Proceedings of the 1995 Winter Simulation Conference
ed. C'. Alexopoulos, K. Kang, W. R. Lilegdon, and D. Goldsman

NETWORK ROUTING MODELS APPLIED TO AIRCRAFT ROUTING PROBLEMS

Zhiqiang Chen
Andrew I'. Holle
Bernard M.E. Moret
Jared Saia

Department of Computer Science
University of New Mexico
Albuquerque, NM 87131, U.S.A.

ABSTRACT

We study network models applied to two aircraft
routing problems, one in which the goal is to route
strike aircraft to a target and back so as to minimize
losses and one in which the goal is to route civilian
traffic around an airport so as to minimize noise ex-
posure to the population. We propose joint routing
as our model: find a required number of time-disjoint
routes in a network that minimizes the total cost. We
show that joint routing can in turn he modelled as a
dynamic network flow problem. We study this prob-
lem under several variants and on different types of
networks, establishing tight bounds on the running
time of exact solutions through applications of both
existing and some new methods. We also discuss the
modelling of the airspace in which the routing takes
place and how choices affect the performance of our
optimization algorithms. Our model extends to other
applications, such as the routing of hazardous mate-
rials and of secure communications.

1 INTRODUCTION

Aircraft routing requires the generation of non-col-
liding, time-dependent routes through a specified air-
space. Constraints may include forbidden regions,
required waypoints, flight corridors (in civilian avia-
tion), and time windows through various regions. We
study two variants of the problem: (i) planning strike
missions to destroy selected targets in the presence of
enemy threats, where the objective is to maximize
payoff, and (1) routing civilian aircraft around an
airport, where the ohjective 1s to minimize the noise
exposure of the local population. Our model, which
we call joinl routing, extends to other applications,
including some wlhere the objects routed are not air-
craft and may in fact stop en route, such as the design
of transport routes for hazardous materials and that
of securc communications within a network.

1200

Al Boroujerdi

Naval Research Laboratory
4555 Overlook Avenue SW
Washington, DC 20375, U.S.A.

In joint routing, we model the airspace as a network
and seek a collection of routes through the network
with the following characteristics: (i) the aircraft are
in constant motion; (ii) the aircraft do not collide;
(ii1) the aircraft all reach their destination; and (iv)
the collection of routes optimizes the chosen objec-
tive. We show that joint routing can be modelled
as flow within a space-time network, an application
of the dynamic network flow technique of Ford and
Fulkerson (1958). Since dynamic network flow is very
expensive, we present a careful analysis of the running
time of our algorithms, including a discussion of the
effect of network design on their performance.

A number of related problems appear in the oper-
ations research literature, notably the vehicle rout-
ing and scheduling problems and other transporta-
tion problems: surveys include Bielli et al. (1982)
and Solomon (1988), while a recent issue of Op-
erations Research (1993) was devoted to the prob-
lem of aircraft scheduling and routing. Of all these
models, however, only one closely resembles the air-
craft routing problems just described: the dynamic
traffic assignment problem as modelled through flow
In a space-time network (Zawack and Thompson
1987). However, the traffic assignment problem is
constrained by a fixed time period, while joint rout-
ing has no such constraint; moreover, as in other ref-
erences to dynamic network flow techniques, Zawack
and Thompson omit a formal analysis of performance.

In the following, we briefly review the dynamic net-
work flow model of Ford and Fulkerson, discuss its
application to joint routing, and analyze the running
time of various approaches. In particular, we prove
that, if there exists a feasible set of routes in a net-
work, then there exists a set of routes where each
route crosses at most O(|V|) edges, even on networks
with cycles; this result allows us to bound the num-
ber of time steps that must be considered in the joint
routing problem and thus allows us to conclude that
Joint routing can be solved in polynomial time. We

Network Routing Models 1201

then address the issue of network design in modelling
airspace and its influence on the performance of our
algorithms, presenting evidence that careful design
can improve running times by large factors, both in
asymptotic terms and in practical applications. An
early version of this work appeared in Boroujerdi et
al. (1993).

2 THE PROBLEM

A formal statement of our problem (in its basic ver-
sion) can be written as follows.

¢ Given a graph with two distinguished vertices, a
sink and a source, and where each edge has an
associated cost, route aircraft from the source to
the sink, subject to the constraints:

1. aircraft are initially placed at the source;

2. at each step, every aircraft crosses an edge
of the graph (no aircraft can stop at a vertex
for one or more steps);

3. both edges and vertices have unit capacities
(so that aircraft cannot collide at vertices or
along edges).

The goal is to find a least-cost routing for a given
number of aircraft.

A key assumption underlying the problem is that air-
craft and parameters are uniform. In the absence of
such uniformity, the problem is generally A’P-hard.

Theorem 1. The joint routing problem is A’P-hard
under any of the following conditions:

¢ objects move at different speeds and incur differ-
ent costs

e certain edges may not be crossed by certain ob-
jects

o the cost of crossing an edge depends on the ob-
Ject crossing it

o the cost of crossing an edge depends on the time
step

e the total cost is the sum of the costs of edges
that are crossed at least once

The first four of these AP-hardness results are new,
but not unexpected (we omit the difficult proofs, since
the constructions are not of special interest; the in-
terested reader should consult Boroujerdi 1994); the
fifth is known—it is the “minimum edge-cost flow”
problem mentioned in Garey and Johnson (1979, p.
215).

3 DYNAMIC NETWORK FLOW

In their 1958 paper, Ford and Fulkerson showed how
to transform the mazimum dynamic flow problem to
a conventional network flow problem. In a dynamic
network flow problem, arcs have traversal times as
well as capacities and flow received at a node can
either be moved immediately or held over for later
discharge; the question is to find the maximum flow
that can be moved from the source to the sink within
some given period of time 7. The reduction uses the
given network, G = (V, E'), to build a new network,
G* = (V*,E*), as follows. For each node, v € V,
create T' coples: vy, ..., vy (a slight correction to
the presentation of Ford and Fulkerson, who unnec-
essarily created ¢t + 1 copies); in addition, set up a
supersource, s*, and a supersink, t*. Let ¢(v, w) be
the traversal time of arc (v, w); introduce an arc from
v; to w; (of capacity equal to that of arc (v, w)) if and
only if j — ¢ = t(v,w); in addition, introduce an arc
from v; to v;4; with infinite capacity for each v € V
and 0 < 7 < T finally, connect the supersource to ev-
ery copy.of the original source and connect every copy
of the original sink to the supersink, all with arcs of
unbounded capacity. Then the maximum amount of
flow that can be moved from the source to the sink
in T time units in G equals the maximum flow from
s* to t* in G*. If the flow received at a node, v,
must leave it immediately, the reduction omits the
arcs from v; to v;4; for all v € V and all 7 and
omits the supersource—the source for the new net-
work is simply sg. Note that these reductions create
a new graph that is T times larger than the original—
although the new graph can be reduced somewhat by
eliminating in linear time all vertices and edges that
are not on a path from the supersource to the super-
sink.

Dynamic network flow has since been used by many
researchers in modelling various vehicle routing and
scheduling problems, particularly in aircraft problems
(see, e.g., Bielli et al. 1982, Orlin 1983, Operations
Research 1993).

We observe that dynamic network flow can be used
to solve the basic version of our joint routing problem,
where costs are absent and the objective is simply to
route as many aircraft as possible through the net-
work.

Theorem 2. Routing as many aircraft as possible
from the source to the sink in 7" time units while
avoiding collisions is equivalent to solving a dynamic
network flow problem (in which flow cannot be stored
at nodes) on a network with vertices of unit capacity.

Our earlier discussion establishes the correctness of

1202 Chen et al.

this theorem; we are not aware of any previous state-
ment of it, although uses of dynamic network flow in
vehicle routing and aircraft scheduling offer a close
parallel.

4 THE SPACE-TIME NETWORK

The graph generated by the reduction described in
the previous section has a very constrained structure;
in particular, when flow must leave cach node imme-
diately, the result is a directed acyclic graph where
each node other than the supersink is at a well-defined
distance from the source sg (i.e., any path from sg
to the node traverses the same number of arcs). Ig-
noring the supersink, we call such a graph a fime-
transformed acyclic graphs or trag. Note that several
different graphs can give rise to the same trag; we
define the order of a trag to be the size (number of
vertices) of the smallest graph that can generate the
trag. The correspondence between a trag and a graph
that generates it helps define the structure of trags,
which in turn enables us to characterize the behavior
of network flow algorithms on trags.

We define the rank of a trag vertex as the distance
from sg to that vertex; each vertex has a well-defined
rank (since the supersink is excluded from the trag).
We observe that distinct trag vertices of the same
rank must correspond to distinct vertices in the graph
that gave rise to the trag; in particular, since the orig-
inal graph has a single sink, the trag can have at most
one sink vertex at each rank. We define a subtrag of
some given trag T as the subgraph of T induced by a
vertex of T' and all of the vertices of T" reachable from
that vertex; we then generalize this concept to a sub-
graph of T generated by a subset of vertices of T of the
same rank such that the induced graph cannot be de-
composed into disjoint pieces. If two subtrags of some
trag T are isomorphic, they may simply be copies of
the same structure within the original graph (which
generated T°); however, our observation about rank
shows that two isomorphic copies of a subtrag, whose
generating vertices have the same rank, must be gen-
erated by distinct structures in the original graph.
This property allows us to bound the size of the gen-
erating graph for a given trag T'.

Let T be a trag; define S; to be the set of maxi-
mal subtrags of 7' induced by (subsets of) vertices of
rank 7. (By maximal, we mean that no subtrag in S;
can properly contain an isomorphic copy of another
subtrag in S;.) Note that the subtrags of S; must
be pairwise disjoint. We claim that the order of T
cannot exceed the sum over all ranks of the number
of sources in each of the S;s; in fact, we can build
a directed graph G that will generate T when repli-

cated: for each subtrag in .S;, place its sources within
G, then connect a vertex u of G to another vertex v
of G whenever u at some rank j is connected to v at
rank j+ 1in T. Now let 7 be the set of subtrags of
T with single source (induced by a single node) par-
titioned into equivalence classes under isomorphism
(each class thus contains a collection of isomorphic
subtrags); for equivalence class ¢, define r(c) to be
the maximum over all ranks 7 of the number of iso-
morphic subtrags in ¢ with source of rank . We claim
that the order of T' must be at least as large as the
sum of the r(c) over all equivalence classes ¢ € T:
this is a direct consequence of our earlier remark that
two isomorphic copies of a subtrag with sources of the
same rank must be generated by distinct structures
in the original graph.

These and other properties of trags currently un-
der study have allowed us to derive tighter bounds
on the best possible routings of aircraft and to devise
heuristics to speed up the running time of optimiza-
tion algorithms. In particular, they have allowed us
to characterize graphs that give rise to series-parallel
and nearly series-parallel trags—an important char-
acterization as network flow is solvable in linear time
on series-parallel graphs.

5 RESULTS ON JOINT ROUTING WITH-
OUT COSTS

In order to establish a bound on the running time of
a solution algorithm, we need to bound the number
of time steps, T, that must be used in the reduction
to dynamic network flow.

Theorem 3. Routing a maximum number of objects
from source to sink without collisions can be solved
in polynomial time.

Proof: We have seen that we can answer the ques-
tion by solving a dynamic network flow problem,;
hence we need only place a bound on T that remains
polynomial in the size of the network. If the network
is a directed acyclic graph, there is no problem: no
object can take longer than n — 1 steps (where n is
the number of vertices in the graph) before reaching
the sink. If the network allows cycles (either as an
undirected or as a directed graph), a tight bound is
more difficult to derive (see below), but a safe upper
bound of n? steps is easily established as follows.
Consider the state of the system during the first
n steps; if, at the end of n steps, one of the objects
has reached the sink, then the problem reduces to
routing n — 1 objects through the network and the
conclusion follows by strong induction. If no object
has reached the sink by step n, then there must exists

Network Routing Models 1203

some index 2 < n at which the object closest to the
sink (in terms of the number of edges along a shortest
path to the sink) is n — 7 edges away from it. Pick
the largest such index: the object closest to the sink
can now safely be moved directly to the sink along
the shortest path, since no other object can collide
with 1t along that path; the other objects are moved
as in the original sequence. The new sequence now
sends at least one object to the sink in n steps without
collision, reducing the problem to the first case.

When time windows are added (say a minimum time
of Ty and a maximum time of 7T}), they can be in-
cluded in the dynamic network by the simple expe-
dient of (i) duplicating the network only for the first
T, steps; and (ii) removing all arcs leading into the
sink from vertices with associated times smaller than
T,. Note that deadlines do not affect the proof of the
theorem—nor, indeed, any of the results below.

In fact, the number of edges crossed by any of the
objects on its way from source to sink remains lin-
ear in the size of the graph, rather than quadratic.
Proving such a linear bound is relatively simple for
undirected graphs, but much more challenging for di-
rected ones; we give only the former proof.

Theorem 4. Given an undirected graph with two
distinguished vertices (a source and a sink), if k& ob-
jects can be routed from the source to the sink with-
out collision, then they can be so routed in O(n)
steps, where n is the number of vertices of the graph.

Proof: We prove that, in an undirected graph, ob-
ject 7 4+ 1 need never arrive more than 2 units of
time after object i; since the first object to arrive
can always arrive in at most n steps, this establishes
a bound of n 4+ 2(n — 1) steps on the arrival time of
the last object.

If there is a feasible joint routing schedule for the n
objects, then there is a feasible schedule which mini-
mizes the sum of all arrival times; in this schedule, we
index each object by its order of arrival to the sink—
we shall use induction on this index. Consider then
the 7th object and look at the last cycle it traces on
its path from source to sink. This cycle is present to
avoid a collision with some object j at some vertex v;
from v to the sink, object i has a path without cycle.
We claim that we must have j < ; if the cycle were to
avoid collision with a slower object (j > i), we could
reduce the sum of all arrival times by letting object j
use object i’s path from v to the sink and thus arrive
faster with no collision. Now, observe that the last
cycle traced by object i has length 2; otherwise, we
could reduce the sum of all arrival times by shorten-
ing the cycle to a length of 2 without creating new

collisions for object 7 (rather than going around the
cycle, object i would simply traverse the first edge
of the cycle forward and backward). Hence object ¢
arrives at vertex v 2 units of time after object j and
thus arrives no more than 2 units of time after ob-
ject j at the sink. Since j < i, object j obeys the
induction hypothesis and our conclusion follows.

While these results indicate that the basic ver-
sion of joint routing without edge costs is solvable
in strongly polynomial time, the solution algorithm
appears inefficient, since it is a maximum flow algo-
rithm running on a graph expanded by a factor of
|V]; as most maximum flow algorithms scale accord-
ing to |V|, the expansion appears to cost us a factor
of |V|? in running time. However, the networks used
in our model have unit vertex capacities, so that the
expansion creates, in effect, a unit network (i.e., a
network in which all arcs have unit capacity, at most
one of the arcs (v, w) and (w,v) is present, and ev-
ery vertex has either in- or out-degree of one). The
maximum flow in a unit network of n vertices and m
edges can be found in O(y/n-m) time by using block-
ing flows. Using a linear bound on T, the expansion
of a network, G = (V, F), results in a unit network,
G* = (V*, E*), with O(|V|?) vertices and O(|E|-|V])
edges. Thus the maximum flow in G* can be found
in O(\/|V*|1E*|) = O(|V|*-|E|) time. Note that an
algorithm based on augmentation along single aug-
menting paths also runs in O(|V|? - |E[) time. To
see how, we note that the value of a maximum flow
in G* and hence the number of augmentations can-
not exceed |V|. An augmenting path can be found
in linear time by performing a depth- or breadth-first
search in a graph with O(|V|-|E|) edges, resulting in
a total running time of O(|V|? - |E|). (Preflow-based
methods, on the other hand, while the best on gen-
eral networks, seem unable to make use of the special
structure of unit networks.)

Finally, in a sparse network, we expect that only a
few of the n duplicates (of vertices or edges) will be
used. In order to reduce storage costs, we can main-
tain a list of used time slots for each vertex and for
each edge. The list manipulations add some expense
to the running time, but gain considerable space and,
on average, still expend very little time per edge or
vertex in identifying the correct slot.

6 RESULTS ON JOINT ROUTING WITH
COSTS

The min-cost max-flow problem long resisted strongly
polynomial solutions. Tardos (1985) first provided
such an algorithm for minimum-cost circulations and

1204 Chen et al.

thus also for min-cost max-flow problems. However,
in the case of networks with polynomially bounded
maximum flow, min-cost max-flow problems are eas-
ily solved in (strongly) polynomial time by the sim-
plest of all min-cost flow algorithms: at each step,
augment along a path of minimum cost. At each
step, the flow must increase by at least one unit; since
the max-flow cannot exceed some polynomial bound
B (in our case, B = |V'|), the number of augment-
ing steps 1s polynomial. Each step requires solving a
shortest-path problem, which can be done with Dijk-
stra’s algorithm (implementcd with Fibonacci or re-
laxed heaps) in O(|E| + [V]log|V]) time. The com-
plete algorithm thus runs in O(B - (|E|+ |V]|log|V]))
time. The expanded graph, G*, is constructed as in
Theorem 2, except that a cost is associated with each
arc of G*—that of the corresponding edge of G. The
costs of the (¢;,t*) arcs can be anything as long as
they are all equal. Then the minimum-cost maxi-
mum set of routes in G is equal to the minimum-cost
maximum flow in G*.

Theorem 5. Given a graph, ¢ = (V,E), with a
source, s, and a sink, ¢, and given a cost function,
¢: E — R{, denoting the cost of crossing the edges of
G, routing the maximum number of objects from s to
t at minimum cost is solvable in strongly polynomial
time.

Proof: First, we prove that the number of time steps,
T, required to route the maximum number of objects
from s to t at minimum cost is polynomial in the
size of G. Let R be a minimum-cost set of routes
sending the maximum number of objects from s to ¢.
If each route in R is a minimum-cost path from s
to t, then T is trivially bounded by |V|. Otherwise,
consider a minimum-cost path, p, of maximum length
from s to £, (s = vr(0), Un(1)y-- > Vn(k=1) Un(k) =).
There must exist an index 0 < ¢ < & such that v,
1s occupied at time i, or p can be used In place of
a more costly route, resulting in a set of routes less
costly than R, a contradiction. Pick the largest such
index. Since pis the longest minimum-cost path from
s to t, the object. occupying vg(;) at time : must reach
t in at most another (k — 7) steps. Thus, after £ <
[V time steps, at least one object reaches the sink.
Now let p’ he a minimum-cost path to ¢ of maximum
length from any vertex occupied at time k. By a
similar argument, at least one more object must reach
the sink in another &’ < |V| time steps, where k' is
the length of p’. Since there are now fewer than |V/|
objects to route, applying the argument inductively
proves that the last object to reach the sink cannot
take more than |V]? time steps.

An analog of Theorem 4 also holds.

Thus, to compute in strongly polynomial time
a minimum-cost set of routes in a graph, G, we
need only compute a minimum-cost maximum flow
in the corresponding expanded graph, G*, by succes-
sive augmentations along minimum-cost augmenting
paths. Using linear bounds on the number of time
steps, each augmentation requires running a general
shortest path algorithm (because edge costs in the
residual graph of G* can be negative) on a graph
of O(|V|?) vertices and ©(|V| - |E|) edges, thereby
taking O(|V|® - |E|) time. Since the value of a max-
imum flow and hence the number of augmentations
cannot exceed |V, the running time of the algorithm
is O(|V|* - |E]). More sophisticated minimum-cost
maximum-flow algorithms that perform better in gen-
eral do not yield any better bounds for this problem.

As noted earlier, adding multiple sources and mul-
tiple sinks is easily handled. Time windows are im-
plemented very naturally: if objects can only pass
through some vertex v during time window [i...J]
and assuming that j is less than |V|, we only place
in the expanded network vertices v;, ..., v;, omitting
vertices v, ..., t;—1 and vj41, ..., vjy|. Should a time
window at the sink delay arrival to the sink for a long
period (i > |V|), then we shall be forced to expand
the network to 7' = j and thus cause much larger ex-
ecution times, possibly only pseudo-polynomial (de-
pending on T rather than on log T or just |V); how-
ever, the solution itself will then consist of a set of
very long walks in the network, so that no algorithm
could run in strongly polynomial time and yet print
all routes. Small capacities larger than 1 do not al-
ter any of the results and algorithms; however, ar-
bitrarily large capacities cause much the same prob-
lem as arbitrarily large time windows: the network
may then support the routing of a correspondingly
large number of objects, so that the number of routes
to be printed may grow as a function of cpax rather
than as a polynomial function of the input. Again,
no algorithm could run in strongly polynomial time
under these conditions while printing each route. Fi-
nally, we note that the extension to object-dependent
costs remains tractable if the dependency on the ob-
Ject consists of a simple cost multiplier (a realistic
situation): in that case, we compute routes as if all
objects had a multiplier of 1 by using the minimum-
cost model discussed above, then assign objects to
routes by assigning the object with largest multiplier
to the least costly route, proceeding greedily down to
the final assignment of the object with the smallest
multiplier to the most costly route—it is easily seen
that this assignment of objects to routes is optimal
and that the resulting routing minimizes the overall
cost.

Network Routing Models 1205

7 NETWORK DESIGN

Since the running time of our method depends heav-
ily on the size of the network used in the model, it
pays to consider how the network should be gener-
ated. In both the military and the civilian avia-
tion applications, the network needs to: (i) model
3-dimensional airspace; (11) provide sufficient resolu-
tion to make optimization meaningful; (1) describe
realistic scenarios (e.g., enable flight paths that re-
main within allowed operational parameters for the
application); and (iv) incorporate as much local in-
formation as possible. Of particular importance in
modeling the civilian aviation problem, for instance,
is the fact that, regardless of how the network is de-
signed, many paths through it cannot be followed by
the aircraft, as they include sections with excessive
acceleration or unacceptable aircraft positions. In
fact, this constraint on acceptable paths turns our
joint routing problem into an A’P-hard optimization
problem again, even in the absence of other parame-
ters.

We designed a variable-resolution grid, with resolu-
tion dictated by the terrain, the proximity to critical
areas (airport, target, enemy defense, etc.), and the
desired final resolution (or, equivalently, the allow-
able computation time). The grid is set up initially
at some fixed low resolution, then recursively refined
over the entire airspace according to the parameters
just listed. The top of the grid is a flat surface at
an altitude considered sufficient to include all pos-
sibilities; the bottom of the grid hugs the terrain,
while ensuring that no edge ever goes through solid
matter. The basic grid (and its recursive refinement)
uses a shape adapted to the problem at hand: for the
military application, we use a simple 3-dimensional
rectangular mesh (distorted as needed by the terraln
into trapezoidally shaped cells), while, for the civilian
application, we use a 3-dimensional cylindrical mesh
(again with cells distorted as needed by the terrain)
with edges aligned with the runways in the immediate
vicinity of the airport.

Since the constraints on allowable civilian aircraft
moves make the problem intractable, we approximate
the problem by running our regular augmentation al-
gorithm. This algorithm may now fail to return an
optimal solution, since, as it computes a least-cost
path to the sink, it may select some path over another
only to discover later that the selected path violates
the move constraints—too late to recover the second-
best candidate. In our experiments to date, the loss
of accuracy in optimization remained very small.

In order to speed up the optimization algorithm,
we are also looking into special networks. For n-

stance, series-parallel graphs (a special type of net-
work) allow a linear-time solution for the network flow
problem; while our copying procedure typically can-
not produce series-parallel networks, it also typically
produces networks with closely related structure, on
which several simple heuristics can greatly decrease
the running time of our algorithms. The series and
parallel compositions of the series-parallel graphs can
be identified within the trag produced by our trans-
formation and the problem accordingly decomposed
into a collection of smaller subproblems, with large
resulting gains in efficiency.

8 FURTHER WORK

We have implemented several versions of these algo-
rithms for joint routing both with and without costs.
In all cases, the simplest methods are the fastest on
our (to date somewhat limited) suite of test cases; in
particular, the scaling circulation methods proposed
for the min-cost problem are slow when compared to
the simple method of augmenting along a path of min-
imum cost—the more sophisticated methods spend
too much time in establishing labellings at each it-
eration. In the absence of other known methods for
computing these routes and of known optimal solu-
tions (in many cases, the objective function remains
incompletely defined, due either to somewhat unclear
goals or to inaccurate cost functions), it is difficult at
this stage to quantify the quality of the solutions ob-
tained. In a next stage, we shall generate routes for
actual military planning and civilian routing prob-
lems, which will allow us to compare our solutions
with those obtained by existing methods. Prelimi-
nary data suggest significant improvements.

ACKNOWLEDGMENTS

This work is supported by the Office of Naval Re-
search under contract N00014-92-C-2144.

REFERENCES

Ahuja, R. K., T. L. Magnanti, and J. B. Orlin. 1993.
Network Flows. Prentice-Hall, Englewood Cliffs,
N.J.

Bielli, M., G. Calicchio, B. Nicoletti, and S. Riccia-
rdelli. 1982. The air traffic flow control problem
as an application of network theory. Comput. and
Operations Research 9(4):265-278.

Boroujerdi, A. 1994. Joint Routing and Persistent
Data Structures. Ph.D. Dissertation, Department
of Computer Science, University of New Mexico.

1206 Chen et al.

Boroujerdi, A., (' Dong, Q. Ma, and B. M. E. Moret.
1993. Jomt routing in networks. Proc. NET-
FLOW 93, San Miniato (Umversita di Pisa TR-
21/93), 175-180.

Ford, L. R., and D. R. Fulkerson. 1958. Constructing
maximal dynamic flows from static flows. Opera-
tions Research, 6:119-433.

Garey, M. R., and D. S. Johnson. 1979. Compulers
and Intractability: A Guide to NP-Completeness.
W.H. Frecman.

Johnson, D. S., and (. (!, McGeoch. 1992. DI-
MACS implementation challenge workshop: algo-
rithms for network flows and matching. DIMACS
Tech. Report 92-4.

Operations Research, 11(1), 1993. (Special Issue on
Vehicle and Aircraft Routing and Scheduling.)

Orlin, J. B. 1983. Maximum throughput-dynamic
networks flows. Math. Programming, 27:214-231.

Solomon, M. M. 1988. Time window constrained
routing and scheduling problems. Transportation
Science, 22(1):1-13.

Tardos, E. 1985. A strongly polynomial minimum
cost circulation algorithm. Combinatorica, 5:247-
255.

Zawack, D. J., and G. L. Thompson. 1987. A dy-
namic space-time network flow model for city traf-
fic congestion. Transportation Science, 21(3):153-
162.

AUTHOR BIOGRAPHIES

ZHIQIANG CHEN is a doctoral student in the
Department of Computer Science at the University
of New Mexico, working under the direction of Pro-
fessor Moret. He earned his BS degree in Computer
Engineering from Tsinghua University in Septem-
ber 1991 and his Master’s in the same field from
the Shenyang Institute of Computing Technology in
September 1994.

ANDREW HOLLE earned his Master’s in Com-
puter Science from the University of New Mexico un-
der the direction of Professor Moret in May 1995.
e earned his BS in Chemical Engineering from the
University of Texas (Austin) in 1984 and worked for
8 years in the oil industry, principally in Houston,
but also spending two years in Vienna commission-
ing a tank farm automation system. Upon receiving
his MS, he joined the advanced development group of
Setpoint in Eindhoven, the Netherlands, working on
optimization problems in the refining industry.

BERNARD MORET (www.cs.unm.edu/ moret)
is Professor of Computer Science at the University

of New Mexico. His research interests center on the
design and analysis of discrete algorithms and data
structures, particularly in practical settings. He has
over 30 publications in the area, has graduated 4 PhD
students, and directs a research group of 4 students
with funding from the Office of Naval Research to in-
vestigate aircraft routing problems. He is the editor-
in-chief and founding editor of the ACM Journal of
Experimental Algorithmics, an on-line refereed jour-
nal devoted to the practical side of discrete algorithms
and data structures.

JARED SAIJA is a Master’s student in the De-
partment of Computer Science at the University of
New Mexico, working under the direction of Profes-
sor Moret. He earned his BS in Computer Science
from Stanford University in 1993, then spent a year
in Japan at the ATR Labs working on research in
natural language understanding.

ALI BOROUJERDI earned his BS in Computer
Science from the University of Lancaster (England),
and his MS and Ph.D. in Computer Science from the
University of New Mexico under the direction of Pro-
fessor Moret. Upon receiving his Ph.D. in December
1994, he joined the staff of the Naval Research Lab-
oratory, Advanced Information Technology Branch,
where he conducts research in discrete optimization.

