Proceedings of the 1995 Winter Simulation Conference

ed. C. Alexopoulos, K. Kang, W. R. Lilegdon, and D. Goldsman

CASE TOOL INTEGRATION AND UTILIZATION WITHIN
THE JOINT THEATER LEVEL SIMULATION (JTLS)

Robert L. Wittman Jr.

MITRE Corporation
Ingalls Rd., Bldg. 100, 3rd Floor
Ft. Monroe, VA 23651, US.A.

ABSTRACT

This paper illustrates the initial integration of CASE
technology into the JTLS software lifecycle. The Soft-
ware Engineering Institute's (SEI) software process
maturity model is used to measure the utility of CASE
integration. Current CASE integration focuses on sev-
eral areas within the JTLS software process. The soft-
ware development areas include some of the lower com-
ponents of software production, testing, and configu-
ration management. Areas for future integration in-
clude the upper phases of software production. These
areas include: requirement analysis, software design,
software development scheduling, and quality assur-
ance. The main purpose of this report is to provide
simulation managers a reference point for CASE inte-
gration into their projects.

1 INTRODUCTION

As the Department of Defense struggles to reduce the
costs associated with maintaining legacy software and
developing new software systems, it has endorsed the
use of Computer-Aided Software Engineering (CASE)
tools and environments. This is demonstrated within
the MIL-STD 498 document set with numerous refer-
ences to CASE and the acceptance of CASE generated
specifications and design documents. Organizations
such as the Defense Modeling and Simulation Office
(DMSO), within the Draft DMSO Master Plan, have
specified that CASE technology be used to standardize
the software development processes and produce main-
tainable code

This paper focuses on the application and integration
of CASE technology into an existing DoD simulation,
the Joint Theater Level Simulation (JTLS).

1.1 The SEI Maturity Model

The SEI software process maturity model defines 5 lev-
els of process maturity. The current level of the devel-
opment process directly affects software quality. Soft-
ware developed within a higher level process produces
higher quality software within time and budgeting con-
straints. These levels range from the initial chaotic
level (level 1) to a final optimization level (level 5).
Within each level, there are several definitive char-
acteristics. Table | describes the S levels and their re-
spective key characteristics (Humphrey 1990).

Table 1: Software Process Maturity Levels

Level Key Characteristic

1. Intial Successful project completion
occurs sporadically without
any recorded recipe for suc-
cess

Successful timely project
completion is based on indi-
vidual and not corporate
knowledge

2. Repeatable

3. Defined A defined recorded software
development process architec-
ture

4. Managed Comprehensive process meas-

urement and analysis
Process optimization using
data generated from the level
4 analysis

5. Optimized

The integration of CASE technology within JTLS will
be evaluated on how it affects the JTLS software devel-
opment process. Does the inclusion of CASE add un-
necessary overhead without providing any meaningful
benefits? The criteria used within this paper for eval-

1147



1118

uating CASE tools are: 1) Does it solidify the JTLS
position within the current maturity model level, and 2)
Does it improve the current process to allow movement
to the next level?

1.2 JTLS

JTLS is a joint theater-level simulation model (DISA
1992). It simulates the key aspects of air, land, and na-
val operations of up to 10 sides. Each side has an inde-
pendent asymmetrical relationship with all remaining
sides. Both Monte Carlo and deterministic calculations
provide realistic theater level interactions.

Several applications make up the JTLS simulation
including: (1) The actual combat simulation, the Com-
bat Events Program (CEP). It contains approximately
300,000 lines of SIMSCRIPT IL.5 code. Rolands and
Associates Corporation maintains JTLS as part of the
Modern Aides to Planning Program (MAPP) contract.
(2) The Graphical User Interface (GUI) suite uses ANSI
C and the Motif/X Windows Application Programmers
Interface (API). The Graphical Input Aggregate Con-
trol (GIAC) is the base of these applications and con-
tains approximately 125,000 lines of code. Los Alamos
National Labs (LANL) maintains this code as part of
the Warrior Preparation Center's Common Graphical
User Interface project. (3) The ANSI C based scenario
and terrain database preparation applications.

JTLS development began in 1982 as part of a US-
REDCOM initiative. ~ Original JTLS requirements
specified a two-sided joint military simulation for thea-
ter-level training and analysis. Technical requirements
included software optimization for the Digital Electron-
ics Corporation's (DEC) Virtual Management System
(VMS). Currently, The Joint Warfighting Center, a
Joint Chiefs of Staff J-7 organization, sponsors a JTLS
Project Officer who manages and directs the JTLS Con-
figuration Control Board (CCB). This organization
provides the common direction for JTLS maintenance
and enhancements. Recent technical enhancements in-
clude the X/Motif based GUI and POSIX compliance.

1.3 The JTLS Software Maturity Level

In order to place the JTLS software process within a
specific maturity level, JTLS process characteristics
were compared to characteristics within the process
maturity model (Humphrey 1990). Table 2 shows the
relationship between the Level 3 characteristics and the
contributing organizations within the JTLS process.

Wittman

Table 2: JTLS Level 3 Attributes

Level 3 Characteristics JTLS

A technical resource for con- | The MITRE corpo-
tinued process improvement ration provides this
exists technical service

A defined software develop- DISA provided this
ment process architecture architecture (DISA
1993)
Identification and the use of Rolands & Associ-
a set of software engineering | ates, DISA, LANL,
methods and technologies and MITRE share

in this role

1.4 CASE

Automating the JTLS software development process
with CASE technology offers several benefits. These
include: 1) Automated software process data collection,
2) Faster software development, 3) Improved software
consistency, 4) Improved version control, and 5) A
more robust and intuitive development environment.

CASE tools consist of two categories, "Upper" and
"Lower" CASE tools (Erb 1992). CASE tools focus on
the requirement analysis and design software develop-
ment phases. Some tools provide a graphical represen-
tation of the requirements and design concepts. Code
generated from these designs directly relates to a spe-
cific requirement. This has the potential to cut devel-
opment time and time associated with identifying code,
design, and requirement deficiencies. It is easier to
identify functionality within code employing these tools
because they relate to human language or graphical
representations instead of actual code (Wilde et al.
1992).

Lower CASE tools focus on code generation, de-
bugging environments, and code configuration man-
agement tools. Code generators, many graphically
based, provide standardized code templates. Pro-
grammer provided logic then completes the program.
Graphical debugging environments provide an easy way
to set breakpoints, view variables, etc., while the code is
executing. Configuration management tools provide
revision control, code management, and automated er-
ror tracking. Integrated CASE environments consist of
both Lower and Upper CASE tools in a common envi-
ronment.

2 CASE AND JTLS

CASE integration within JTLS is an evolutionary proc-
ess without specific beginning and ending dates.



CASE Tool Integration and Utilization Within JTLS 1149

Building a set of CASE tools that supports a well-de-
fined software process may take up to five years (Erb
1992). The JTLS development team is now using,
evaluating, and selecting CASE tools that fit into the
development process. Investigation into advanced soft-
ware engineering techniques such as object-oriented ap-
proaches are on-going.

Our evolutionary process relies on a well defined,
SEI level 3, software process. Very simply, the integra-
tion strategy identifies those processes that are: 1) Eas-
ily automated using Commercial Off The Shelf (COTS)
products, and 2) Within the JTLS team's current opera-
tional software skills.

Current CASE integration focuses on several areas
within the JTLS software process. The software de-
velopment areas include some of the lower components
of software production, testing, and configuration man-
agement. Areas for future integration include the upper
phases of software production. These areas include:
requirement analysis, software design, software schedul-
ing, and quality assurance.

2.1 Configuration Management

Currently, the Defense Systems Information Agency
(DISA) representatives customize a COTS database tool
to store, classify, and retrieve Engineering Change Pro-
posals (ECP) and Software Trouble Reports (STR).
This tool stores, manages, and classifies the types of en-
hancements that accumulate over time thereby allowing
JTLS releases based upon functional groupings identi-
fied through trend analysis. Analysis of STR trends,
based on their number and impact, will provide quanti-
tative measurements of the types of errors being docu-
mented. Resources can then be allocated to correct the
problem areas.

Other tools under consideration consist of version
control and code management systems. Several types of
management tools have been investigated inciuding the
UNIX-based Source Code Control System (SCCS).
These types of systems provide version management, re-
vision control, change control, and configuration con-
trol.

Automated capabilities provided by these systems
include: 1) Code check out and check in procedures for
multiple programmers working on the same code, 2)
Merge facilities to incorporate multiple changes, 3)
Partial compilation capabilities to compile only those
files that have changed and the other files that will be
affected by those changes, 4) Version change, access,
and compilation, 5) Restore and code change compari-
sons, and 6) Code commenting upon modification.

2.2 Code Development

Integration of a GUI design and C-based X/Motif code
generation tool eased the porting of 125,000 lines of
GIAC application code to the X/Motif API. The previ-
ous version of GIAC relied on the proprietary SUN-
based XView API. The porting required approximately
one full man-year of effort. This included the learning
curve associated with the programmer's transition from
XView to Motif.

New user interface development also uses the GUI
design and code generation tool. Programmers unfamil-
iar with X Windows and Motif, experience a relatively
short learning curve in producing usable applications
when using this tool. Creating basic X/Motif appli-
cations using menus, scrolling list, and other simple
widgets takes only a few hours as opposed to days with-
out the tool. This allows the programmer's attention to
focus on the task of creating the data manipulation
logic.

2.3 Debugging and Testing

To provide code maintainers with the location of code-
level logic errors COTS based graphical debugging
tools were introduced. Graphical debuggers provide a
“point and click” interface for viewing a source code
representation of the executing software. Setting break-
points, viewing variables, and loading aborted executa-
ble files are all possible with many of these tools. These
tools allow domain area novices to locate and identify
functional errors quickly. The software maintainers
then use this information to make the corrections.

A COTS database tool is used to record functional er-
rors during software testing. Here errors are stored,
categorized, retrieved, and prioritized. Measurements
dealing with the number and type of the errors are for-
mulated to predict future reliability of the tested soft-
ware (Stark 1993).

2.4 CASE Analysis and Design

JTLS continues to evolve functionally, operationally,
and technically (Weber and Wittman 1994). Improved
network modeling including communications, distribu-
tion, and movement networks increase the functional
aspects of the model. Middleware translators providing
data feeds from JTLS to real world C4I systems includ-
ing the Global Command and Control System (GCCS)
enhance operational capabilities. Finally, porting to an
open distributed architecture provides a sound foun-
dation to transition to object-oriented analysis, design
and programming. Upper CASE tools are under inves-
tigation for their usefulness in this transition.



1150

3 CONCLUSION
3.1 CASE Tool Level 3 Defined Process Support

Implemented CASE tools range from debuggers and
code producers to error tracking and reporting database
applications. They fit well within the Level 3 process of
identification and utilization of software engineering
technologies and methods. Rapid prototyping is now
possible with the introduction of Lower CASE tools as-
sociated with the development of X Windows GUIs.
These types of tools drastically reduce the complexity
and time associated with developing a Motif/X Win-
dows GUL

Measurement development for the data collected
during the code and database testing is still incomplete.
However, as these databases are populated, measure-
ments based on the data, will be formulated to provide
software quality relationships.

3.2 CASE Tool Process Improvement

Software quality can be defined as a mixture of internal
and external attributes. Quality characteristics involve
portability, reliability, efficiency, human engineering,
testability, understandability, and modifiability. Attain-
ing Level 4 status involves identifying functions within
the process that affect these characteristics (Davis
1993). For example, modifiability of code is partially
governed by how easy it is to locate a particular func-
tionality within the software. This, in turn, is related to
the coding standards used to create the software. These
standards deal with code documentation, modulariza-
tion, and formatting. By selecting a CASE tool that
produces code adhering to these standards, the code pro-
duced will be formatted, modularized, and documented
in a standardized manner and thus easier to modify.

Reliability is also a characteristic that is strongly
identified with software quality (Davis 1993). By col-
lecting and analyzing data within our CASE database
applications, reliability measurements will be estab-
lished based on the number and type of identified errors.
At this time, we have not collected sufficient data to
form a knowledgeable hypothesis about software devel-
opment errors and if they occur during requirements
analysis, software design or coding.

CASE tools are integral to our move to a level 4
software process. By identifying and establishing
measurements of the relevant data being recorded we
can begin to optimize our software process.

Wittman

ACKNOWLEDGMENTS

I would like to personally thank the entire JTLS devel-
opment team including: Lt Col Bob Bolling (JWFC
JTLS Project Officer), LTC Kevin Brandt (US Army),
Mrs. Ellen Roland (R&A), Mr. Ed Kelleher (R&A), Dr.
Dennis Brockway (LANL), Ms. Paula Stretz (LANL),
LT Christine Donohue (DISA), Capt. Mike Clark
(DISA), Ms. Linda Weber (MITRE), and Mr. Mike
Harraway (Veda) for their commitment to excellence
and pursuit of quality software.

REFERENCES

Defense Information Systems Agency, Defense Sys-
tems Support Organization and Joint Warfare Cen-
ter. 1992. Joint Theater Level Simulation Analysts
Guide: D-J-00013-G. Washington D.C. DISA.

Department of Defense, United States of America.
1994. Military Standard Software Development and
Documentation. MIL-STD-498. Department of De-
fense United States of America.

Davis, A. M. 1993. Software Requirements: Objects,
Functions & States. Revision. New Jersey: Pren-
tice Hall.

Erb, D. M. 1992. Computer-Aided Software Engineer-
ing (CASE): A 15-Year Vision and Recommen-
dations. MITRE Technical Report 92W0000104,
MITRE Corporation, McLean, Virginia.

Humphrey, W. S. 1990. Managing the Software Proc-
ess. Boston, MA: Addison-Wesley Publishing Com-
pany, Inc.

Stark, G. E. 1993. Software Reliability Measurement
Concepts, Techniques, and Tools. American Insti-
tute of Aeronautics and Astronautics, Inc.

Under Secretary of Defense, Acquisition and Tech-
nology. 1995. Department of Defense Modeling and
Simulation Master Plan. Draft. DoD 5000.59-Paa.

Weber L. and Wittman R. 1994, The Joint Theater
Level Simulation Combat Events Program Evo-
lution. MITRE Technical Report 94W0000103,
MITRE Corporation, McLean, Virginia.

Wilde N. et al. 1992, Locating User Functionality in
Old Code. In Proceedings of the Conference on
Software Maintenance 1992, 200-205. Institute of
Electrical and Electronics Engineers, Inc., Los
Alamitos, California.

AUTHOR BIOGRAPHY

ROBERT L. WITTMAN, JR. is currently a Senior
Software Engineer for The MITRE Corporation and
holds a BS in Computer Science from Washington
Status University and an MS in Computer Sci-



CASE Tool Integration and Utilization Within JTLS

ence/Software Engineering from The University of West
Florida. He has been working on-site in support of the
Joint Chiefs of Staff (JCS) Operations and Interoper-
ability Directorate (J-7) Joint Warfighting Center since
September of 1992. During this time, he has authored
three MITRE Technical Reports relating to the Joint
Theater Level Simulation requirements, evolution, and
network bandwidth requirements. He has been involved
in distributed X Windows and POSIX based application
analysis, specification, design, implementation, and
maintenance for the past 5 years.

The views, opinions, and/or findings contained in
this report are those of Mr. Robert L. Wittman Jr. and
should not be construed as a MITRE Corporation or
Government position, policy, or decision unless desig-
nated by other documentation.

1151



