Proceedings of the 1995 Winter Simulation Conference
ed. (. Alexopoulos, K. Kang, W. R. Lilegdon, and D. Goldsman

A DISTRIBUTED SIMULATION MODEL OF AIR TRAFFIC
IN THE NATIONAL AIRSPACE SYSTEM

Eric L. Blair
Frederick P. Wieland
Anthony E. Zukas

The MITRE Corporation
Center for Advanced Aviation System Development
7525 Colshire Drive
McLean, Virginia 22102-3481, U.S.A.

ABSTRACT

The study of air transportation systems is a prime
opportunity for the application of simulation modeling.
The complexity and highly interdependent nature of the
national air transportation system makes it difficult to
study, even through simulation. As a result, models of
this system are typically large and require long run
times. This paper reports on a model designed to apply
the emerging technology of parallel/distributed
computing to facilitate the rapid analysis of national-
scope air transportation systems. The model makes
extensive use of the SPEEDES distributed simulation
support software developed at the Jet Propulsion
Laboratory by Dr. Jeff Steinman.

1 INTRODUCTION

An important measure of performance for air travel is
delay. Delays costs the travelers time and the airlines
money. This is a critical issue for the transportation
industry in today’s highly competitive (and mostly
unprofitable) business environment. Although the
“friendly sky” may appear to be unbounded, the US air
traffic system has a finite capacity with significant choke
points at major airports. Since the commercial airlines
use the same aircraft to make a sequence of flights, a
delay on one flight leg will propagate a delay on the
connecting flights. Most experienced air travelers have
found ample opportunity to practice their language skills
while waiting for the arrival of the flight being executed
by the aircraft assigned to their flight.

Because the air transportation system is large and
complex, simulation models developed to study it are
large and typically require powerful computers and long
run times. This paper reports on a model development
project that has successfully employed the emerging
technology of parallel/distributed simulation to the
design and implementation of a national-scope air traffic

1116

simulation model.

Section 2 describes the system that is the subject of
this modeling effort, the National Airspace System.
Related work in this domain of application is reviewed in
Section 3. This model relies heavily upon object-
oriented design and the SPEEDES (Steinman 1994)
software supporting parallel/distributed simulation.
These aspects of the model are presented in Sections 4
and 5. Section 6 continues the discussion of our model
and its distribution scheme. Section 7 gives preliminary
performance results for the model with respect to
execution times as a function of the number of
processors on which the model is run. Finally, Section
8 suggests some appropriate conclusions from our work.

2 THE NATIONAL AIRSPACE SYSTEM

The National Airspace System (NAS) can be described as
the collection of airports and airfields, navigation fixes,
sectors, and air routes that facilitate air travel across the
continental United States. The vast majority of air
traffic, both commercial and general aviation (GA),
follows paths in the network of routes defined by airports
and navigation beacons. Flight paths intersect at fixes
that are defined by ground based navigation aides. All
flights in the continental US are conducted under the
control of the Federal Aviation Administration (FAA)
Air Traffic Control (ATC) services. All commercial and
most business aircraft are required to fly under instrument
flight rules (IFR). The FAA provides a number of
services for IFR flights including the approval of flight
plans and the issuance of instructions that assure proper
separation between aircraft will be maintained. These
control instructions involve the assignment of route,
flight level, speed, and admittance to zones of airspace
referred to as sectors.

The network of air routes is defined by paths
projecting straight lines on the earth’s surface and
connecting navigation fixes. A fix is the projection of

Distributed Simulation of Air Traffic 1117

an imaginary point up into space over a land-based
navigation beacon. Two types of fixes deserve special
attention as they serve to organize the flow of aircraft
into, and out of, an airport. The “arrival fix collects
incoming aircraft as they approach the airports for a
landing. The *‘departure fix” is a point from which
departing aircraft will span-out to join connecting air
routes. The purpose of arrival and departure fixes is to
ensure proper spacing between aircraft on the path
segment between the fix and the airport.

Sectors are irregularly defined three-dimensional
volumes of space that are constructed to distribute the
ATC workload so that a sector can be managed by a
single controller (or controller team). Sectors can be
stacked on top of each other. All air routes pass through
contiguous sectors. A sector that covers an airport is
called a “terminal air space.” Sectors that cover the
airspace between and around terminal sectors are referred
to as “'en route sectors’ and are controlled by one of 20
en route ATC centers. Sectors have capacities defined as
the number of aircraft that can be simultaneously resident
in the sector; this number is determined by the size of
the sector and complexity of the route structure within it.
To enter the next sector, a pilot must receive permission
from the controller working the requested sector.
Transitioning from one sector to another is referred to as
a “hand-off” since it is coordinated among the pilot and
the controllers of the departed and entered sectors.

From the above description, it is clear that if we
ignore the second-order congestion effects induced by
separation requirements within a sector, the NAS can be
modeled as a network of queues. Each airport, sector,
and fix is a queue node. Links between nodes are defined
by the air routes that pass sequentially through sectors en
route from one airport to another. Airports serve as
source nodes for originating flights, service nodes for
continuing flights, and sink nodes for terminating
flights.

The scope of the NAS is of some interest. There are
approximately 16,000 airfields in the continental US,
where an “airfield” is defined as any place where an
airplane can take off and land. Airfields run the gamut
from crop-duster sites to major airports like Chicago
O’Hare. Of the 16,000 airfields, approximately 1,000
handle all of the commercial carrier air traffic; the top
500 most active of these handle 80% of all the GA
traffic. Of the top 500 GA airfields, there are only about
60 airports where resource contention cause major arrival
or departure delays for either commercial or GA flights.
Additionally, there are over 700 airspace sectors in the
NAS. A typical day’s air traffic consists of 35,000
flights by the airlines and from 10,000 to 16,000 GA
and military flights.

3 RELATED WORK

A number of different models have been constructed to
study the NAS or subsections of it; they differ with
respect to analysis objectives, level of detail and
embedded assumptions. The Reorganized ATC
Mathematical Simulator (RAMS) model (Czech and
Crook 1994) is primarily geared toward analysis of air
traffic control operations and training of air traffic
controllers. The principal performance measure derived
from the RAMS model is the level of air traffic
controller workload, defined as the percentage of time,
over an hour interval, that a controller is busy handling
ATC operations. The RAMS model contains very
detailed information about the geometry of airspace
sectors, the path of aircraft through the airspace, and the
approach paths to airports. The RAMS model could, for
example, be used to determine the capacity of individual
airspace sectors. RAMS was developed for Eurocontrol
applications.

SIMMOD (Hargrove-Gray 1994) is another example
of a complex air traffic simulation model. It was
developed by CACI and American Airlines under the
sponsorship of the FAA. SIMMOD is a very
appropriate tool with which to study a single airport or
set of closely located airports (e.g., the New York City
area). It contains a detailed model of the physical layout
of each airport and surrounding airspaces included in the
study. Airport and airspace description are all provided
through data files (CACI 1991). The volume of data
required to model an airport such as Dallas-Fort Worth's
DFW is quite large. SIMMOD has been used very
effectively by American Airlines (among others) to
model operations at hub airports. Due to the large data
requirements and the detail of activity modeled,
SIMMOD is less effective for the analysis of NAS-scope
studies.

The National Airspace System Performance Analysis
Capability (NASPAC) has been under development by
the MITRE Corporation since 1987 (Frolow and Sinnott
1989, Millner 1993). NASPAC is a low-resolution
model of the entire NAS. Although all flights are
represented in a NASPAC run, only 58 airports are
modeled in detail; these are the top 50 airports with
respect to volume of IFR operations plus 8 smaller
airports with airspace overlapping with one or more of
the top 50. The primary purpose of NASPAC is to
measure the delays and to capture the “delay ripple”
caused when aircraft that are delayed cause further delays
“downstream”™ on the flights in their itinerary.
Supporting software modules are used to create air routes
and itineraries (lists of connecting flights) for each
simulated aircraft off-line from the simulation.

1118 Blair, Wieland, and Zukas

The simulation models cited aubove are all designed
and programmed to be exccuted sequentially on a single
processor. To our knowledge, there is no model of air
tratfic, other than the work presented in this paper,
designed to be run as a parallel/distributed simulation.

4 MODELING THE NAS WITH OBJECTS

Computer simulation has historically been an area in
which object-oriented technology has been used
effectively to exploit the analogy between objects in the
real word and model components implemented as
software objects. The simulation programming language
SIMULA (Birtwistle and Palme 1974) is often cited as
the first object-oriented language. The elements of the
NAS are well suited to this approach. Our model
consists of a number of objects programmed in C++.
These objects can be classified into two distinct
categories that correspond to the traditional concepts of
“permanent” and ‘“‘temporary” entities used by most
simulation software. Here the temporary objects are
associated with the aircraft and the information necessary
to determine its path through the NAS network.
Permanent objects correspond to elements of the network
itself (airports, sectors, and fixes), and collections of
aircraft (queues). Each NAS object is composed of data
(attributes) and methods (functions that access or change
the data). Simulation events are associated with the
NAS objects and, due to the conventions of SPEEDES
(reference Section 5), are also objects themselves. The
major objects and events are described below. A number
of supporting objects from which these objects are
derived (i.e., base class objects) are not discussed
(reference Blair et al. 1994 for details). It should also be
noted that to a large degree, the design of our NAS model
objects was strongly influenced by the operational
concepts of the SPEEDES software that implements
parallel/distributed simulation.

4.1 TEMPORARY OBJECTS

The NAS simulation has three objects for which
instances are created and destroyed many times within the
simulation run. These objects are all associated with
management of an aircraft as it executes tlights in its
itinerary.

4.1.1 The aircraft Object

The primary temporary object is the aircraft. The aircraft
object is the basic token used to represent traffic as it
flows through the NAS network. Each aircraft object
contains information pertaining to the aircraft’s identity,
state, flight plan. and reference time values.
Identification includes the associated airline company (if
any) and the equipment type (e.g.. Boeing 737, 777,
etc.). Aircraft state descriptors are speed and status; the
status attribute is an integer used to identify different

activity states such as “in-flight,” “at-gate,” “holding,”
etc. Each aircraft has an itinerary attribute (an object)
that lists the sequence of flights that are to be flown by
this aircraft. A flight attribute (also an object) defines
the flight path as described below. Reference time values
are used to calculate utilization and delay times associated
with aircraft, airports, sectors and fixes.

4.1.2 The flight Object

The flight object is analogous to a flight plan in the real
world. The flight object indicates the sequence of fixes
and sectors to be visited between origin and destination
airports and determines an aircraft’s routing through the
NAS queueing network. It consists of an ordered set of
records. Each record is a quad-tuple composed of a
reference to a NAS permanent object (airport, fix, or
sector), an integer key identifying the NAS object type,
and two real valued numbers determining the occupancy
time for the NAS object and the time to the next NAS
object.

4.1.3 The itinerary Object

The itinerary object is a list of sequential flights that are
to be executed by a single aircraft. It contains an ordered
set of records, with each record defining a flight by the
origin and destination airports. Flights in the model (and
the real-world NAS) can be divided into two groups:
commercial and GA. Commercial flights are flown by
the airline carriers (e.g., American, Delta, Southwest,
etc.) and are listed in the Official Airlines Guide (OAG).
GA flights are made by private pilots typically in
smaller private aircraft. Military flights are grouped with
GA traffic. The concept of the itinerary object was
introduced to accommodate a more accurate modeling of
airlines operations in which flights are scheduled so that
they can be flown by the same aircraft. This captures the
ripple effect caused by a delayed arrival inducing a delayed
departure of the next flight for a commercial aircraft. GA
flights do not typically dove-tail flights and are modeled
as independent activities. GA aircraft object will have an
itinerary that references a single flight.

Four time value attributes are included in the itinerary
object to be used to compute flight delays. These
attributes store scheduled and actual departure and arrival
times. Scheduled times are taken from the OAG for
airline flights. For GA flights, the scheduled departure
time is generated randomly (as described below) and the
scheduled arrival time is computed by adding the
estimated undelayed travel time.

4.1.4 Generating Itineraries and Flights

Commercial flights from the OAG are grouped into
itineraries by an off-line program originally developed for
the NASPAC simulation model. This program attempts
to match flights for the same carrier and equipment class

Distributed Simulation of Air Traffic 1119

that could logically be scheduled in sequence. That is,
the scheduled arrival of the first flight must precede the
scheduled departure of the second by a minimal period of
time at the same airport. The period of time between
flights is referred to as the “‘turn-around time” and varies
from airline to airline and airport to airport. Itineraries
are sorted by the airport of origin for the first flight; one
file is constructed for each modeled airport and itineraries
are listed in increasing order of first flight scheduled
departure time. The initial scheduled departure of each
commercial aircraft is introduced into the simulation as
an “external” event.

GA flights (an itinerary of a single flight) are
generated during the simulation at each airport. The
process that generates these flights is a non-
homogeneous Poisson process for which the rate
parameter varies with each simulated hour. The hourly
rates were determined from an analysis of 220 days of
actual traffic data and are specific for each airport.

The flight object is constructed before an aircraft is
scheduled to takeoff from the origin airport. The
sequence of NAS objects (fixes and sectors) that the
aircraft will visit en route to the destination airport and
the transit times for each are read from a table that is
loaded into memory at simulation start-up.

4.2 PERMANENT OBJECTS

The permanent objects of our simulation model all have
geometric and geographical significance. They represent
the service/queue elements of the NAS queueing
network.

4.2.1 The airport Object

The airport object provides data and behavior necessary to
initiate and terminate flights. Commercial flights are
introduced through external events as described above.
Each such external event is invoked by an itinerary read
from an airport-specific file. Itinerary and aircraft objects
are created; the itinerary is attached to the aircraft and the
departure for the first flight is scheduled. Aircraft that
pass through an airport as part of their itinerary are stored
in a list, which is part of the airport object, where they
wait until the scheduled departure time or until a
minimum turn-around time has expired (for those aircraft
that are behind schedule).

Each airport object maintains two queues and two
service processes: one set for arrivals and one for
departures. Arrival and departure operations can be
carried out simultaneously. Arrival and departure rates
are determined jointly and dynamically using an
algorithm that reflects the real-world capacity allocation
process used to balance the arrival and departure queues.
This algorithm was taken from the NASPAC model and
is documented in (Frolow and Sinnott 1989).

Although all airports share the same base object
class, there are three derived types. Each is used to

permit a different level of detail in describing airport
operations and measuring performance. The “detailed”
airport has well defined capacities, limited queue space,
and performance statistics are collected for utilization and
delays. The top 58 busiest airports are modeled as
detailed airport objects. The “generalized” airport has
infinite capacities and infinite queue size; no queueing
develops and no facility related delays are recorded. The
top 500 busiest airports in terms of GA traffic (excluding
the 58 detailed airports) are modeled as generalized airport
objects. All remaining commercial traffic directed
from/to airports not included in the above 500 are
handled by a set of 20 “source-sink” airport objects.
Source-sink airports are similar to generalized airports
except each handle traffic from/to multiple airports. This
is particularly useful for introducing and terminating
international flights.

4.2.2 The sector Object

The sector object is a multi-server queueing system. It
has a finite capacity intended to reflect workload
constraints for air traffic controllers. When a sector is
full, aircraft seeking to enter the sector are blocked and
must remain in the NAS object that they are currently
occupying. The time to cross a sector (i.e., “service
time”) is included in the information contained in the
aircraft object’s flight object. The sector object has
attributes used to describe its state and measure its
utilization. There are over 700 en route sectors in the
NAS model.

4.2.3 The fix Object

The NAS model’s fix object provides the function of
separation of aircraft on arrival to, and departure from, an
airport. By spacing aircraft, they also determine the
arrival and departure rates. In the real world, arrival and
departure fixes are used to match these rates with airport
capacity and to insure minimal safe in-trail separation
between aircraft. The fix object is a single server queue.
The service process in the model corresponds to the act
in the real NAS of an aircraft passing over the fix and
progressing far enough along the aircraft’s path to
maintain a specified miles-in-trail separation restriction
for traffic over the fix. Arrival fix objects enforce miles-
in-trail restrictions for aircraft converging on an arrival
approach. Departure fix objects enforce miles-in-trail
restrictions for aircraft taking off and approaching a span-
out point. The service time is determined by the miles-
in-trail restriction and the aircraft object’s speed.

4.3 Model Mechanics

The conceptual design underlying the NAS simulation
model is that of a queueing network. Queue nodes in the
network are the airport and sector objects. An airport
operates as a pair of G/G/1 queues, one for arriving and

1120 Blair, Wieland, and Zukas

one for departing traffic. Airspace sectors function as
single G/G/n queues. This simple, high level conceptual
model, that of a network of queues describing the various
clements of the NAS, is remarkably clegant for capturing
the necessary delays and the delay ripple cffect of the
buildup of delay for commercial aircraft. There are, of
course, other details in the model, including a truncated
Gaussian distribution used to model the uncertainty in
gate push-back times, parameters for describing taxi-in
and taxi-out times at the various airports, provisions to
model “ground-hold™ programs instituted for flow-control
purposes, and means with which to adjust airport and
sector capacities for weather patterns that develop during
the day.

5 SPEEDES

Synchronous Parallel Environment for Emulation and
Discrete-Event Simulation (SPEEDES) is software that
enables a parallel simulation to be executed in distributed
mode on a network of UNIX workstations. SPEEDES
was developed at the Jet Propulsion Laboratory by Dr.
Jeff Steinman and is reported in (Steinman 1991, 1992,
1993, 1994). A port of SPEEDES to the Intel Paragon
parallel computer has been recently completed.

SPEEDES provides a logically correct parallel
simulation environment, meaning that the results of
running a simulation in parallel on multiple processors
is the same as that produced by running the same
simulation as a serial program on a single processor. A
number of algorithms (i.e., synchronization protocols)
have been developed to produce logically correct
simulations. SPEEDES implements several
synchronization algorithms from the class of algorithms
described as optimistic.

The unit of control in a parallel simulation is the
logical process (LP). Each LP executes a set of events
(associated with some physical process of the system
being simulated). Logical processes are software entities
and are distributed among the computer processors of the
network (or parallel computer) for execution. Events can
be created by one LP for execution by another LP. In
this case, the arguments to the event routine are packed
into a message and sent to the target processor. Under
this scheme, it is possible for the individual LP clocks
to get out of synchronization; when this happens, an
event message can arrive at an LP scheduled for
execution in the LP's past. Optimistic protocols solve
this problem by undoing events executed out of sequence
and starting over with the clock reset to the time of the
precipitating event. Since erroneously executed events
may have scheduled other events, “undoing” may require
the chasing down and correction of many cascading
events. This process of undoing events is called
“rollback.” There are several strategies that have been
developed to reduce the burden of rollback including
Time Warp (Jefferson 1985), Moving Time Windows
(Sokal et al. 1988), Breathing Time Buckets (Steinman

1991), Breathing Time Warp (Steinman 1993) and the
Synchronous Parallel Simulator (Peterson and
Chamberlain 1993). SPEEDES supports all of these
except Moving Time Windows. The SPEEDES
software is described in detail in (Steinman 1994).

6 DISTRIBUTING THE SIMULATION

The parallel computational model provided by SPEEDES
differs sharply from that underlying most other
distributed simulation protocols; this difference we view
as a strength. The standard view is that the physical
model is decomposed into a ser of logical processes
(LPs), each of which contains methods that describe the
events acting upon the LPs (see, for example, Fujimoto
1990). This computational model is often implemented
using the object-oriented paradigm. SPEEDES presents
a radical departure from this standard model. With
SPEEDES, the LPs and the events that act upon them
are separated into different objects. The object that is
conventionally associated with the LP is called the “data
object,” because it contains the state data that must be
saved and restored during processing and rollback. The
data object contains methods to access, modify, and com-
pute simple functions on the data. The object that is
created to facilitate the eveni is called, appropriately
enough, the “‘event object.” This object contains the
main logic for the event, including the ability to access
its associated data object, change its state, schedule other
events, and write output to files or output devices.

In the SPEEDES computational model, the data
objects are unaware that they are part of a simulation.
They do not contain the notion of simulation time, and
they do not schedule events for other objects. This
separation of the “data” from the “events” is actually a
strength. The data objects could easily be part of a
database system as well as a simulation system; because
simulation requires a enormous amount of data, the same
objects can be reused for both purposes without recoding
or reimplementing. New events can be defined without
recompiling the data objects (provided that the new
events do not add new data requirements to the data
objects).

The function and coordination of the data and event
objects are described by a SPEEDES diagram (Figure 1).
The operation of the arrival and departure fix object has
been omitted to simplify the exposition. The fix object
can be modeled as a sector object with a capacity of one.

The SPEEDES diagram shows the two data objects
(one for airports, one for sectors) as rectangular boxes.
The event objects are shown as the octagonal boxes.
The association between the events and the data objects
are shown by a thin line connecting the two; if an event
schedules another event, there is an arrow whose tail is
the scheduling event and head is the scheduled event. The
arrow is labeled with the lookahead value of the event;
lookahead is the minimum time difference between the
simulation time at which the message is created (*‘send

Distributed Simulation of Air Traffic 1121

time”) and the simulation time at which the event is to
be executed (‘“‘receive time”).

The events surrounding the airport data object are
responsible for departures and arrivals at the airport, as
well as the generation of GA flights. The events
surrounding the sector data object are all associated with
the sector-to-sector hand-off protocol. If an aircraft is not
delayed, then a series of handle requests event
messages pass the aircraft from one sector to another.
When a delay is encountered, a handle reject event is
scheduled for the “‘exited” sector and an inspect queues
event message is sent to schedule this event for the
“entered” sector. When the “‘entered” sector is finally
clear, a handle accept event message is sent to the
“exited” sector to schedule the immediate release of the
aircraft.

The arrows are coded to show which NAS objects are
affected by each event. Events may be scheduled by one
NAS object for the next object to be visited by the
aircraft; these events are indicated by the solid line
indicating the flow of an associated event message.
Sometimes an event message flows from a next-to-be-
visited NAS object to a currently visited object. This is
the case when an aircraft is denied entry into the next
sector; the arrow associated with this message is shown
as a heavy dark line. When an event is scheduled by the
current NAS object for itself, the arrow is shown as a
light gray line.

There are three factors that are critical in determining
the success of a parallel/distributed simulation model.
They are event granularity, degree of LP interdependency,
and workload balancing. Granularity refers to the relative
time to process an event as compared to the time to pass
event messages between processors. Granularity is
largely a property of the system being modeled and is not
easily altered by the implementation without
significantly impacting the model detail and fidelity.
Independence among LPs can, however, be greatly
affected by model design. The use of a “geographic
region” concept in our model is used to organize load
balancing. The transfer of aircraft among NA S objects
belonging to the same region is accomplished without
constructing and sending a message from one physical
processor to another. External messages (from one
processor to another) only need to be sent when an
aircraft leaves a NAS object located in one region to
enter a NAS object located on another processor.

For the NAS model, the airspaces associated with the
20 Air Route Traffic Control Centers (ARTCCs) provide
a natural scheme with which to regionalize. If each LP
corresponds to an ARTCC, then the simulation can be
distributed among up to 20 physical processors. With
less than 20 physical processors, load balancing can be
achieved by grouping ARTCC regions for assignment
based on an even distribution of the estimated traffic
levels.

SCT

I Handle Reject l

0 ! Sector SCT
Handle Accept)—— Object (Handle Request

0 —
Inspect Queues i SCT
MFT £ i : P |_)____I o 0

0 f SCT o . |
Airport =
Arrival Object
MFT Z
J NPT Itineraries
~ Schedule GA J........ o from OAG

Denotes an event scheduled for the next
resource on the airplane's itinerary.

NAS SCT = Sector Crossing Time

MFT = Minimum Free Time

-------------------- Denotes an event scheduled for 'this' NAS

resource, i.e. an event scheduled for self.

ADT = Adjusted Departure Time

m——— Denotes an event scheduled for the previous NPT = Nonhomogeneous Poisson

NAS resource, i.e. the one the airplane is exiting.

interarrival Time

Figure 1. Software Architecture of the System, Shown as a SPEEDES Diagram.

1122 Blair, Wieland, and Zukas

7 PERFORMANCE RESULTS

The objective of a parallel/distributed simulation model
is to reduce run times by distributing the computation
over a number of processors; the more processors, the
smaller the run times. A very successful parallel
implementation will show run times that are inversely
proportional to the number of proccessors, e.g., going
from one to two processors results in run times that are
half as long. This behavior is referred to as “scalar” or
“linear.” However, as more processors are added, the
ratio of time spent executing events to that spent
processing messages must decrease and performance will
degrade, resulting in sub-scalar behavior. Figure 2
displays a graph of the run times for the simulation of a
single NAS day using from one to nine processors.
These results are preliminary and lack precision.
However, they clearly demonstrate a decrease in run time
with an increase in the number processors used. The
excessively high results for four and five processors is
believed to be due to poor load balancing. In each case
the same scenario was used with the same random
number seeds. The scenario included over 50,000
flights. Employing nine processors resulted in better
than 50% reduction in run time compared with a serial
execution on a single processor. A much more complete
review of performance issues, including discussion of all
five protocols available with SPEEDES, is presented in
(Wieland et al. 1995).

560 ,
510
460
410
360 |
310 1

260

Run Time (secs)

Number Processors

Figure 2. Simulation Run Time as a Function of the
Number of Processor.

8 CONCLUSIONS

We found the use of parallel/distributed simulation
methods to be highly productive for our application to
air traffic modeling. Preliminary results predict that we
will be able to run a NAS day simulation in less than 3
minutes on a network of less than 20 SUN workstations.
This has three implications for future work. First, a
small run time per replication makes it practical to
conduct experiments with many replications; this allows
greater exploration of alternatives in performance studies,

better precision of simulation results and assessment of
system and sample variability. Secondly, by making the
run times smaller, we significantly reduce our response
time with respect to undertaking new studies; this makes
simulation a much more versatile tool for systems
analysis. Thirdly, the present model, although quite
large, is course grained with respect to the detail of
representation of air traffic control and traffic flow
management operations. Increasing the detail will
increase the computation. The present distributed
simulation model provides a base from which to build
more complex models. There is adequate room for
increasing the level of modeled scope and detail while
still satisfying practicality constraints on run time.

A few comments regarding model structure are in
order. First, it is SPEEDES-specific; a design for
another parallel/distributed protocol would probably look
very different. Secondly, the SPEEDES induced model
structure is substantially more complex than a sequential
model design such as that of NASPAC. We feel that the
performance gain is worth the pain. SPEEDES is a
remarkably fast and versatile simulation system. We
have found it to be robust in the presence of dynamic
memory operations, both in the formulation of messages
and in constructing a data object’s state. The
incorporation of multiple synchronization protocols
within SPEEDES allows for easy exploration and
selection of the best protocol for a specific model and
study scenario; the options available exhibit a wide range
of performance characteristics. Although the SPEEDES
computational model differs from the more conventional
approach proposed by the parallel/distributed simulation
community, the differences allow for more flexibility in
the design and development of a simulation.

Finally, we observed that performance is greatly
increased by introducing look-ahead in the scheduling of
events. This is not a new conclusion, but we found it to
be very relevant to our model. The most obvious way to
affect a sector-to-sector hand-off would be to send a
“‘request” message to the next sector object requesting
access; this message would be followed by a “‘response”
message from the next object indicating acceptance or
rejection. The elapsed simulation time between these
messages is zero. This query process induces a strong
dependency between the associated LPs seriously
degrading concurrent processing. Because such hand-offs
are a dominant part of the NAS simulation, this is an
important design consideration. Thus, our events were
constructed to anticipate future sector hand-offs and to
assume that the hand-offs were successful, unless told
otherwise by a handle reject message. The presence of
these extra events, which are due to the general paradigm
of parallel/distributed simulation, adds code to the model
implementation, requires more time for verification, and
increases the burden for maintenance and documentation.
This extra effort is worth the price only if the
performance increase is large.

Distributed Simulation of Air Traffic 1123

ACKNOWLEDGMENTS

The authors would like to acknowledge the contributions
of Jeff Steinman of JPL who was instrumental in
providing access to the SPEEDES software and assisted
in the crafting of our application to fit the SPEEDES
computation model. We would also like to thank Ron
Haggarty, David J. Chadwick, Myra Jean Prelle and
Edward H. Bensley of the MITRE Corporation for their
encouragement, insight, and general guidance.

REFERENCES

Birtwistle, G. and J. Palme. 1974. SIMULA Language
Handbook. Swedish National Defense Institute,
Stockholm, Sweden.

Blair, E. L., F. P. Wieland, and A. E. Zukas. 1994. The
Detailed Policy Assessment Tool (DPAT): A Parallel
Simulation of Capacities and Queueing Delays in the
National Airspace System. MITRE Technical Report
MTR 94W200, McLean, VA.

CACI Products Company. 1991. SIMMOD release 1.2
User’s Manual.

Czech, H. C., and 1. Crook. 1994. RAMS: A Flexible
Modeling Tool for the Simulation of ATC
Environments in Europe via the Application of
Object-Oriented Technology, In Simulation
Conference 20, CACI, Inc. Washington, DC.

Frolow, I. and J. H. Sinnott. 1989. National Airspace
System Demand and Capacity Modeling. In
Proceedings of the IEEE, 77:1618-1624.

Fujimoto, R. M. 1990. Parallel Discrete-Event
Simulation. Communications of the ACM 33:30-53.

Hargrove-Gray, B. 1994. SIMMOD. In Simulation
Conference 20. CACI, Inc. Washington, DC.

Jefferson, D. 1985. Virtual Time. ACM Transactions on
Programming Languages and Systems 7:404-425.

Millner, D. C. 1993. Design of the NASPAC
Simulation Modeling System. MITRE Technical
Report MTR 92W 135, McLean, VA.

Peterson, G. D. and R. D. Chamberlain. 1993.
Exploiting Lookahead in Synchronous Parallel
Simulation. In Proceedings of the 1993 Winter
Simulation Conference, ed. G W. Evans, et al., 706-
712.

Sokal, L. M., D. P. Briscoe, and A. P. Wieland. 1988.
MTW: A Strategy for Scheduling Discrete
Simulation Events for Concurrent Execution. In
Proceedings of the SCS Multiconference on
Distributed Simulation, ed. B. Unger and D.

Jefferson, 19:34-42.

Steinman, J. S. 1991. SPEEDES: Synchronous Parallel
Environment for Emulation and Discrete Event
Simulation. In Advances in Parallel and Distributed
Simulation, SCS Western Multiconference, ed. V.
Madisetti, D. Nicol, and R. Fujimoto, 95-103.

Steinman, J. S. 1992. SPEEDES: A Multiple-
Synchronization Environment for Parallel Discrete-
Event Simulation. International Journal in Computer
Simulation 2:251-286.

Steinman, J. S. 1993. Breathing Time Warp. In
Proceedings of the 1993 Workshop on Parallel and
Distributed Simulation (PADS93), ed. R. Bagrodia
and D. Jefferson, 109-118.

Steinman, J. S. 1994. SPEEDES User's Guide, Beta
Version 2.0. The MITRE Corporation and the Jet
Propulsion Laboratory.

Wieland, F. P., E. L. Blair, and A. E. Zukas. 1995.
Parallel Discrete-Event Simulation (PDES): A Case
Study in Design, Development, and Performance
Using SPEEDES. In Proceedings of the 1995
Workshop on Parallel and Distributed Simulation
(PADS95). 103-110.

AUTHOR BIOGRAPHIES

ERIC L. BLAIR is a Lead Engineer in the Modeling
and Analysis Technology Department of MITRE’s
Center for Advanced Aviation System Development
(CAASD). Prior to joining MITRE, he held faculty
positions at North Carolina State University, Rensselaer
Polytechnic Institute, and Texas Tech University.

FREDERICK P. WIELAND is a Senior Scientist
in the Modeling and Analysis Technology Department of
CAASD. He has been closely associated with the field
of parallel/distributed simulation since his participation
as a member of the Time Warp development team at the
Jet Propulsion Laboratory.

ANTHONY E. ZUKAS is a Lead Engineer and
Group Leader in the Modeling and Analysis Technology
Department of CAASD. Tony has a broad background
in systems analysis and model design. Prior to joining
MITRE, he participated in software development at
UNISYS and Scientific Applications International
Corporation.

