Proceedings of the 1995 Winter Simulation Conference
ed. C. Alexopoulos, K. Kang, W. R. Lilegdon, and D. Goldsman

CASE TOOL FOR ODBMS DESIGN OF THE FUNCTIONAL DESCRIPTION OF THE BATTLESPACE

Donna L. Comwell

The MITRE Corporation
McLean, Virginia 22102, U.S.A.

ABSTRACT

This paper summarizes the role of a commercial CASE
(Computer Aided System Engineering) tool in the
design of the Functional Description of the Battlespace
(FDB). The CASE tool product was selected based on
specific requirements of the project. It was used as the
medium to contain and document the design in a
language independent form. Products created included
diagrams, reports, and schema definitions for both Object
Oriented Database Management Systems (ODBMS) and
Relational Database Mangement Systems (RDBMS).
Experience with the CASE tool demonstrated many
benefits as well as some drawbacks to using such a tool.

1 INTRODUCTION

The FDB is a database under development for use in
Warfighter Simulation 2000 (WARSIM 2000). The
purpose of the database is to provide a repository for
information needed in the analysis and design phase of
developing simulations.

Our focus in this paper is the role of a commercial
CASE tool in the design of the FDB. The FDB design
was created using Paradigm Plus, a CASE tool for
Object Oriented (OO) Analysis and Design. A major
advantage of the CASE tool approach is the automated
maintenance of class definitions and diagrams in a form
independent of specific database packages and
independent of specific programming languages as well.
Selection of Paradigm Plus was based on a number of
factors, including support for the Rumbaugh
methodology, OS support, reverse engineering, and code
generation capability.

Paradigm Plus was used to create diagrams, define
classes and relationships, and generate the database
schema in C++ and in SQL. The C++ code was used to
create a schema for a prototype in UniSQL. The SQL
was used to implement some tables in Oracle for
comparison purposes. Standard reports created by the
tool from the object repository were used in conjunction
with diagrams to document and present the database
design.

1189

Paradigm Plus had some unexpected advantages,
including number of languages supported and an internal
scripting language that allowed extensive customization
of the tool. It also had some unexpected problems, due
primarily, to the immaturity of the product.

In Section 2, we discuss background on the project
and its relation to simulation. Section 3 briefly describes
OO methodologies as they apply to OO CASE tools.
Section 4 covers the selection process for selecting the
CASE tool. In Sections 5 and 6, the process of creating
the design in Paradigm Plus and the lessons learned are
described.

2 FUNCTIONAL DESCRIPTION OF THE
BATTLESPACE

The FDB is a repository for those physical,
environmental, and behavioral phenomena required to
adequately represent the Army's battlespace operating
system components and functions that must be
represented to produce credible simulations of those
functions. Heretofore, the Army has relied on the
winning contractor to conduct a domain analysis, using
whatever published material and subject matter experts
he happened to have at his disposal, to determine what
should be represented to meet the requirements stated in
the Systein Requirements Document (SRD). After
deciding what should be represented, the contractor then
had to access multiple data sources to obtain the required
data. With an FDB, the contractor has a single source of
approved Army data, descriptions, and algorithins to
support his domain analysis and software engineering
activitics.

Based upon the quantity of equipment, the number of
units, the amount of doctrinal guidance, and the
complexity of the descriptions of interactions between
units, equipment, and terrain required for the FDB, it
was determined that object-oriented analysis and design
techniques were desirable. The ability to use objects to
describe real life cntities, their behaviors, and their
intcractions further influenced the decision. Finally, the
characteristics required of the FDB - comprehensive,
extendible, observable and measurable, broadly

1190

applicable, traceable, and accessible - led to the
conclusion that an object-oriented approach was

necessary to mect the government's requirements for an
FDB.

3 OO0 METHODOLOGIES AND CASE TOOLS
3.1 What OO Methodologies Provide

OO methodologies provide guides for the process of
identifying and defining objects or classes and their
relationships. In addition, most OO methodologics
provide diagramming notations in which to express the
object model including not only classes and
relationships, but also thc dynamic model of object
interaction.

3.2 How CASE Tools Implement OO Methodologies

OO CASE tools are primarily diagramming tools with
underlying repositories which contain information about
the design not apparent in the diagrams. In addition,
information defining links between diagrams may be
contained in the repositories. Some tools implement the
repositories in flat files, others use database packages.

CASE tools enforce the diagramming notation by
providing a set of predefined symbols for creating
diagrams. They also do some rudimentary validation of
the object model. This validation usually consists of
consistency checks such as name conflicts and references
to non-existent classes.

4 CASE TOOL SELECTION

On the FDB prototype project, the CASE tool was to be
the medium for developing, documenting, and storing
the object model. To ensure that the information
captured in the CASE tool would be complete, flexible,
and independent of other software packages, a number of
CASE tool characteristics were defined as requirements.

The initial implementation of the FDB was to be a
prototype. The final production system might or might
not be implemented using the same COTS software as
the prototype. Therefore, it was important that the
design stand alone in a representation that would be
clear, easily understood, and non-proprictary. It was
decided to represent the design in a notation that was
part of a published formal methodology. The Object
Modeling Technique (OMT) methodology developed
and published by (Rumbaugh 1991) was selected as the
design methodology.

In order to support the prototyping effort, but not tie
the object model to any particular software package or
language, CASE tool support for multiple languages was

Cornwell

desired. The CASE tool was required to be entirely
separate from any DBMS package used in the prototype,
though support for specific RDBMS and ODBMS
packages would be welcome.

Also, some initial design work had been captured in
C++ code, so it was desirable that the CASE tool
import C++ code. This feature could also be used to
support spiral development by reading C++ code
generated from other software packages.

Language support was a difficult issue, as there is a
mismatch between the requirement to use Ada, and the
desire to use COTS whenever possible. C and C++
were the common denominators between COTS
packages examined in both the CASE and ODBMS
categories. However support for Ada was required for
future development and integration of a production
system. C++ and SQL were used as translation
mechanisms between the COTS packages. Ada code
generation was looked for in the CASE tool arena.
Support for Ada code did not exist in ODBMS packages
at the time of the tool search other than in ITASCA,
which is no longer being sold.

To support the above requirements, specific OOAD
CASE tool features were identified:

* reverse engineering

* C++ code generation

+ Ada code generation

+ data dictionary reports

+ diagrams

Over a three-week period, a number of products were
examined. Since the time frame was short, the goal was
not to do an exhaustive study of all CASE tools, but to
choose one that was reasonable and sufficient to do the
job at hand. The leading contenders examined
included: ObjectTeam, Paradigm Plus (Protosoft, Inc.
1994), SES Workbench, Rational Rose, OMT Tool,
and Software Through Pictures. Paradigm Plus was
selected for the FDB prototyping effort as the only
available tool that adequately met all above requirments
and was available on both DOS and UNIX platforms.

One feature that was not originally used as a
discriminator, but was found to be extremely useful was
a scripting language. Paradigm Plus has a scripting
language that uses BASIC with extensions and macros
to provide access to the object repository. This feature
has been invaluable in customizing the tool. Minor
changes have been made to the scripts provided with
package in order to : export C++ code annotated with
UniSQL specific classes; customize the data dictionary
report to word wrap to fit on the printout without
truncation; and produce ad hoc reports to validate/verify
the object repository.

The use of Paradigm Plus supported the sponsor's
goal of having the class structure developed for the FDB

C'ASE Tool for ODBMS Design 1191

be implementation language independent. The final
language necessary to develop a complete FDB nced
only support the fundamental concepts of Object-
Oriented Programming -- that data and mecthods be
encapsulated within the objects that manipulate their
data. Additional implementation language
characteristics include the capability to support multiple
inheritance, provide container classes, support
polymorphic behaviors, and facilitate the usc of references
to objects.

5 IMPLEMENTATION

The first step in using Paradigm Plus was to reverse
engineer the existing C++ code to create class definitions
using the Import feature. There were several problems
with this approach. The main problem was that the
automatic diagram generation produces only attribute
diagrams, no relationships are represented. So diagrams
had to be manually edited in order to show
relationships.

The next step was to create diagrams with the tool,
which proved to be simple and straightforward. Classes
and attributes added to diagrams are automatically
entered into the object repository.

The final stage was to generate code from the
Paradigm Plus object model to create the UniSQL
database and a sampling of tables in Oracle. The goal
was to capture information in Paradigm Plus in a
language independent form, taking advantage of all
information captured in the tool rather than manually
transposing it into a form understood by either DBMS
package (or other DBMS packages that might be used to
implement the final FDB). This goal was made difficult
by the generality of the tool and the syntax specificity of
the specific languages and software packages. For a
design, data types can be described in general terms.
However, for implementation, the code generation utility
must map the general description to a specific data
structure that is valid syntax in the target language. To
generate compilable code, either some language specific
syntax must be entered into Paradigm Plus or the user
must add some type definition semantics and modify the
code generation scripts to interpret the semantics. For
example, entering “string” as a type in Paradigm Plus,
and modifying the code generation to creatc string in
C++and DB_String in UniSQL (an ODBMS package).

6 PARADIGM PLUS LESSONS LEARNED

Overall, the MS Windows version of Paradigm Plus was
useful for creating and maintaining the object model.
Initially both the UNIX and MS Windows versions of
Paradigm Plus were purchased. The UNIX version was

desirable because it allowed multiple users to share the
same object repository. However, it proved slow and
awkward to use. (An improved more robust UNIX
version was issued by the vendor, but unfortunatly, not
within time for the FDB prototype.) As a result, the
UNIX software was changed for an equivalent set of MS
Windows Paradigm Plus software. The lessons learned
below all refer to the MS Windows version.

In the first full load of the database, verification
showed a number of problems resulting from the code
generation. Classes without attributes generated a
warning that no code would be generated. It is a
common design technique to create virtual classes with
no attributes to group related subclasses. This was used
numerous times within the FDB, so a number of classes
did not exist in the generated code, and many other
classes created errors by inheriting from those classes
that were not generated.

The work around for classes with no attributes was to
extract warnings from the output script and generate SQL
scripts to create classes with those names. This was
sufficient to create the prototype. A cleaner solution
would be to modify the Paradigm Plus code generation
script to produce code for the missing classes.

There were a number of problems with the internal
database that houses the object repository. While
updates can be made from the browser, matrix, or the
diagrams, the changes aren’t reflected everywhere. This
problem is clearly documented, but is undesirable. It
was also found that even where the documentation says
the repository will be in sync, it was not always true.
The browser and matrix can be up at the same time and
show class attribute names that are not in sync. This is
a definite bug, as opposed to the above, which is merely
awkward.

When an object repository is updated from the
browser interface, only diagrams that are currently open
are updated. (Protosoft, Inc. 1994) To keep diagrams in
sync with the repository, Synchronize Diagrams must
be run from the Diagrams menu. This option offers
choices when definitions do not agree between the
repository and diagrams. The choices are to change
repository, change diagram or merge. This process is
tedious and does not always produce the expected
results.

There is a problem when an object name has been
changed in the repository and the name change needs to
be reflected in the diagram. The software treats this as
an attempt to create a second class with the same name
and rejects it. To avoid this, make the name change on
all the diagrams where the class appears and then
synchronize to update the repository. This s
inconvenient and tedious especially where the samc
change needs to be made on a number of diagrams.

1192 Cornwell

Other difficultics with the repository were inherent
from the initial reverse engineering of C++ code. There
were classes, attributes, and operations that were dropped
from the design and therefore were never put into
diagrams. They never appeared until the Object Model
and Data Dictionary reports were run. Then a manual
review had to be done. The diagram synchronize
operation makes sure that cverything that is on a
diagram is in the rcpository. There is no inverse
operation to venfy that cverything that is in the
repository is on a diagram. This would be much less of
a problem for a project where all classes were created
dircctly from diagrams rather than through the reverse
enginecring feature.

Finally, when Paradigin Plus saves generated C++
code to files, the name of the file defaults to the first
eight characters of the class name. This convention
causes problems as the first eight characters is often not
enough to uniquely identify a class, hence overwrites
occur. Control files need to be created to map the longer
class names to unique eight character file names.

7 CONCLUSIONS

The Paradigm Plus CASE tool provided sufficient
functionality to create and house the object model for the
FDB. The stated requirements of representation in
formal Rumbaugh/OMT methodology notation,
language independence, and export in multiple languages
were fully met. Complete independence from the
database package was not achieved, as some
implementation decisions for data representation had to
be made to generate correct definitions for the ODBMS.
Nor was the support for spiral development completely
realized as reverse engineering succeeded in importing
only class definitions, not relationships.

REFERENCES

Protosoft, Inc. 1994. Paradigm Plus 2.01 User Guide.
Houston, Texas: Protosoft, Inc.

Rumbaugh, J.T. 1991 Object Oriented Modeling and
Design. Englewood Cliffs, New Jersey: Prentice Hall.

AUTHOR BIOGRAPHY

DONNA L. CORNWELL is a member of the technical
staff at the MITRE Corporation in McLean, VA. She
received a B.A. degree in Early Childhood Education
from the University of North Carolina at Chapel Hill in
1979, and she reccived a B.S. degree in Computer
Science from the University of Maryland in 1986. She
will complete an M.S. degree in Computer Science at
Johns Hopkins University in 1995.

