a gambling game," (Clausewitz
1832). The web of possibilities referred to by
Clausewitz is based upon the complex interactions of
combat that when unraveled appear to be simple and
deterministic.  Unraveling those threads is non-trivial
because there are so many interdependencies on the
battlefield (Hamilton, White and Pooch 1995). Advances
in technology have made it much more plausible to
model the uncertaintics outlined by Marshall.
Dccomposing the fine threads of combat make it
possible to create high fidelity simulations. Such



An Open Simulation Architecture for Force XXI 1297

simulations can serve as an unequaled peacetime as well
as a wartime training tool.

Computers, with their capacity to handle large
volumes of information, have been a critical aid to the
military analysis community. Today, increased
processing power can be further augmented by linking
powerful heterogeneous computers into distributed
computing systems. The Defense Department is
working to integrate the varied training and simulation
tools of the services through Distributed Interactive
Simulation (DIS) (DIS Steering Committee 1993). In
the DIS world, simulations are classified in one of three
ways:

sLive: simulations involving soldiers exercising on
instrumented ranges.
+Virtual: aircraft or vehicle simulators.
*Constructive: automated war games.
The seamless integration of live, constructive and virtual
simulation is a major objective in devising common DIS
standards.

Distributed systems offer the potential to implement
very high fidelity combat models. The same computing
power and speed that promises to increase the problem
domain bounds that can be represented also threaten to
overwhelm a user with details. This problem is not an
artificiality imposed by the raw power of computers.
Rather it reflects the ability to devise ever higher fidelity
models of combat--the most chaotic of all human
activity. The US Army is the world's pacesetter for
ground combat operations. Capt. J. R. FitzSimonds,
USN, writes eloquently on this point:

The most critical drag on high-tempo system
performance is the cognitive limit of the human
mind, the rate at which an individual can assimilate
information and act. An information-intensive
battle space may work to our advantage only if
humans can be largely removed from the command
loop. The need for speed will likely force today' s
hierarchical command structures to become very
flat, with automated analysis and decisionmaking
largely replacing time-consuming and error-prone
human deliberation. More profoundly, technical
limitations of communications and data fusion may
mean that humans will have to forego a traditional
"picture” of the battle space. The question then
becomes whether future US military commanders
can accept a continuing reduction in their rcal-time
battle information as the price of an increasing pace
of activity (FitzSimonds, 1995).
The mobile strike force concept recently tested during the
US Army's Prairie Warrior 95 exercise features a
flattened hierarchy. While the Army of the 21st Century
is likely to feature a flatter hierarchy, span of control
limitations will prevent a flat hierarchy. More probablc
is a dynamic hierarchy that can collapse and expand as
needed. Modern military communications have already
made this possible. During the 1973 Arab-Israeli War,

an Israeli lieutenant and his platoon was personally
directed around Suez City by the Israeli theater
commander (Dupuy 1978). This kind of zooming in on
a critical area by senior commanders will be the norm
rather than the exception in 21st Century warfare. This
dynamic hierarchy must be represented in any high
fidelity simulation.

3 MULTI-LEVEL SIMULATION

A multi-level simulation strategy is necessary to
integrate different echelons and services into the same
simulation. If a corps commander wants to focus on the
progress of a platoon fighting as part of the covering
force, he needs to see that part of the simulation in
considerably more detail than other parts of the corps
battle. However, a corps commander will not always be
monitoring/fighting platoon battles. He/she must be
able to quickly move back up to the corps level.
Combat imperatives based upon the current tactical
situation will determine the appropriate level of detail. It
is clear that such changes must be accomplished
accurately and very quickly.

Scaling multiple levels of command requires methods
to deal with the potential combinatorial explosion that
representing a division at the vehicle level would
impose. A single vehicle object is simple to understand.
As vehicles (nodes or objects) are added, the complexity
of the interobject communication model grows almost
exponentially (actually on the order of n2 - n where n is
the number of objects). An armor company with
seventeen tanks has 272 different possible
communications paths just within that company.

Fortunately a matrix of tank-to-tank communications
would be sparse. Military doctrine dictates that most
communications are hierarchical. Rather than simply
heuristically limiting communications paths, a more
flexible approach would be to apply a multi-level
simulation strategy. While virtual (crew simulators) and
live (field exercise) simulation participants would
continue to be represented by event driven simulation;
constructive (computer war game) elements could be
represented by process-oriented (distribution based)
simulations. Unless a constructive tank is of interest, it
could be represented as part of a higher level equivalent
object. Constructive units could be represented at the
highest possible level of abstraction unless it was desired
to "zoom in" on the activities of a particular element.
Such higher level objects would still generate and receive
the appropriate events and state changes but its intra-
object level events would be transparent to the other
participants.

To build a simulation infrastructure that is adaptable to
service varying rcquircments in a large domain, multiple
levels of abstraction of the base model are needed
(Walczak and Fishwick 1988). An object-oriented
model is the logical framework for a multilevel
implementation. Tradeoffs always exist between



1298 Hamilton and Pooch

complexity and data sufficiency (Popken and Sinha
1994). Abstract model components have the advantage
of great flexibility at the cost of specificity. Concrete
implementations can provide more detail but less
flexibility. From a software engineering standpoint, it
scems clear that flexible abstract components must form
the core of the simulation infrastructure. Generic tank
objects could then be instantiated as specific, concrete
models. Thus the same framework can be reused over
and over for actual or planned models. An Israeli
Merkava tank may not be available for live testing. An
abstract tank object could be instantiated to represent the
Merkava. This would allow for interoperability
rehearsals between US/Isracli forces on short notice.

For a variety of contingencies, it is not practical to
rehearse long-term international interoperability. Being
able to instantiate generic equipment objects would make
it possible to represent a wide range of unit-types on
short notice. A distributed simulation environment
would allow for international joint exercises without
forces having to leave home station.

An object-oriented model is the necessary framework
for a multi-level simulation architecture. Object-oriented
technologies have been used previously in simulation
research, e.g., in graphical representations and user
interfaces, “intelligent objects,” parallel/distributed
simulation, and simulation software engineering
(Bischak and Roberts 1991), but do not yet have
widespread application in simulation. Their use in
multi-level simulation has been rare.

The fundamental level of simulation is that of an
object. The object will have a state that evolves with
time or the occurrence of certain events. The simulation
must determine and record the evolution of the state.
The objects in the system are interrelated, i.e., the
outputs of one object will influence the state of other
objects. The state of an object can take many forms,
depending upon the nature of the real entity it represents.
The state may include variables having discrete values
(e.g., alive or dead), variables evolving continuously in
time (e.g., the location of the entity represented by the
object), or statistical parameters (e.g., distribution of the
strengths of the platoons in a battalion). Since objects
may be composed hierarchically, their state may be some
form of aggregation of the state of component objects
(e.g., the total ammunition left in a platoon).

An object decomposition of the problem space is an
important early step in the creation of a multi-level
simulation architecture. The ability to define,
incorporate, change, and map objects that represent
elements and components at different levels of
abstractions is essential. We include the concept of
multi-level abstraction where two or more levels of detail
may be of interest at any point in time. We distinguish
between abstraction and the formation of object classes,
both of which are important aspects of developing the
open simulation architecture (OSA). Abstraction is the
selective examination of certain aspects of a problem.

Its goal is to isolate those aspects that are unimportant.
The formation of object classes is the identification of
classes whose members share some set of properties.

The component objects form the basis for aggregation,
inheritance, naming, abstractions, attributes, time
management and resolution, and encapsulating state and
behavior. The desired level of detail that is appropriate
and useful for an OSA requires the capability to move
dynamically through the different levels of abstractions,
time granularity, and instantiated domain space.

4 MULTI-RESOLUTION SIMULATION

One of the major challenges of building a large multi-
level simulation is the requirement for scalability.
Computation and communication techniques that work
well for small systems often become totally unusable for
large systems. Simulations of large numbers of low
level individual units (e.g., tanks or foot soldiers) can
swamp computational capabilities, while transmission of
large numbers of high resolution images can swamp
communication channels. We are concerned with
identifying relationships between models described at
different levels of detail. Traditionally, researchers have
been interested in processes deriving more abstract
relationships from more detailed ones. However, the
multi-resolution simulations we seek, and the ability to
dynamically view them at different levels of resolution,
requires that we be able to move in the reverse direction
as well. That is, we must be able to extend a single
abstract relationship into a number of more detailed ones.

Closely related to levels of abstractions are the
concepts of aggregation and decomposition. Generally,
to move to a higher level of abstraction (less detail)
involves aggregation or the representation of several
more detailed components by a single equivalent
component. Grouping components and aggregating
variables is quite a well known procedure. Conversely,
to move to a lower level of abstraction (more detail) the
model has to be further decomposed to adequately
describe the modeled physical entities. This procedure is
more difficult and has largely been an unsolved problem.
It is a major requirement for our OSA, since without it,
the computational cost of achieving high resolutions
will be prohibitive.

Brigade

Infantry Bn. Armor Bn.

AN

Company A Scout PIt.

Artillery Bn.

Figure 1: Simple decomposition of a combat brigade



An Open Simulation Architecture for Force XXI 1299

In Figure 1, company A and the scout platoon of the
brigade's armor battalion may be the units of interest.
The simulation might then only use process-oriented
simulation to model the battalions and the brigadcs,
while the units of interest are running a more detailed
event-driven simulation.

In process-oriented simulation, the focus is on
abstraction with respect to individual model components
or processes. Process abstraction can be described as the
ransformation of one process to another occurring at a
different level of abstraction. Moving to different levels
of abstraction during the simulation provides the analyst
different views of the “running” model. Such access can
provide the key to the model's behavior and provides the
opportunity to change lower level processes so the
impact can be assessed at some higher level. It is
closely tied to the multi-resolution issue described above.

The fundamental difficulty that arises from moving
down in abstraction to greater levels of detail is the
problem of ensuring state, time, and event consistency
among all active elements. For example, if one is
interested at one point in time in a tank platoon level of
information, and, at another time, individual tank
information, how are these two kept consistent? One
way, of course, is to always carry out the full simulation
at the individual tank level, and aggregate information at
the platoon level when needed. This solution, however,
will require prohibitive amounts of computation when
utilized throughout a full simulation. Our approach,
which avoids unnecessary computation, is to evolve
summary statistical information at a high (e.g., platoon)
level, and deaggregate this information into initial
conditions for lower levels (e.g., individual tanks) when
one wishes to examine the situation in detail. The
feasibility of this approach has been demonstrated in the
TAMU Traffic Simulation Model (Wall 1993, Vidlak
1993).

The multi-resolution simulation described earlier
provides the capability to simulate only at the level
needed, suppressing unneeded low level simulations.
Similar support is needed to reduce the impact of
computational and network bandwidth limitations for
various forms of information that must be distributed,
e.g., images, maps, graphics. We approach this in two
ways.

First, we extend the multi-resolution concept to
representation of information, as well as the simulation
resolution, and develop techniques to provide only the
resolution of information needed for the task at hand.
Data at the proper resolution must be delivered to
destinations in real-time without causing perceptive
distortion to maintain meaningful connectivity between
communicating parties. The resolution of information
needed by varying levels of command and control provide
a natural assist to this process since higher command

levels often need higher levels of abstraction in the
information they use. Consequently, as the level of
information abstraction increases there is typically a
decrease in the information resolution.

To accomplish multi-resolution data management, data
are divided into multiple resolution versions, which will
be achieved by incrementally adding detail to lower
resolution data. When an inquiry needs to retrieve data of
some resolution, the decomposed information can be
transmitted incrementally and reassembled to the required
level of resolution. The criteria in determining
information resolution increments include the total
information demand, available system resources, presence
of urgent events, and the computing ability of the
receivers. For certain kinds of information, images,
advanced compression techniques have yielded
compression ratios of 100 to 1 with little loss of
resolution, and approaching 200 to 1 with only modest
loss of resolution (Lee et al. 1994, Chan et al. 1995).
The combination of these techniques is expected to result
in acceptable utilization of computational and network
resources.

5 OPEN SIMULATION ARCHITECTURE

We combine multi-level simulation and multi-level
resolution to form the basis of what we call an Open
Simulation Architecture (OSA) (Refer to Figure 2). The
OSA will incorporate multi-level abstractions and the
ability to navigate through various levels of mixed (DIS-
defined: live, virtual, constructive) simulation
components in a consistent manner. Multi-level/multi-
resolution abstractions provide interfaces to command
echelons that provide varying views and details, from the
individual component object, such as an instrumented
vehicle or soldier, through aggregation to the brigade
and/or corps level and beyond. In addition to operating at
these different levels of abstractions, it is important that
the analysts be able to view/interact with the OSA from
the context of each level and time granularity.

Most traditional simulation systems are limited
because they are unable to handle models with different
degrees of aggregation. Yet, because the appropriate
level of aggregation may not be known when the
simulation system is built, it is necessary to be able to
move dynamically through different levels of
aggregation. Current systems are fairly inflexible with
respect to changing levels of aggregation. The difficulty
arises from the problcm of ensuring consistency among
all active levels. The ability to define objects that
represent aggregates of other objects is essential for the
OSA. In addition to the model operating at multiple
levels of aggregation, the user must be able to view and
interact with the system from the context of each level of
aggregation. We explore briefly in the paragraphs below
how we can overcome the limitations of traditional
methods.



1300 Hamilton and Pooch

5.1 Interface Specifications

Not only must the objects be derived or integrated in a
state consistent manner, the development of clear and
precise specification interfaces is at the heart of the
object oriented approach. Very precise and well defined
interface specifications are needed to co-mingle live,
virtual, and synthetic environments--which may exist at
differing levels of detail at different nodes in a distributed
simulation infrastructure. These then neced to
communicate via a well defined message protocol. The
interface structures must also provide the capability of
navigating among various process-oriented simulation
layers and event-driven simulation layers.

The ability to mix and match different forms of objects
representing the same real entity (i.e., constructive, live
or virtual) is dependent upon the definition of appropriate
classes of objects having the same interface. While the
definition of these classes is ultimately in the application
domain, the concepts and a basic set of class definitions
are essential elements of the Multi-level, multi-
resolution distributed simulation (MMDS) hierarchy.

Finally, all interfaces must be backward compatible
with DIS. It must be recognized that DIS standards are
likely to be modified; considerable carc must be exercised
in designing interfaces for known present requirements as
well as accommodating future DIS standard revisions.

5.2 Timing and Synchronization

Time management is essential to the envisioned OSA.
Without near real-time performance, seamless integration
of the virtual and constructive simulation with the live
simulation will not be practical. You cannot halt a
moving tank platoon while you wait for the rest of the
simulation to catch up. Thus, real-time communication
is central to the success of distributed simulation. Real-
time communication deals with transmitting delay-
sensitive messages in a distributed system. Minimizing
the delays of messages communicated among the nodes
will reduce the impact of roll backs and hence improve

the scalability of the system. Further, in a hybrid
simulation system (i.e., one that consists not only of
simulated devices but also actual ones) message delays
must be carefully controlled in order to achieve desired
(e.g., synchronized) effects. Thus, a successful
distributed simulation system must have the support of
real-time communication. Our objective in this part of
the project is to develop real-time communication
technology that can ensure the satisfaction of timing
requirements of message transmission in the OSA.

We should first establish a framework which allows us
to analyze the delays in the message transmission. Based
on the framework, we should address resulting issues in
order to provide feasible solutions for distributed
simulation applications. Thus, the actual performance of
the proposed methods must be evaluated, based on the
following measurements.

+ Schedulability: This is a direct measure on the
capability of meeting message delay requirements.
There are two possible ways to measure it:

- The worst case achievable utilization. This is a
threshold utilization below which the delay
requirements are always met.

- The probability of meeting delay requirements for
a given load. The higher the measure, the better the
performance is in each case.

» Complexity of schedulability testing:
Sometimes, it is necessary to know if a particular
delay requirement can be met. This is done by
schedulability testing. The less the complexity, the
easier to be used.

+ Buffer requirement: A message will be lost and
never be delivered if a buffer overflows. Our
previous analysis on some nctworks showed that
different scheduling methods may result in different
buffer requirements. An upper bound of buffer size
must be derived for each scheduling method
proposed.

« Stability: This reflects the system's sensitivity to
change in configuration. One would prefer that a
small change in the system configuration (e.g., a

An Open Simulation Architecture (OSA) for Multi-level
Multi-resolution Distributed Simulation (MMDS)

Time
Object Management Management
Interfaces ¢ Delay ¢
Consistency Schedulability
Abstractions Time Resolution

Configuration Management

Specification ‘L
Validation
Fusion/Diffusion

Figure 2: Functionality of the OSA



An Open Simulation Architecture for Force XXI 1301

slight increase on a node) has minimum impact on
the system'’s capability of meeting message delay
requirements.

We propose to obtain these measurements by rigorous
mathematical analysis. One might arguc that values of
some measures could be obtained experimentally.
However, there are two problems with the experimental
approach here: 1) Usually these kinds of expcriments are
tedious and costly in terms of both time and resources;
and 2) the measured values obtained are only correct for
the limited cases and may not apply to the general case
of simulated system. We thus believe an analytical
approach is necessary.

5.3 Composition Rules - The Building Codes
of the Architecture

In general, the OSA itself will not be a fixed entity, but
rather evolve with changes in technology and
requirements. The process by which the evolution
occurs is at least as important as the architecture itself.
The need to identify objects and object classes to
facilitate information-sharing at the applications level
was stated earlier, and is central to the development and
evolution of the OSA. It is necessary to define what
information is to be shared, among what set of
applications, and by what set of users. The tool designer
must also provide application-level interoperability
across the domains of interest as a necessary pre-cursor,
i.e., the applications across which interoperability is
desired must be designed to use common data definitions
and representations.

5.4 Validation

The validity of any simulation depends on the accuracy
of the model(s) representing the real system. The model
must be sufficiently detailed to provide the analyst with
information about the aspects of the system's
performance that are of primary interest. The best
method of validating a simulation is to judge its
performance. If the inferences drawn from the analysis of
the simulation's output allow correct conclusions to be
drawn about the system or the situation bcing simulated,
then the simulation can be assumed to be valid for that
particular situation. However, using such tests for a
validation procedure has some drawbacks. Courscs of
action not taken or decisions not made by the simulation
could provide some added insight into the real validity of
the simulation and the model it is built on. Thus, it
may not be sufficient to assess the validity of the
simulation only from observations of the simulation's
performance.

A number of methods for assessing the validity of a
simulation use techniques other than direct observations
of its performance. These methods, just like the
observation technique, do not guarantee that the
simulation is valid, but they do provide a basis for

assuming that the simulation 1is valid. The first of these
methods deals with validating the design of the model.
This form of validation is simply a checking problem in
which the design of the model is verified at different
stages of the development. The process of modeling a
system is broken into two phases, the conceptual and the
implementation phase.

In the conceptual phase the logical flow of the system
bcing modeled is determined, and the relationships
between the various subsystems are formulated. The
factors likely to influence the performance of the model
are isolated and tentatively selected for inclusion. The
model is then traced in reverse order. This technique is
somewhat analogous to verifying the accuracy of an
arithmetic result by applying the inverse operation to the
result. The implementation phase of the model includes
selecting and quantifying procedures for the model,
coding the model, and actually using the model. Here it
can be determined how accurately the model represents
the real system. The easiest way to assess the validity of
a model is to compare simulated results with the
behavior of a system whose performance characteristics
are known. Other bases for comparison of the simulated
results include theoretical predictions, and historical data.

The main purpose of MMDS, as with any simulation,
is to represent a specific real world system. Whatever
level of abstraction chosen should produce output that is
statistically equivalent to another level. Based upon the
implementation of the different abstract levels, it would
seecm to be an intractable exercise to mathematically (or
rigorously) prove each mode's equivalence to each other.
Rather emphasis should be placed on using statistical
tests to establish cquivalencies of the output data. Thus,
validation of the ability to handle different abstraction
levels will be centered on cstablishing an equivalence of
simulations featuring various resolution modes.

A further validation test, besides those of historical
data, and statistical equivalence, will be to compare the
MMDS output with those of more traditional existing
simulations (each of which has been separatcly
validated), and in the casc of a virtual-live-synthetic
simulations, to each other.

Two other validation procedures should be utilized,
internal validity testing and variable-parameter validity
testing. The internal validity tests consist of performing
scveral simulations using the same model and input
parameters, and then comparing the output to detect
variability. If the variability of results is high, the
modcl will probably be of little value as a predictor,
since it will be difficult to assess whether changes in the
output are due to changes in input parameter settings, the
modcl's inherent variability, or a combination of the
two. The limiting effect of internal variability on the
usefulness of the model can also be viewed in light of
the real system's possible bchavior under similar
circumstances. It is unlikely that a rcal system of
interest, when presented with identical operating
conditions, will produce radically different results.



1302 Hamilton and Pooch

The variable-parameter validity tests consist of varying
parameters and variables to determine their effect on the
simulation and the subsequent output. If the impact of
certain variables or parameters is large (statistically tested
and dctermined) compared with the initial estimate of
their impact, the validity of the model is questioned.

Other additional techniques include face validity,
hypothetical validity, and event or time series validity.
Face validity is measured by evaluation of output results
by individuals familiar with the real system.
Hypothetical validity, rarely properly investigated, is a
test of negation. Event or time series validity is used to
determine if the simulation predicts observable events,
cven patterns, or the variations in the output variables.

6 CONCLUSIONS

Seamlessly integrating live, virtual and constructive
simulation requires an object decomposition of the
problem space with well defined interfaces. At a
minimum, all interfaces must be backward compatible
with DIS. It must be recognized that the DIS standards
are likely to be modified so considerable care must be
exercised in designing interfaces for known present
requirements as well as accommodating future DIS
standard revisions. Strict adherence to interface standards
is critical to allow for custom tailoring of the
information infrastructure.

As the Army transitions to Force XXI, there will be
several generations of technology represented in the
operational units. Increased emphasis on joint and
coalition warfare will add additional systems and levels of
sophistication to an already heterogeneous environment.
In order to operate in this fast moving environment
gateways must be constructed that can integrate new
systems into the simulation infrastructure.

An emerging technology supported by the OSA is the
integration of stove-piped databases and data repositories
into integrated information systems (Miller 1994). The
implementation of simulation interface gateway objects
(SIGOs) will facilitate access to already existing
databases and provide integration capability across
numerous platforms. It is feasible to consider the
implementation of a virtual meta-database in which
distributed data are seamlessly integrated via the direct
translation capability of the SIGOs.

The simulation infrastructure will support the
integration of the acquisition process into the simulation
process. By modeling current and evolving threat arrays,
it can be determined if current capabilities are sufficient
and what deficiencies require priority of effort. General
strategy questions such as force mix could be addressed
and then specific design issues such as precise system
capabilities i.e. 140mm main gun versus 152mm
missile launcher as main armament for example.
Finally, the simulation infrastructure could support fine
tuning efforts such as what is the optimal number of this
new system in a unit? Questions such as these are both

system specific and project lifecycle stage dependent
(McHaney 1991).

Expert system technologies play a critical role in
supporting the "plug and play" strategy of
interchangeable human and machine participants. After
developing an appropriate expert system engine, variants
to model, US, Allied and Threat doctrine would be
developed. Once the doctrinaire expert system player is
ficlded, deviations from expected doctrine and
performance can be developed. It is not unreasonable
that when good intelligence exists, specific threat
commanders may be modeled.

The rapid evolution from a bipolar to a multipolar
world environment as well as the ever increasing pace of
technology make the US Army's transition to Force XXI
a complex effort to hit a rapidly moving target. The
transition to Force XXI will be incremental. Doctrine,
weapons systems and force structure are progressing at
different rates. An open simulation architecture is
required to support the evolving structure. Multi-level,
multi-resolution distributed simulation is a means for
American commanders to continue to control the tempo
of combat operations and to avoid being controlled by
information-driven decision cycles.

REFERENCES

Bischak, D. and Roberts, S. 1991. Object-oriented
simulation, Proceedings of the 1991 Winter
Simulation Conference, 191-203. Institute of
Electrical and Electronics Engineers, Phoenix, AZ.

Clausewitz, C. von, 1988. On War, London: Penguin
Books.

Chan, A., Chui, C., Lemoigne, J., Lee, H., Liu, J. C.
and El-Ghazawi, T. 1995. On the performance impact
of data placement for wavelet decomposition of two
dimensional image data on SIMD machines. To appear
in Proceedings of the Frontier 95 Conference on
Massively Parallel Processing.

DIS Steering Committee. 1993. “The DIS Vision, A
Map to the Future of Distributed Simulation,”
Comment Draft, University of Central
Florida/Institute for Simulation and Training, Orlando,
Florida.

Dupuy, T. N. 1978. Elusive Victory The Arab-Israeli
Wars 1947-1974, New York: Harper & Row.

FitzSimonds, J. R. 1995. The coming military
revolution: opportunities and risks. Parameters xxv,
2:30-36.

Hamilton, J. A., Jr.,, White, G.B. and Pooch, U.W.
1995. Towards a concurrent theory of combat: a
parallel processing approach, to appear in Military
Review lxxv, 6.

Lee, H. J., Liu, J. C., Chan, A. K., and Chui, C. K.
1994.  Parallel implementation of wavelet
decomposition/reconstruction algorithms. In SPIE



An Open Simulation Architecture for Force XXI

Wavelet Application Conference, 248-259.

Marshall, G. C. 1939. Infantry in Batle, Washington:
The Infantry Journal Inc.

McHaney, R. 1991. Computer Simulation, A Practical
Perspective, San Diego: Academic Press.

Miller, J. A., Potter, W. D., Kochut, K. J. and Ramesh,
D. 1994. Object-oriented simulation languages and
environments. To appear in an IEEE Press
Monograph, Object-Oriented Simulation.

Popken, D. A. and Sinha, A. P. 1994. Object-oriented
frameworks for multi-level simulation modeling. To
appear in an IEEE Press Monograph, Object-Oriented
Simulation.

Wall, J. A. 1993. Multilevel abstraction of discrete
models in an interactive object-oriented simulation
environment. Ph.D. Dissertation, Department of
Computer Science, Texas A&M University, College
Station, Texas.

Walczak, S. and Fishwick, P. 1988. A centralized
methodology for multilevel abstraction in simulation.
Simuletter 19, 2:25-31.

Vidlak, M. D., 1993. User-object interfaces in an
object-oriented discrete event simulation, Ph.D.
Dissertation, Department of Computer Science, Texas
A&M University, College Station, Texas.

AUTHOR BIOGRAPHIES

JOHN A. (DREW) HAMILTON, JR., Major, US
Army, is currently pursuing a Ph.D. in Computer
Science at Texas A&M University enroute to the
Department of Electrical Engineering and Computer
Science at the U. S. Military Academy, West Point,
New York. He was most rccently Chief, Officer
Training Division at the Army Computer Science
School, Fort Gordon. Major Hamilton has a B.A. in
Journalism from Texas Tech University, where he was
commissioned in Field Artillery, an M.S. in Systems
Management from the University of Southern California
and an M.S. in Computer Science from Vanderbilt
University.

UDO W. POOCH, Ph.D., P.E,, received his Ph.D. in
Theoretical Physics from the University of Notre Dame
and is the E-Systems Professor of Computer Science at
Texas A&M University. Dr. Pooch is the author of
numerous articles and books, and most recently authored
with Lt.Col. James A. Wall, Discrete-Event Simulation
published by CRC Press. Dr. Pooch is a very active
researcher supervising projects in network simulation,
network security and fault-tolerant  distributed
environments.

1303



