Proceedings of the 1995 Winter Simulation Conference
ed. C. Alexopoulos, K. Kang, W. R. Lilegdon, and D. Goldsman

INFRASTRUCTURE FOR RAPID EXECUTION OF
STRIKE-PLANNING SYSTEMS

Darrin West
Larry Mellon
Jim Ramsey

Science Applications Int. Corp.
4301 N. Fairfax Dr., Suite 370
Arlington, Virginia 22203, USA

ABSTRACT

A rapid-planning system for military aircraft strikes is
under design. It is intended to be capable of creating
aircraft routes through enemy and friendly space with
minimum loss of aircraft and maximal damage to
specified target areas. The system must support joint
strike planning, where the effects of several
simultaneous strikes by differing groups of aircraft are
captured.

This paper describes a three-phased approach to the
analysis of routes: static analysis to establish potential
routes, detailed simulation to capture dynamic behaviors
in the system, and human-in-the-loop evaluation of the
most promising routes.

A parallel, discrete-event simulation technique is
proposed to support the detailed simulation.
Optimizations based on application characteristics are
described. A technique to combine discrete-event and
time-stepped models is proposed. Performance results of
the current simulation engine are given.

1 INTRODUCTION

Strike planning involves the rapid evaluation of various
options for achieving a given objective. Strike mission
commanders are often given secondary targets in case
access to primary targets proves too difficult. Flight
paths need to be selected based on minimal risk to the
crew and aircraft and maximal chance of success of the
mission. Optimizing these variables is extremely
challenging, given that there may be millions of
potential route combinations to consider. Key aspects of
the system include:
* execution speed: routes must be planned very quickly
in an operational wartime system
* rapid data inputs: fresh input from the battlefield,
such as effects of the last strike on the enemy
detection ability, must be rapidly fed into the planner
* automatic creation and evaluation of potential strike
plans

John Cleary

The University of Waikato
Te Whare Wananga o Waikato
Private Bag 3105
Hamilton, NEW ZEALAND

1207

Jim Hofmann

Naval Research Laboratories
4555 Overlook Ave
Washington, D.C. 20375, USA

Currently, the set up and execution time to perform
even a single evaluation is high. The execution time of
a complex scenario modeling multiple simultaneous
strikes with supporting command and control and
opposing forces is expected to be even higher.

We will discuss an approach to solve these
challenges, and discuss various optimizations and
implementation techniques available.

2 OVERALL APPROACH

The rapid evaluation of millions of potential routes is
only possible using methods having highly abstracted
models. A number of methods based primarily on
network flow analysis will be used to reduce the
millions of potential routes to a much smaller subset of
promising routes. The primary drawback to this
technique is that it involves static analysis in which
dynamic (or time-based) changes to the system are lost.

A second stage analysis of the promising routes will
be done via a more detailed simulation, capable of
capturing the dynamic aspects of the system.

Examples of dynamic effects required for correct
modeling:

* reactions of the enemy defense network on sighting
of incoming aircraft

* temporary suppression of enemy sensors and
communications via electromagnetic jamming

* missile strikes on enemy sensors, command stations,
and communications networks

* bi-polar sensors, which are capable of seeing in only
one direction at a time.

A third stage analysis of the further reduced set of
routes will be with a human-in-the-loop evaluation of
each plan, via a detailed walk through (with editing
power) of the plan using the dynamic simulator.

2.1 Problem Statement
The models used for strike planning can be described
abstractly as a set of mobile entities whose kinematics



1208

are continuous. Entities interact at unpredictable times
to modify their kinematics in response to internal or
external Command and Decision (C&D) entities. The
C&D models are fed data by sensor models, which may
execute in either continuous or discrete-event operation.
Additional entitics ¢xist to model fixed-position
systems, such as radar stations, command/control centers
and communication systems. These also tend to interact
in an unpredictable (i.e. discrete-event) fashion.

If the system is decomposed as in Figure 1, then the
system consists of entities with continuous behavior and
cntities  with primarily discrete-cvent behavior.
Interactions between entities of different classes are
cxpected to be occur infrequently, relative to the
frequency of time-steps in the continuous entities.

Stationary entity Mobile entity

C&D C&D

Legend

discrete-event entity

O continuous entity

Figure 1: Classes of Entities

3 TECHNICAL APPROACH

The static analysis portion of the strike planner is
described in Moret et al. (1995), including performance
results from current experiments. Parallel simulation
techniques are proposed for the dynamic simulator. The
use of parallel hardware to improve the performance of
dynamic simulations has been researched extensively in
the Parallel and Distributed Simulation community.
Several approaches exist, including functional
parallelism, parallel replication, and inter-event
parallelism (Fujimoto 1990).

1) Functional Parallelism. Functional
parallelism executes different functional portions of a
simulation on different processors. One could have
random numbers generated on one processor in
preparation for their use by event handlers on another,
for example. This technique tends to reveal only limited
amounts of parallelism.

2) Parallel Replication. Replication is done to
reduce variance in stochastic simulations by varying the
random number generator seeds, and performing
sufficient experiments that statistical confidence is

West et al.

gained. Multiple executions will also be needed to
evaluate each promising route. Parallel replication takes
advantage of available processors by simultaneously
spawning one sequential simulation execution per
processor with different initial parameters. There is very
little overhead in managing the simulation executions,
resulting in very efficient use of computer resources, and
significantly reduced elapsed time for the set of
experiments. This holds true in both distributed
memory and shared memory parallel computing
environments, since this method is not very sensitive to
communication efficiencies. This technique may require
more memory resources than other parallel techniques
due to the large number of entities executing
simultaneously. It is a simple and well known
technique that will be used in the planning system if
appropriate, but will not be discussed further in this
paper.

3) Inter-event parallelism. Interactive
simulation, where an operator is involved in decision
making, often has more demanding performance
requirements. Real time interaction may require the
parallelization of a complex or large scenario in order to
meet ongoing deadlines. Iterative refinement of
parameters (by hand or using automatic parameter
searching), debugging, or execution in a time critical
operational environment require the operator to wait for
the simulation to complete. Reducing the end to end
time of these executions through the use of inter-event
parallelism will save time and frustration. This is done
by selecting an event to execute for each available
processor. It requires synchronization between the
processors so that the events are executed in an
acceptable order. We proceed to describe a kernel that
uses this technique, and various optimizations possible
within the specific domain of strike planning.

3.1 Parallel Discrete Event Simulation

We propose to solve the time critical aspect of the strike
planning problem by applying well known parallel
discrete event simulation (PDES) techniques (Fujimoto
1990). In PDES, entities interact solely via
timestamped messages. Messages are received in
timestamp order. Since entities will not proceed through
simulation time at precisely the same speed on each
processor, a synchronization mechanism is required to
ensure that messages are received in order. There is often
a significant amount of parallelism available between
events in a large simulation, but allowing entities to
execute correctly without significant synchronization
overheads is a hard problem.

3.2 Time Warp

Normally one would select the lowest time stamped
event (or set of equivalently time stamped events) to
execute. This leads to only a small amount of



Rapid Execution of Strike-Planning Systems 1209

parallelism being extracted. Events at different times can
be executed simultaneously when they do not influence
each other. Ensuring that events remain synchronized
while allowing inter-time, inter-event parallelism is a
hard problem.

As opposed to blocking until the chance is zero of
an earlier message arriving, Time Warp allows entities
to optimistically receive future messages. When there
are no earlier messages, the gamble pays off by making
use of the time otherwise spent blocking. However,
when a late message arrives in the entities past, the
entity is rolled back to the time of the late message by
restoring a copy of the entity’s state at the time of that
event. The cost of this state saving and the cost of
transmitting messages between processors are the
primary overheads in a Time Warp kernel.

3.3 Model Level Optimizations

By making use of characteristics specific to strike
planning, we can optimize the time warp kernel’s
performance. The computation performed by sensor
models can be reduced by limiting the input data to a set
potentially visible to the sensor using a technique called
sectorization, described in Beckman et al. (1988) and
Mellon (1994). Entity data can be separated into sets
based on position with respect to a fixed physical grid.
Instead of inspecting data on each entity in the
simulation, the sensor can inspect the subset of entities
in sectors that overlap with the sensor footprint. The
communication between a motion entity and the sensor
model would be handled by having the motion models
send updates to a sector manager, and having the sensor
models read the updates from the sector manager. This
reduces the number of interactions in a fully connected
set of sensors and platforms from men to m+n.

The simulation can make use of dead reckoning, a
central principle of Distributed Interactive Simulation
(DIS 1994), to further reduce the number of interactions
between entities and sensors or sector managers. If the
trajectory of the entity remains predictable for a long
period of time, perhaps due to an infrequent adjustment
by the tactics model, remote sensors can use earlier data
and estimate the current position of an entity. Entities
are thus not required to update their position and vector
until it changes from what sensors can estimate. This
will reduce communication traffic at the expense of extra
computation for this estimation. Note that dead
reckoning has been successful in systems with much
higher communication overheads than the shared
memory system proposed here. Further investigation
will determine the usefulness of dead reckoning in this
application.

3.4 Optimistic and Time-Stepped Execution

As described in the problem statement, C&D entities
tend to be modeled in a discrete-event fashion, whereas

motion models tend to be executed in a time-stepped
fashion. This section introduces a synchronization
approach to allow efficient execution of both classes of
entities by the same simulation kernel.

Typically motion models are executed at periodic
time steps. The positions of such motion entities are
examined frequently by many other entities and
potentially can be examined by nearly all entities.
However, they rarely receive inputs from the rest of the
simulation - such inputs typically are commands to
maneuver or alter direction which occur infrequently on
the time scales of the motion models. In contrast the
command and decision entities are event driven with
irregular communication patterns. They execute
infrequently and as the result of a specific event. They
often examine the positions of large numbers of motion
entities and generate a small number of events for other
C&D entities or for motion entities.

Taken on their own these two groups of entities
would best be scheduled by quite different types of
simulators. The motion entities could be executed by a
simple time-stepped simulator where the state of each
entity was globally readable. The overheads of such a
simulator are very low, requiring only the dispatch of
each entity once on each time-step. Well balanced
parallelism is easily achieved by distributing the
activation of the entities across a number of (shared
memory) processors. Since each entity takes some
action each time-step, simulation execution efficiency is
high.

In contrast the command and decision entities would
probably be best served by a discrete event simulator, as
this class of entities act only on key events in the
system, and thus do not perform actions each time-step.
Such entities are best parallelized by systems generally
referred to as optimistic. Optimistic parallelism is the
only way currently known to effectively parallelize
simulations where the communications between entities
are irregular and infrequent (Fujimoto 1990).
Unfortunately, optimistic carries with it significant
overheads in both execution time and complexity. In
particular, the state of optimistic entities cannot be
directly examined by other entities and all
communication must be via time stamped messages.
This can have very high overheads when motion objects
have their state examined by many other objects.
Optimistic execution also requires the capability to roll
back execution which requires in turn the state of the
entities to be saved before executing each event. Again
this implies a very high overhead for motion entities
especially as they seldom receive messages from other
entities and so are seldom rolled back.

The approach taken here is to use a hybrid simulator
where the motion entities are scheduled in time-steps
without state saving (i.e. conservatively) and the C&D
entities are scheduled using an optimistic simulator.
The motion entities have their state (positions) displayed
in globally accessible memory. The command and



1210

decision entities can read the positions directly from this
memory without using messages. Communication from
the C&D entities is via messages. To do this correctly
requires some synchronization between the two different
schedulers.

Note that some form of control must occur of
optimistic entities reading the state of conservative
entities, if the optimistic entity is more than one time
step ahead of the conservative entity. Two possible
approaches exist. First, the kernel may track the reads of
optimistic entities and roll them back if the read turns
out to be incorrect. Second, the kernel may block the
optimistic entity until it is less than one time step
ahead, and the data is thus correct. A tradeoff of
increased parallelism versus increased overhead per read
clearly exists. Further analysis will be done to
determine the best approach.

Optimistic i Time-stepped
]
!
} ? Cit1
1
1
]
]
]
1
1
O ti

Legend

A safe events

risky events

Figure 2: Interaction of Optimistic and Time-
stepped Entities

The simplest form of synchronization consists of a
simple alternation of time-stepped and optimistic
execution. Assume that the time stepped simulator
executes at times tj, tj+1,tj+2, ..., then execution
proceeds as follows:

» all motion updates at time tj are executed
(including receipt of any messages from C&D
entities that have arrived since tj-1)

* all C&D entities scheduled between tj and tj+1
are executed optimistically (and in parallel)

» all motion updates at time tj+1 are executed

* andsoon..

This requires that the distributed scheduler
resynchronize between each step. This is straightforward
for the time-stepped scheduler as each processor need
only report when it is finished its part of the
computation. For the optimistic simulator it is
necessary to compute the Global Virtual Time (GVT) of

West et al.

the C&D entities and stop when it passes the next time-
step point. This can be done efficiently using published
shared memory GVT algorithms, described in Zhonge et
al. (1995) and Das et al. (1994). The first of these
allows calculation of GVT to be started asynchronously
by any processor. The overheads of GVT calculation can
be optimized by the observation that it is only necessary
to know when GVT passes a time-step. So the GVT
calculation need only be initiated as each processor's
LVT passes the next time-point and can be aborted
whenever another processor is detected with an earlier
LVT.

One potential problem with this hybrid scheduler
will arise if the number of C&D entities to be executed
within one time step is less than the available
processors. Then processors will be idle during the
optimistic phase reducing the overall efficiency of the
simulator. This will be particularly acute if the
individual C&D calculations are long compared with one
time-step iteration. This situation can be ameliorated if
static lookahead information is available about the
communication delays between C&D entities and
motion entities. This will allow motion entities to
continue to execute instead of waiting for the C&D
entity to finish its event.

Consider a C&D entity that never affects the motion
entities. Such an object need not delay the start of the
next time-step calculation and so can be excluded from
the GVT calculation that synchronizes the start of the
next time-step. The advantage of this is that the
available optimistic parallelism is increased (the entity
can be scheduled earlier or in parallel with the time-step
calculation) and wasted CPU time in the optimistic
phase can be decreased. This technique can be further
generalized if it is known that there is a minimum delay
from the time when a C&D entity executes and when it
affects the motion of motion entities. For example,
there may be a minimum time from an aircraft changing
motion, to it being painted on a radar screen, to it being
noticed by a human observer and then a voice command
being given for other aircraft to intercept. This
minimum delay (or lookahead) can be added to the LVT
of each C&D entity when GVT is being computed.
This augmented GVT may be somewhat ahead of the
true GVT and thus allow a significant improvement in
available parallelism and overall efficiency. This allows
conservative time stepped models to execute sooner, and
in turn, the optimistic models will have access to the
global state data sooner, thus increasing the number of
events that are allowed to run without risk (parallelism).

Time-stepped calculations have traditionally been
done two ways: either one copy of the dynamic position
information is kept and re-computed in place at each
time-step; or two copies of the dynamic state are kept
where the new state is recomputed completely from the
old state and the old and new states are alternated. If the
second, alternating state, is used this can be integrated
with the optimistic calculation as a C&D entity can



Rapid Execution of Strike-Planning Systems 1211

look at either of the states depending upon its current
time (note that optimistic entities may be behind some
or all time-stepped entities in simulation time). Thus
potentially twice as many optimistic entities would be
available for execution at one time. Indeed this idea can
be further generalized by allowing more than two copies
of the motion state. The execution of a time-step will
still be constrained by the advance of the augmented
GVT and optimistic execution cannot start until the
previous time-step calculation is complete. However,
given sufficiently large lookahead values C&D entities
could be executing at many different time-steps.

3.5 Technical Summary

We expect that reduction of data exchanges achieved via
sectorization will significantly increase the potential
parallelism in the system. Dead reckoning mechanisms
may also increase performance by creating a significant
amount of lookahead for use by the kernel. This
translates into available parallelism without needing to
perform state saving. Conservative execution of the
time-stepped kinematics models should not result in a
loss of parallelism, since we expect a large number of
vehicles, and these models do not frequently receive new
inputs. Access to committed data in shared memory will
significantly improve sensor model efficiency as
compared to relying on message based communication.
We expect to have significant available/intrinsic
parallelism, and low overheads, and thus high
efficiency/utilization of the processors.

3.6 Related Work

Jah and Bagrodia (1994) present a similar theory to
combined conservative / optimistic execution in the
protocol ADAPT. An excellent comparison is given
between protocols that support simultaneous use of both
optimistic and conservative execution, and protocols
which provide a single synchronization algorithm which
encompasses aspects of both optimistic and conservative
techniques. Aspects of ADAPT clearly apply to this
problem domain, in particular, ASPECT's support for
entities switching dynamically between optimistic and
conservative execution.

Gilmer et al. (1990) present a time-stepped /
discrete-event kernel for the Dynamic Ground Target
Simulator (DGTS). In this system, a functional
analysis of the event classes in the simulation was
performed. Each event class was then categorized
requiring time-stepped or discrete event execution. The
kernel then optimized parallel execution based on the
class events in the current event list. Very good
performance was achieved for that model (approximately
6.5 times speedup on 10 processors), but is not
considered a general purpose solution. Aspects of this
work may be used for this strike-planning system, once
event characteristics are defined.

Lee and Fishwick (1995) present an approach for
determining the minimum set of seeds, samples and
fidelity levels to be used in route-planning simulations.
The high-level controller for this strike planning system
will take use of such work in the setup of replicated
computing runs, and in the tradeoff between many small
runs of low-fidelity models (i.e. 20 low-fidelity
replicated computing executions on 20 processors),
versus fewer, high-fidelity runs (e.g. 4 high-fidelity runs,
each on 5 processors).

4 TEMPO DESIGN

The simulation kernel we will use for the strike
planning system is called Tempo. Tempo is a time
warp based simulation engine. It is implemented in
shared memory to take advantage of the low overhead
needed to pass data from one processor to another. It
uses an event-oriented paradigm to avoid the context
switching associated with a process oriented paradigm
(Pooch and Wall 1993). It has been designed to provide
effective parallelism for simulations with very small
computation per event (i.e. granularity). Event
granularity of under 100 microseconds is expected to
occur.

Tempo uses the shared-memory approach discussed
in Das et al. (1994) where logical processes (LPs)
communicate by exchanging time-stamped event
messages. Memory for event messages is allocated from
a pool of shared memory. These event messages are
passed between processors by handing over a pointer to
the message. This reduces the number of copies of data
during event handling to the same minimum number as
must be used in a sequential simulation, due to intrinsic
delays in simulation time. The message is linked into a
priority queue local to the destination processor using a
mutual exclusion lock, since many senders may attempt
this operation simultaneously. Upon receiving an event,
an LP may change its own state and schedule events for
other LPs in the future.

Unprocessed event messages are kept on a priority
queue, ordered by receive time. The event list uses a
calendar queue described in Brown (1988) and Jones
(1986). This data structure is O(1) with a very low
overhead for many stable distributions of events.

Global Virtual Time (GVT) is calculated using a
shared data structure and a series of locks. We are in the
process of replacing the GVT calculation with one that
is more efficient and asynchronous. GVT is used to
fossil collect memory from old state saves and processed
events. It is also used to schedule the conservative
processes, therefore the more current the value of GVT,
the more processes may become available to execute in
parallel.

On a multiprocessor computer, LPs are assigned to
run on different CPUs. Each logical process stays on its
assigned processor to maximize the locality of memory
references (informal testing has shown a 10 to I cost



1212 West et al.

ratio in cache misses). Using time warp principles, in
particular state saving and rollback, optimistic LPs can
execute events in parallel with low overhead and perfect
causality.

Specialized LPs which are scheduled conservatively
and therefore do not have to be state saved may read and
write data files. These conservative processes may also
directly read and write shared memory. They are
scheduled when the value of GVT equals or exceeds their
next event time. Modifications based on lookahead
information described in Section 4 allow these processes
to execute in parallel with each other and with optimistic
processes.

5. PERFORMANCE
5.1 Shared Memory Hardware

Small shared memory computers have been successful in
the marketplace because of their ease of use and low
cost. Most have one or a small set of common memory
buses, making them significantly less scalable than
machines such as hypercubes which do not have such a
single shared resource. Non-uniform shared memory
architectures promise scalability, but may be
significantly more difficult to tune for performance. The
main attraction of shared memory machines is that they
are inexpensive and becoming more commonly available
to users. Given the number of processors available in
low-cost shared memory systems (32-64), and that the
effective processor utilization of parallel discrete-event
simulations tend to taper off at high numbers of
processors, shared memory systems seem to provide a
reasonable price/performance ratio. Also note that high-
end shared memory systems have been developed, if
additional processors are warranted. (e.g. KSR supports
hundreds of processors).

Shared memory machines provide the only
reasonable promise of achievable performance for very
small granularity applications. Communication is
possible by passing a pointer, and message copying is
reduced to the same as what must be performed for a
sequential simulation. Message passing architectures
will necessarily have a second copy, and often have
operating system overheads associated with the message
I/0.

5.2 Tempo Scalability

Tempo minimizes the use of central shared data
structures with their requirements for mutual exclusion
locks. The few data structures that do require mutual
exclusion have small critical sections (less than 20
machine instructions), and are being replaced when they
are identified as causing a performance bottleneck.

The main synchronization overhead comes from the
computation of Global Virtual Time. There are several
GVT algorithms which do not have this synchronization

overhead. Some are continuously calculated (Ghosh et
al. 1994), some are asynchronously calculated (Fujimoto
1994, Xiao 1995).

We have developed a second version of Tempo; an
efficient sequential simulator. It is a single processor
discrete-event simulation framework, and is link-
compatible with the parallel version of Tempo without
the code or many of the overheads required for parallel
operation. In particular, an LP does not save state, and
events are handled by the local priority queue only. This
version of Tempo is expected to be used during parallel
replication runs, model development, and single
processor execution of small scenarios.

5.3 Current Tempo Status

On a four processor SPARCStation-20, Model 514
(50MHz SuperSPARC, 1Mb secondary cache with
MBus interconnection) the Tempo kernel displayed speed
up as shown in Table 1. Speed up is the ratio of the
execution time of a benchmark program linked with a
sequential kernel divided by the execution time of the
same benchmark linked with the parallel kernel. The
independent variables are the synthetic workload and the
number of CPUs used. The synthetic workload is an
additional processing delay that represents the time an
application LP would take to change its own state (per
event). 999 LPs were used, with each LP randomly
exchanging 10000 events with a uniformly distributed
delay in the interval of (0,1]. The LP state size was 80
bytes, indicating very small state saving costs.

Table 1: Speedup of Parallel Execution Over
Sequential Execution on the Sun SPARC
Station-20/514

Synthetic Number of CPUs
Workload 1 2 4

0 uS 0.86 1.53 2.50
50 uS 0.92 1.77 3.27
100 uS 0.94 1.84 3.51
200 uS 0.97 1.90 3.69

Typical per event execution overheads for the
sequential and parallel kernels are 12.0 and 27.8
microseconds respectively. Both versions of Tempo
compare favorably to other existing simulation kernels.
Sim++ (Baezner 1990) was measured as consuming per
event overheads of 90 microseconds (sequential), and
1200 microseconds (parallel). In terms of other
sequential simulation systems, Sim++ was found to
perform similarly to five other sequential kernels,
averaged across six test suites (Bensley 1991), thus by
inference Tempo demonstrates above average
performance. Further performance experimentation and
analysis is ongoing.

The one CPU case never exhibits speed up over the
sequential code because of the extra parallel overheads.



Rapid Execution of Strike-Planning Systems 1213

Even with a very small grained application (with
sufficiently small state size), a multi-CPU run is always
faster than the sequential run. In absolute terms, the
sequential kernel executes about 26.3K events/second
(with no synthetic workload). The parallel kernel
executes 65.7K events/second on four CPUs.

On a sixteen processor Cray Research CS-6400
(60MHz SuperSPARC, IMb secondary cache with
XDBus interconnection) the kernel displayed speed up as
shown in Table 2.

Table 2: Speedup of Parallel Execution Over
Sequential Execution on the Cray CS-6400

Synthetic Number of CPUs
Workload 1 2 4 8 15

OuS[0.840]1.193 | 1.929 ] 3.368 4.666
50 uS | 0.925]1.627] 2.785 | 5.481 8.661
100 uS | 0.951 | 1.772 ] 3.358 | 6.269 | 10.479
200 uS | 0.984]1.871 | 3.572 16902 | 11.955

Note that initial testing showed that 16 CPU runs
returned significantly slower values than 15 CPU runs.
This was identified as a OS problem, in that the
benchmarks were run in multi-user mode with a variety
of OS daemons running. At least one of the CPUs had
to time share between the simulation kernel and other
UNIX processes, reducing the total throughput of the
kernel and disturbing simulation balance. The 16 CPU
tests were thus eliminated from our test suite.

In absolute terms, the sequential kernel executes
about 37.7K events/second (with no synthetic workload).
The parallel kernel executes 175.8K events/second on 15
CPUs (141.6k on 16 CPUs).

6 CONCLUSIONS

We have proposed to use a parallel discrete event
simulation kernel to address the end to end performance
needs of strike planning systems, in particular for
parameter searching and interactive planning. We have
proposed using the Tempo parallel simulation kernel to
meet this requirement and have shown its efficiency and
applicability. We have addressed some performance
issues by optimization at the application level using
sectorization and dead reckoning. We have addressed
kernel level performance using combined conservative
time stepped and optimistic time warp synchronization.
As shown in Tables 1 and 2, highly effective processor
utilization is achieved in the traditionally difficult low-
granularity cases.

7 FUTURE WORK

We will continue to investigate ways to improve Fhe
performance of parallel simulations such as strike

planning. One way to further reduce the time warp
overheads is to replace the standard state saving technique
with an incremental approach. Only the variables that
change will be saved in a back trace trail.

If one processor has more work assigned to it than
any other, the simulation will run more slowly than it
needs to, and the other processors will effectively have to
wait for the overloaded processor to catch up. Dynamic
load balancing promises to address this issue. When
such a situation is detected, a logical process can be
migrated to another less loaded processor. Issues of
synchronization, caching and message forwarding must
be addressed.

An additional tool to test for achieved parallelism
will be created, where the simulation kernel is measured
against the ideal case of a kernel with zero
synchronization overheads. By measuring an application
against the zero overhead kernel (with one processor per
LP), we may establish the intrinsic parallelism of the
application. By comparing the performance of the real
simulation kernel against the zero overhead kernel, we
may establish the achieved parallelism, i.e. the measure
of how effective the simulation kernel was in extracting
intrinsic parallelism.

ACKNOWLEDGMENTS

Tempo was developed under internal R&D funding by
SAIC. Funding for the additional research presented here
was provided by the Naval Research Laboratory. Access
to the Cray-CS6400 was graciously provided by the
manufacturer. We would like to acknowledge the
contribution of the research teams of Dr. Richard
Fujimoto of the Georgia Institute of Technology, and
Dr. Brian Unger of the University of Calgary.
Consultation with these groups has accelerated the
development of Tempo.

REFERENCES

Baezner, D., G. Lomow, and B. Unger. 1990. Sim++:
the Transition to Distributed Simulation. In the
Proceedings of the 1990 SCS Multiconference on
Distributed Simulation.

Beckman, B., et al. 1988. Distributed Simulation and
Time Warp Part 1: Design of Colliding Pucks. In
the Proceedings of the SCS Multiconference on
Distributed Simulation, V 19, #3.

Bensley, E., V. Giddings, J. Leivent, and R. Watro.
1991. A Performance-based Comparison of Object-
Oriented Simulation Tools. Technical Report,
MITRE Corp.

Brown, R. 1988. Calendar Queues: A Fast 0(/)
Priority Queue Implementation for the Simulation
Event Set Problem. Communications of the ACM,
V 31, #10.

Das, S., R. Fujimoto, K. Panesar, D. Allison, and M.
Hybinette. 1994. A Time Warp System for Shared



1214 West et al.

Mcmory Multiprocessors. In Proceedings of the
1994 Winter Simulation Conference.

DIS Steering Committee. 1994. The DIS Vision.
Reference # IST-SP-94-01.

Fujimoto, R. M. 1990. Parallel Discrete Event
Simulation. Communications of the ACM 33(10),
pp- 30-53.

Fujimoto, R. M., and M. Hybinctte. 1994. Computing
Global Virtual Time in Shared-Memory
Multiprocessors.  Technical Report, GATech
College of Computing.

Ghosh, K., K. Panesar, R., Fujimoto, and K. Schwan.
1994. PORTS: A Parallel, Optimistic, Real-Time
Simulator. In Proceedings of the 8th Workshop on
Parallel and Distributed Simulation .

Gilmer, J., D. O'Brien, and J. Payne. 1990. Toward
Realtime Simulation: Prototyping of a Large Scale
Parallel Ground Target Simulation. In Proceedings
of the 1990 Winter Simulation Conference.

Jha, V., and R. Bagrodia. 1994. A Unified Framework
for Conservative and Optimistic Distributed
Simulation. In Proceedings of the 8th Workshop
on Parallel and Distributed Simulation.

Jones, D. W. 1986. An Empirical Comparison of
Priority-Queue and Event-Set Implementations.
Communications of the ACM, V29, #4.

Lee, J., and P. Fishwick. 1995. Simulation-based
Realtime Decision Making for Route Planning. To
appear in the Proceedings of the 1995 Winter
Simulation Conference.

Mellon, L. F. 1994. Sectorization -- Increasing the
Parallel Performance of Simulations Containing
Mobile, Sensing Entities. Technical Report, SAIC.

Moret, B., Z. Chen, A.T. Holle, J. Saia, and A.
Bouroujerdi. 1995. Network Routing Models
Applied to Aircraft Routing Problems. To appear
in the Proceedings of the 1995 Winter Simulation
Conference.

Pooch, U. N, and J. A. Wall. 1993. Discrete Event
Simulation (A Practical Approach). CRC Press.
Van Hook D., J. Calvin, M. Newton, and D. Fusco.
1994. An Approach to DIS Scalability. Proceedings

of the 11th DIS Conference.

Xiao, Z., J. Cleary, F. Gomes, and B. Unger. 1995. A
Fast Asynchronous GVT Algorithm for Shared
Memory Multiprocessor Architectures.  In
Proceedings of the 9th Workshop on Parallel and
Distributed Simulation.

AUTHOR BIOGRAPHIES

DARRIN WEST is a senior computer scientist with
Science Applications International Corporation. He
received his M.Sc. degree from University of Calgary.
His research interests include parallel simulation and
distributed systems. Mr. West is currently principle
investigator for the TEMPO internal R&D program, and
is a lead architect for the Synthetic Theater of War

program under ARPA funding. He is a member of the
IEEE.

LARRY MELLON is a senior computer scientist and
branch manager with Science Applications International
Corporation. He received his B.Sc. degree from
University of Calgary. His research interests include
parallel simulation and distributed systems. Mr. Mellon
is a lead architect for the ARPA funded Synthetic Theater
of War project. He is the principle investigator for a
parallel ATM simulation program, and a parallel
simulation strike planning system.

JIM RAMSEY is a senior software engineer with
Science Applications International Corporation. He
received his M.Sc. degree from University of Maryland.
His research interests include parallel simulation and
distributed systems. Mr. Ramsey is the lead designer
and implementor of the Tempo system.

JOHN CLEARY is a Reader in Computer Science,
University of Waikato. He received his Ph.D. in EE
from University of Canterbury, New Zealand. His
research interests cover: distributed systems including
parallel and distributed simulation, TimeWarp and
applications of TimeWarp to cther distributed problems;
applications of complexity theory to machine learning
and data compression; and logic programming. Dr.
Cleary is a member of ACM, IEEE, NZCS (New
Zealand Computer Society).

JIM HOFMANN is section head of the Decision
Support and Force Level Planning project at the Naval
Research Laboratory. He received his M.Sc. in
Operations Research from George Washington
University. His research interests include automated
mission planning, data fusion and object oriented
simulation.



