Proceedings of the 1995 Winter Simulation Conference
ed. (. Alexopoulos, K. Kang, W. R. Lilegdon, and D. Goldsman

SCALABILITY ISSUES IN ENHANCEMENT OF THE
MAGTF TACTICAL WARFARE SIMULATION SYSTEM

Curtis L. Blais

VisiCom Laboratories, Inc.
10052 Mesa Ridge Court
San Diego, California 92121, U.S.A.

ABSTRACT

The Marine Air Ground Task Force (MAGTF) Tactical
Warfare Simulation (MTWS) system is a computer-
assisted, two-sided warfare gaming system designed to
support training of U. S. Marine Corps commanders and
their staffs. Primary requirements for the system were
written in the early 1980's. Since then, a transition in
training from uni-service to joint and coalition warfare
scenarios has occurred. Primary use of MTWS will con-
tinue to be within the Fleet Marine Force and USMC
University settings. However, there are growing demands
for the system to participate in joint exercises involving
other constructive simulations and diverse virtual simula-
tions. Therefore, the requirement to support exercises
from Marine Expeditionary Unit (MEU) through Marine
Expeditionary Force (MEF) levels is being extended to
cover larger force structures with an order of magnitude
increase in the number of game objects. The technical
challenge is to significantly enlarge system capacity with-
out sacrificing essential system performance and fidelity.

Several issues are being investigated to achieve this
expanded capability. This paper describes hardware and
software approaches and alternatives relating to architec-
ture and functionality. For each alternative, the current
capability is briefly presented, followed by a description
and analysis of scalability issues and alternatives.

1 BACKGROUND

1.1 System Description

MTWS is a warfare gaming system designed to support
training of U. S. Marine Corps commanders and their
staffs. MTWS will primarily support Command Post
Exercises (CPX) in which combat forces, supporting
arms, and results of combat are modeled by the system.
MTWS can be used to plan and rehearse tactical opera-
tions involving amphibious landings, air operations, fire

1280

schedules, and ground schemes of maneuver against a
variety of opposing force operations under varying envi-
ronmental conditions. The system can be operated at real-
time, slower, or faster than real-time as directed by the
system administrator.

1.2 System Architecture

1.2.1 Hardware

MTWS executes on a distributed architecture consisting
of one or more simulation processors, a system control
workstation, and one or more user workstations. The sys-
tem provides the flexibility to be configured to meet the
size and needs of the supported exercise. The initial
fielded configuration consists of three Hewlett Packard
model 9000/755 workstations as simulation processors,
one HP 9000/755 as the system control workstation, and
twenty-six HP 9000/735 user workstations.

The simulation processors perform the combat
models. From the system control workstation, the system
administrator can allocate the combat models to one or
more simulation processors. This is described more fully
in the software overview to follow. The system control
workstation manages the exercise clock, remote site com-
munications, and data conversions between the simula-
tion processors and the user workstations. The system
control workstation has two Ethernet ports. One Ethernet
connects the system control workstation with the simula-
tion processors. The second Ethernet connects the system
control workstation with the user workstations. This con-
figuration is shown in Figure 1.

When operating in an Aggregate Level Simulation
Protocol (ALSP) confederation, a separate processor is
added to the simulation processor side of the configura-
tion to connect to and communicate with the ALSP trans-
lator. This is shown in Figure 1 in dashed lines to indicate
that this capability is optional.

MAGTF Tactical Warfare Simulation System 1281
Number of processors is variable (1 to 10)
r I !

MTWS MTWS MTWS ,r A 1|
Simulation Simulation XX Simulation Translat
Processor Processor Processor l ransiator !

| | | S S
MTWS System Control
| |
MTWS MTWS MTWS

User Station

User Station

XX .
User Station

T

Number of stations is variable (1 to 26)

Figure 1: MTWS Hardware Configuration

1.2.2 Software

The MTWS software consists of three Computer Soft-
ware Configuration Items (CSClIs), generally correspond-
ing to the main hardware components described above.
The CSCIs are identified as follows:

(1) MTWS Application Network (MAN), providing
the combat models and executing on the simula-
tion processors

(2) MTWS System Control (MSC), providing system
operations, exercise coatrol, clock control, data
management, and report generation executing on
the system control workstation

(3) MTWS Display System (MDS), providing com-
mand entry, spot report output (reporting the
occurrence of simulated events), report request and
display, map display, and tactical situation display
executing on the user workstations
The system provides the capability for the system

administrator to allocate MAN combat functions to one
or more simulation processors. Allocable functions are
Ground Combat, Ground Movement, Intelligence, Com-
bat Service Support, Combat Engineering, Ship-to-Shore,
Fire Support, Air Operations, Nuclear/Biological/Chemi-
cal (NBC) Warfare, and Weather. A single function can-
not be divided across multiple processors, but multiple
functions can be assigned to a single processor. Full dis-
tribution of functions, then, is assignment of each func-
tion to one of ten simulation processors. A sample
allocation of functions across three simulation processors
is shown in table 1. This scheme gives the system admin-
istrator the ability to balance the load across processors.
Allocation decisions can be based on load conditions par-
ticular to the current exercise or on load conditions

occurring at some point during an exercise.

Table 1: Sample Allocation of Combat Functions to
Three Simulation Processors

MTWS

. . Function
Simulation Processor

MANO001 Ground Combat
Ground Service Support

MANO02 Ground Movement
Intelligence
Ship-to-Shore

MANO03 Air Operations

Fire Support
Combat Engineering
NBC

Weather

For example, if there are three simulation processors and
the exercise conduct will have high air and ship-to-shore
activity, then the Air Operations function could be
assigned to one processor, the Ship-to-Shore function to a
second, and all other functions to the third processor. As
the operation transitions to heavier land battle, with sig-
nificant reduction in ship-to-shore activity, the Ground
Combat and Ground Movement functions, for example,
could be moved from the third processor to the second to
make better use of computing resources. The reallocation
is strictly a manual operation—there is currently no auto-
matic load balancing across the simulation processors. It
is also interesting to note that the same executable pro-
gram is loaded and started in each simulation processor.
The processor receives a message from the system

1282

control workstation indicating which functionality to acti-
vate. The system control workstation and the simulation
processors communicate data base changes through mes-
sages over the Ethernet. Each simulation processor holds
a portion of the exercise data base needed to perform its
assigned functions. The system control workstation main-
tains a copy of all data from the updates received from the
simulation processors.

Casualty/Damage Asscssment (CA) cannot be allo-
cated directly by the system administrator. Rather, CA is
performed on each simulation processor hosting an asso-
ciated combat function, as shown in table 2.

Table 2: Association of Casualty/Damage Asscssment
Capability with Simulation Processors

Functional Area Associated CA

Ground Combat Ground Direct Fire;

Organic Indirect Fire

Air Operations Air -to-Surface; Air-to-Air;

Surface-to-Air

Surface-to-Surface
Indirect Fire

Fire Support

Ground Minefield/
Barrier Contact

Ground Movement

Ship-to-Shore Ship Minefield/Barrier Contact;
Ship-to-Shore Minefield/

Barrier Contact

NBC NBC Contact

1.2.3 Game Clock

Management of the game clock is not specifically
addressed as a scalability issue in this paper, but is impor-
tant to discuss in passing to achieve fuller understanding
of the MTWS system. There are three main modes of
clock management: (1) ALSP confederation control,
(2) real-time synchronous; (3) event synchronous.

When operating as part of an ALSP confederation,
the MTWS game clock generally runs in time constrained
and time regulating mode (MITRE 1994). When time
constrained, the MTWS clock is prevented from advanc-
ing time ahead of the confederation. When time regulat-
ing, MTWS participates in the advance of the ALSP time
by requesting a time advance. The ALSP time will not
exceed any time-regulating system's last requested time
plus a lookahead value.

Whether the system is running as a member of an
ALSP confederation or not, the system administrator can
direct the system to run faster or slower than real-time. Of

Blais

course, when operating in a confederation, the actual rate
of time advance will depend on the time control selec-
tions described above. When operating independently, or
when time constraint and regulation are disabled, MTWS
time will advance in one of two modes, selectable by the
system administrator. These modes are denoted real-time
synchronous and event synchronous.

In real-time synchronous mode, the MTWS game
clock advances at the same rate as the real-time clock
(“‘wall clock™). If the administrator has directed the sys-
tem to run at 2:1 advance rate in real-time synchronous
mode, then the game clock advances one minute every 30
seconds of real-time. The MTWS system control work-
station maintains the game clock, and notifies the simula-
tion processors of the current game time every 15
seconds (real-time). This is an effective way of advancing
time rapidly during periods of low activity, when so
desired by the exercise control staff.

In event synchronous mode, the MTWS system
control workstation does not advance the time until noti-
fied by the simulation processors that they have com-
pleted processing of all scheduled events for the previous
time notice. For example, if the simulation processor per-
forming the Fire Support function has a large number of
fire missions scheduled for 0830, then the MTWS system
control workstation will not be able to advance the game
clock by 15 seconds (assuming the game is set at 1:1 time
advance) until notified by this simulation processor that it
has completed all events that were scheduled for 0830

(and 15 seconds of real time have elapsed). Running in

event synchronous mode prevents scheduled simulation
events from falling behind the game clock.

2 PROBLEM STATEMENT

There is growing demand in the Marine Corps command
and control training community for representing large
numbers of joint and coalition forces. Recent world
events have demonstrated the benefit of joint response to
crisis situations. The ever-increasing employment of the
ALSP confederation of models is indicative of the grow-
ing interest in applying simulation and modeling to joint
training exercises. To support large, joint exercises, the
MTWS system must increase in capacity of game objects
by an order of magnitude (10-30 times), without sacrific-
ing essential system performance and fidelity. The
MTWS specifications require representation of up to 600
surface objects (ground units and ships), 240 air mis-
sions, and 140 ship-to-shore elements, for a total of
nearly 1000 game objects. In order to fully “ghost”
objects from other members of the ALSP confederation,
MTWS will need to accommodate quantities in the range
of 12000 ground units, 1000 ships, and 2000 air missions.

MAGTEF Tactical Warfare Simulation System 1283

As MTWS transitions from development to fielding
in June 1995, the Marine Corps is interested in mapping
out a growth path to increase system capacity. This raises
a number of questions. To what degree was the MTWS
system designed for scalability on this order? To scale up
to this level, what sacrifices in model fidelity need to be
made? How can the current investment in hardware and
software be preserved, yet provide a foundation for
growth on this scale? What hardware and software
changes will be necessary to achieve this growth? In this
paper, we provide a starting point for planning the growth
of the MTWS system to achieve these goals.

3 ARCHITECTURAL SCALABILITY ISSUES
AND APPROACHES

We need to first reach some agreement on the meaning of
scalability with respect to MTWS considerations. From a
hardware perspective, ‘“scalability” generally indicates
that the addition of hardware to a system results in greater
problem-solving ability, and the ratio of hardware to sys-
tem capability stays nearly constant as hardware is added.
For example, if a system consisting of 2 processors is
scalable, then expansion to 4 processors will result in
nearly twice the original capability. “Capability” here
may be represented as “processing speed”--the expanded
system performs the same job twice as fast--or as “prob-
lem size”--the expanded system performs twice the origi-
nal sized problem in approximately the same time. For
problems that can be subdivided to achieve perfect paral-
lelism, the increased capacity will be exactly twice the
original configuration. In practice, adding processors cre-
ates overhead that reduces the gain in performance. If
doubling the number of processors results in only a 50%
improvement in overall capability, it may be argued that
the system is not scalable. If the relative increase in capa-
bility continues to decrease as more processors are added,
there may be even stronger evidence that the system is
not scalable. Unfortunately, there are no clear criteria for
making this judgment (Nussbaum and Agarwal 1992).

Although lacking in mathematical rigor, we take as
our basis the notion that “a scalable architecture exhibits
speedup linearly proportional to p, the number of proces-
sors employed” (ibid.). If the problem size remains con-
stant, then a scalable architecture will exhibit speedup
linearly proportional to the number of processors
employed. If the problem size increases, then for a pro-
portional increase in the system, a scalable architecture
will maintain performance roughly equivalent to that
attained by its original configuration for the original size
problem. We use the term “architecture” rather than just
“hardware” to emphasize that a scalable solution will
often involve both hardware and software.

We identify below several architectural options for
increasing the capacity of the system, while preserving
essential functionality, performance, and hardware/soft-
ware investment. No single option will provide the full
solution to scalability. Rather, the cumulative effect of
one or more of these options, together with algorithmic
changes discussed later, will enable the system to make
rapid progress toward the enhancement goals.

3.1 Multiple MTWS Confederation

One interesting side-effect of the integration of MTWS
into an ALSP confederation is the capability to tie
together multiple MTWS suites to conduct a single exer-
cise. For example, the I MEF system in Camp Pendleton,
California, could communicate with the II MEF system in
Camp Lejeune, North Carolina, to conduct a two-MEF
exercise. Although data base quantities must be effec-
tively doubled to accommodate all owned and ghosted
entities, the processing load would be shared by both
suites of equipment. Software logic could localize the
additional processing load to situations involving an
overlap in the tactical situation being modeled; for exam-
ple, where ground units from one system are interacting
with ghosted ground units from the other system.

Efforts are underway in the ALSP community to
define ground-to-ground interactions for interoperability
between MTWS and the U. S. Army's Corps Battle Simu-
lation. The resulting capability will improve interopera-
bility among multiple MTWS suites.

3.2 Hardware Upgrade

The MTWS development has enjoyed the benefit of the
rapid increase in hardware technology over the past five
years. The initial development platforms were the MIL-
TOPE militarized HP 9000/350 series machines pur-
chased from the Army Common Hardware contract in
1990. These machines were rated at 8 million instructions
per second (8 mips). The project has since transitioned
through the HP 9000/400 series to the HP 9000/700
series machines purchased from the Navy TAC-3 con-
tract. As described earlier, the initial fielded systems
(Camp Pendleton, Camp Lcjeune, Okinawa, and Quan-
tico) use the HP 9000/735 machines for the user worksta-
tions, and HP 9000/755 machines for the simulation
processors and system control workstation. These
machincs are rated at 120 mips. This last upgrade was
made in December 1994 and provided an overall
improvement in processing time performance of 25-30%
over the predecessor 730 and 750 machines. Processing
speed improvement translates into a capability to solve
larger problems within established performance bounds.

1284

As the hardware evolved upward, higher speed and
greater memory densities became available, at approxi-
mately the same price as the carlier hardware. Because
the USMC dclayed procurement decision until late in the
development, it was able to take advantage of this evolu-
tion. As the USMC looks ahead to future fielding (e.g.,
Twenty-Nine Palms, California, and Marine Reserves in
New Orleans, Louisiana), it can opt to buy the best avail-
able at the time of purchase. Adherence to open systems
architecture and industry standards (such as Unix, X/
Motif, Ada, Ethernet, TCP/IP) has made the upward pro-
gression largely cffortless. Continuing this trend, the
recent award of the TAC-4 contract to Hewlett Packard
gives the system a direct growth path to the HP 9000/770
machines, an architecture offering up to two processors,
rated at 150 mips each, in a single cabinet, with 1
Gigabyte of memory (4 times current workstation capac-
ity). The cost of a dual processor HP 9000/770 with full
memory is less than the cost of two HP 9000/755
machines from the TAC-3 contract.

In parallel with USMC development efforts, Visi-
Com Laboratories has initiated an Internal Research and
Development effort to host MTWS software on a VME-
based, multiprocessor system. VME (VERSAmodule
Europe) is an international, commercial standard for
board-level communications (IEEE 1987). The initial
porting effort was completed in October 1994 and suc-
cessfully demonstrated integration of 4 processor cards in
a single card cage, duplicating the functionality of the
system control workstation and 3 simulation processors.
Each processor is equivalent to that in an HP 9000/750
system. This approach offers significant reduction in
hardware size and cost, with opportunity for increase in
the number of simulation processors in the system. A
future focus of the effort is to move from interprocessor
communication over Ethernet to shared memory accessed
across the VME system backplane. When this capability
is implemented, MTWS performance benchmark tests
will be run to provide comparison of this architecture to
the fielded version of the system executing on HP 9000/
755 workstations.

3.3 Function and Object Allocation

Another option for increasing system capacity is to
enable greater separation of functionality to allow alloca-
tion to a larger number of processors. For example, the
system could be modified to separate the air defense
functionality from air operations so they could be
assigned to separate processors when the air warfare por-
tion of the exercise is very large or when operating in a
large, joint wargame. Additionally, new or expanded fea-
tures can be made allocable as they are implemented. As
functionality assigned to each simulation processor is

Blais

reduced (i.e., spread over other processors), the capacity
of that processor for the remaining functionality is
increased. The trade-off that must be controlled is
increased interprocessor communications traffic for coor-
dinating simulation events and transfer of data base
updates.

CA calculations can be very computationally inten-
sive when there are large numbers of game objects or
when there are large quantities of simulation events
invoking CA. Another functional separation option is to
move CA processing from the associated combat model
functionality and perform it on one or more processors
dedicated to CA calculations. Specific types of CA could
be performed on their own dedicated processors, or a CA
“server” could be designed to accept any request for
assessment and return the assessment results.

A relatively simple enhancement to the allocation
scheme may provide the most dramatic improvement.
Instead of distributing functionality over a set of proces-
sors, add an option allowing distribution of responsibility
for particular functionality AND a specific set of game
objects to separate processors. For example, allow the
user to split ground visual detection processing across
two processors, each responsible for a user-specified por-
tion of the game area or subset of game objects. Analysis
of this option will attempt to identify partitions that mini-
mize interprocessor communications that could otherwise
undermine the processing speed and capacity gains.

4 ALGORITHMIC SCALABILITY ISSUES AND
APPROACHES

Algorithmic scalability is exhibited when the processing
time and storage use of an algorithm increase linearly
proportional to the increase in the problem size. Best case
is achieved by algorithms that accomplish, for larger
problem sizes, the same functionality in less time or equal
time than the original algorithm.

Consider a simple example based on the original
MTWS design and implementation for determining
visual detection between Landing Force (LF) and Oppos-
ing Force (OPFOR) units. The algorithm considered each
LF unit and made a detection determination against each
of the OPFOR units based on such factors as distance,
line-of-sight, vegetation cover, and visibility conditions.
This process was then reversed, with OPFOR units
attempting to detect LF units. This simplistic approach is
clearly not scalable by the above definition. If there are an
equal number of LF and OPFOR units, N, then there were
2*¥N**2 (“N-squared”) determinations made. If the num-
ber of units doubled to 2N, then the processing time
(effectively) increased by a factor of 4. An alternative,
scalable algorithm should do little worse than double in
processing time when the problem size -- in this case, the

MAGTF Tactical Warfare Simulation System 1285

number of units -- doubles. We have since implemented
an algorithm that exhibits such scalability, as will be dis-
cussed later.

There are a number of basic strategies for increas-
ing speed of algorithms as the problem size increases:

(1) Replacement. The algorithm can be replaced with
one designed for scalability.

(2) Simplification. The algorithm can be simplified to
perform less processing, but still meet the estab-
lished functional requirements.

(3) Relaxation. Model detail, specified in the software
requirements, can be relaxed and the algorithms
modified or replaced to provide the reduced
capability.

(4) Aggregation. The data objects can be grouped to
form aggregated entities, and the algorithm can be
modified or replaced to deal with the aggregated
objects.

(5) Selection. Multiple levels of model detail can be
added, possibly offering user-selected algorithms
derived from the previous four approaches.

We describe below examples of these approaches as
they relate to several functional areas of the MTWS
model. The functions deal with three aspects of ground
combat modeling: visual detections, casualty/damage
assessments, and ground unit representation. The pro-
cessing performance of these functions is directly
impacted by increasing the number of ground objects in
the system. Other model areas require similar analysis,
but are beyond the scope of this paper.

4.1 Ground Visual Detection Modeling
(Replacement)

We looked at the original MTWS visual detection algo-
rithm as outlined above. To move toward a more scalable
solution, we adapted an algorithm from the Distributed
Interactive Simulation (DIS) program which we call the
“proximity algorithm.” Briefly, the algorithm places
objects in “proximity bins.” Each bin is a cubic region in
three-dimensional space. The bins are disjoint. Ground
units (or any other game object) are placed into a bin by a
hashing algorithm on the unit's location. The length of the
side of each bin is chosen by the application developer
based on the needs of the application. The maximum
visual detection range in MTWS is sct at 8 kilometers
(km). Therefore, the length of a bin side was chosen to be
16 km. As described earlier, the original detection algo-
rithm considered all other-sided units to determine what
units could be detected. With the proximity algorithm, the
logic only considers candidates in the bin containing the
unit, and bins adjacent to the quadrant in which the unil
lies. For illustration purposes, a two-dimensional cross-
section is shown in Figure 2 (for ground objects, bins

above and below the one containing the unit in question
seldom contain other ground objects for consideration).
In gencral, only four bins need to be used to determine if
there are other-side units that can be detected.

4— [6km —»

l:l Denotes proximity bin

- : - Quadrants within each bin

Figure 2: Identification of Proximity Bins Contain
ing Candidate Units for Visual Detection

As a further refinement to the proximity algorithm,
bins are identified by “side” (LF, OPFOR, civilian, none,
multiple) based on the ground units contained in the bin.
This limits detection processing to only those bins con-
taining units from other sides or having adjacent bins
with units from other sides. In normal tactical situations,
many ground units represented in an exercise are rear
echelon elements (e.g., combat service support, reserve
maneuver element) that will seldom come within visual
detection range of other forces.

The new algorithm exhibits the desired scalability
behavior, which can be demonstrated as follows. Suppose
in a two-sided game that units are heavily interspersed.
That is, suppose there are B bins containing N units, with
N/2 units on each side, and N/2B units of each side within
each bin. Using the proximity algorithm under these con-
ditions, the processing time, P, for determining detections
is approximated by:

P = kB(N/2B)(4N/2B)

where

k i1s a constant (contains the factor of 2 for each
side considering the other),

B is the number of bins containing units,

N/2B is the number of units on one side in a bin,

1286

4N/2B is the number of units from the other side
that need to be considered.

Grouping the constants and simplifying, we get:
P = k(N/B)N = kDN

where we call D the average density of the exercise (i.e.,
average units per bin).

We contend that D is bounded, determined by the
level of representation of ground units within the exer-
cise. If so, then this approach achicves linearity in growth
of N that we desired. There are a number of dynamics
here that need to be considered. Exercises are typically
constructed for a desired level of play based on training
objectives and the staff to be trained. Design of the exer-
cise data base establishes the ground unit representation
level appropriate to the exercise. For example, a MEU
exercise to train the battalion commander and staff may
have units represented down to the platoon or even fire
team level. A MEF-level exercise, may have units repre-
sented down to the company level. In ALSP exercises
(e.g., Ulchi Focus Lens 1994), ground forces in a theatre-
level exercise have been represented down to the com-
pany level. Regardless of the exercise set-up, the selec-
tion of representation level for that exercise results in an
implicit value for the density, D. Ground forces occupy
space, defined by front and depth dimensions, and have a
tactical spacing between them. Therefore, for any given
level of play, there will be a limit to the number of ground
forces that will occupy a particular area. If the number of
units at a given representation level are increased, then
they will occupy a larger number of bins. If the represen-
tation level is increased, then the density will decrease;
for example, the density for battalion-sized units will be
less than the density for company-sized units.

It was noted in (Steinman and Wieland 1994) that
“military simulations tend to behave like football games
where everyone chascs the player with the ball... most of
the ground units would inevitably congest into a small
number of grids to fight their battle. Because grids per-
formed most of the work, they became bottlenecks, thus
limiting the amount of parallclism in the simulation.”
This is true up to a point. Certainly in a ground battle,
units will gather for assaults, defense, or counter-attacks.
However, for a given level of representation (company,
battalion, etc.) the density of units within a proximity bin
would not exceed a maximum value for that level, at
least not without potentially disastrous combat results.
The inextricable trend in warfare is toward increasing
dispersion as range, accuracy, and lethality of weapons
increase.

Blais

4.2 Casualty/Damage Assessment Modeling
(Simplification, Selection)

CA calculations in MTWS occur at the individual target
asset level; that is, the tanks, trucks, anti-tank weapons,
and other items possessed by a unit receiving fire. The
proximity algorithm described above has already been
implemented to identify units within the target area that
could be affected by the fire. For example, if 36 rounds of
artillery fire are delivered on a target location, the impact
point for each projectile is computed. The distance from
the target location to the furthest impact point is used as
the radius of a circular area within which ground units
(and other objects, such as ship-to-shore elements and
bridges) may be subject to damage. The proximity algo-
rithm is used to reduce the candidates to those objects in
bins that intersect the circular area. Individual target
assets are randomly located within the area covered by
each candidate ground unit. The distance from each target
asset to each impact point and the mean area of effective-
ness (MAE) of the ordnance are used to compute a cumu-
lative probability of damage, from which it is determined
if the asset is damaged or destroyed.

This level of detail may be appropriate for small
numbers of units, or even for large exercises used for ana-
lytical purposes, but could be simplified significantly to
achieve higher performance. One approach would be to
consider the unit location as the average target asset loca-
tion, and compute the cumulative probability based on
that location and the distance to the impact points. Or, use
the unit location and a location computed as the average
of the impact points. The computed probability could be
used as the mean of a normal distribution, with a standard
deviation definable by the user in parametric data or
determined from the accuracy of the firing weapon. For
larger exercises, the detail in the assessment algorithm
may not be as critical, as long as reasonable results are
obtained.

Alternative CA algorithms can be made available in
the system for selection by the user based on the objec-
tives of the particular exercise. Such selections could be
offered prior to start of the exercise, or even during exer-
cise conduct, to enable the user to determine the level of
fidelity desired.

4.3 Ground Combat (Relaxation, Aggregation)

To obtain spatial distribution of assets across the area
occupied by a unit, MTWS represents ground units using
3 circular subelements. Subelement positions are based
on unit location, formation (line, echelon left, vee, etc.),
and unit front. All of these attributes have default values
set in the model parametric data and are modifiable by the
user. Recent discussions with the USMC requirements

MAGTF Tactical Warfare Simulation System 1287

community indicate that this level of detail is seldom, if
ever, needed by the system users. By relaxing require-
ments that call for this representation of ground units,
processing time can be reduced in ground visual detec-
tion, CA, and ground combat functions, with added sav-
ings in data storage. Formations would still come into
consideration for visual detection processing and CA cal-
culations, but would be represented by appropriate shapes
(rectangle, triangle, and circle) to determine the area
occupied. The challenge would be to design algorithms
using these shapes that would reduce the processing time
compared to the current handling of multiple subele-
ments. Although elimination of subelement representa-
tion is a modification to the software requirements, such
action would not degrade essential model fidelity or capa-
bility.

The current implementation creates separate asset
records for each component of a “complex” equipment
item. For example, an M1A1 tank consists of a platform
(chassis), a main gun, and two machine guns. All four
components are stored as separate assets of the unit pos-
sessing this asset. Representation at this level allows the
possibility for individual components of an equipment
item to be in different states (operational, damaged,
destroyed). As currently implemented, the system consid-
ers the susceptibility of the components to damage, but
sets the status of the item of equipment as a whole. If the
MIAT1 tank chassis suffers a mobility kill, then the item
as a whole is considered to be in a mobility kill status. If,
in the current system or when larger exercises are run, it
is acceptable for the software to continue to work at the
aggregated equipment level, then the creation of separate
asset records for the components is not necessary. Elimi-
nation of separate asset records for equipment compo-
nents will provide improved performance in all areas in
the system where unit asset records are processed (e.g.,
movement, ground detection, CA), and will significantly
reduce storage of asset data for units in the exercise. This
change would not remove consideration of component
capabilities for deciding which weapon to fire, just the
tracking of component quantities within the assets pos-
sessed by a ground unit. Furthermore, the decision to run
the system with or without the component level of repre-
sentation can be made into a user-selectable feature.

5 CONCLUSION

The MTWS project faces an exciting growth challenge.
To participate effectively in large, joint training excrcises,
MTWS must grow in quantities of exercise objects by as
much as 30 times without degrading system performance
or fidelity. Several ideas and approaches have been pre-
sented in this paper that begin to move the system toward
this goal. These approaches provide a starting point for

prototyping and performance comparison efforts. No sin-
gle method described is likely to provide the full answer.
Rather, judicious sclection of a combination of methods
providing the greatest short-term improvements will be
the most cost-effective solution to the Marine Corps.

The fundamental architecture of MTWS is proving
to be an excellent foundation for building new and added
capabilities. It has already demonstrated its flexibility in
the addition of ALSP capabilities and adaptability to
evolving hardware products.

ACKNOWLEDGEMENTS

Thanks to Jason Zions, Network System Management
Consultant and SYSOP, CompuServe HP Systems
Forum, for his perspective on architectural scalability.

The views expressed in this paper are those of the author
and VisiCom Laboratories, Incorporated, and do not nec-
essarily express the official position or policies of the
United States Marine Corps.

REFERENCES

MITRE Corporation 1994. Aggregate Level Simulation
Protocol System Software Version 7.0 User Manual,
Informal Report.

IEEE Standard 1014, VMEbus Specification 1987.

Nussbaum, D., and Agarwal, A. 1992. Scalability of Par-
allel Machines. Communications ACM 34, 3 (March
1992), 57-61.

Steinman, J., and Wieland, F. 1994. Parallel Proximity
Detection and the Distribution List Algorithm. Pro-
ceedings of ELECSIM 1994 Electronic Conference on
Constructive Training Simulation.

AUTHOR BIOGRAPHY

CURTIS L. BLAIS is Manager of Wargaming Systems
for VisiCom Laboratories, Inc., and Software Engineer-
ing Manager for the MTWS project. He has twenty-one
years of expericnce in analysis and simulation of Navy
and Marine Corps command and control systems and
communications networks, and in design and develop-
ment of combat models. He specializes in modeling of
ground combat and casualty/damage assessments. Mr.
Blais holds B.S. and M.S. degrees in Mathematics from
the University of Notre Dame.

