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ABSTRACT

This paper illustrates the use of the simulation-
optimization technique of response surface methodology
(RSM) in traffic signal optimization of urban networks.
It also quantifies the gains of using the common random
number (CRN) variance reduction strategy in such an
optimization procedure. An enhanced RSM algorithm
which employs conjugate gradient search techniques
and successive second-order models is presented instead
of the conventional approach. An illustrative example
using an urban traffic network exhibits the superiority of
using the CRN strategy over direct simulation in
performing traffic signal optimization. The relative
performance of the two strategies is quantified with
computational results using the total network-wide delay
as the measure of effectiveness (MOE).

1 INTRODUCTION

In many simulation studies the analyst is interested in
exploring the settings of the non random inputs, called
the factors, to yield an optimal output, called the
response.  For this purpose, simulation runs are
performed at different factor levels, to investigate the
effects of the factors on the response. The analyst then
attempts to estimate a metamodel of a selected response,
that is, a linear or non-linear model of the mean
response in terms of the factors. This estimated
metamodel is used to perform a sequential search in an
attempt to find the optimal (or near optimal) value for
the response. This process of achieving optimality of
responses will be referred to as the simulation-
optimization technique. The sequential search
employed by such techniques depend extensively on the
estimation of the metamodel parameter. The quality of
such a search depends upon the quality of estimation
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of these parameters. Since this procedure assumes
stochastic nature of responses, the estimates of the
unknown parameters of such metamodels inherit certain
amount of variability. The quality of these estimates is
characterized by their variance. Reduced variance of
these estimates suggests improved search directions for
the optimization procedure.

Variance reduction techniques (VRT) try to reduce
the variance of the estimates of interest. Among the
various correlation-induction techniques used as VRT,
such as the common random number strategy, antithetic
variates, control variates, etc., the focus of this paper is
on the use of the common random number strategy.

The goal of this paper is to demonstrate the use of
common random number (CRN) strategy in the
simulation-optimization technique of response surface
methodology (RSM). After providing a theoretical
framework illustrating the superiority of the using
common random numbers over direct simulation in
RSM studies, this idea is demonstrated with illustrative
examples on a sample urban network. Quantitative
gains of using the CRN strategy over ordinary
simulation, or the Independent Streams strategy
(referred to, as the IS strategy), are also illustrated.

The remainder of this section discusses a modified
RSM algorithm and the CRN strategy. Section 2
develops the theoretical framework, illustrative
examples are included in Section 3, and Section 4
presents the conclusions of this study.

1.1 RSM

This sub-section presents a standard RSM algorithm
offered by Myers (1976). For the modified RSM
algorithm used by this work, the reader is referred to
Joshi, Sherali, and Tew (1994) .

Step 1: Fit a first-order regression model to the mean
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response over some restricted region of the factor space.
Step 2: Estimate the path of steepest descent using the
first-order model.

Step 3: Search along the path of steepest descent until
no further improvement in the mean response is
observed.

Step 4: Estimate the most favorable response based on
the first three steps.

Step 5: Repeat Steps 1 through 4 over a new region. If
curvature is evident, then perform an elaborate search
using a second-order experimental design. Report the
optimum solution.

For Step 1, the experimenter should judiciously
select an experimental design which has desirable
properties such as minimum variance in order to obtain
better estimates of the unknown parameters. The first-
order linear model is represented as

k
Yy = BO+IZ_]:B,x,+e,-,-, (M

where y; is the response at the jth replication and the ith
design point, x,, x,, ..., x, are the & factor variables, B, are
the unknown parameters of the linear model, and ¢; is
the error term at the ith design point and the jth
replication (i = 1,2, ...,m, j=1,2,..,r, I=1,2, .., k).

Let b,be the estimates of B, (/ =1, 2, ..., k). Step 2
uses these estimates to compute the path of steepest
descent given by (-b,, -b,, ..., -b;). Responses are
observed along this path until no further improvement
is achieved. At this point, if curvature is evident, then
a second-order model is used and is given by

k £
Yy = Bo"lz_]:Br"l”;ﬂhr"irxl‘”lz_l:ﬁlrxlz*eu’ (2)

where B, B,, and B, are the unknown parameters of the
second-order model (! = 1, 2, ..., kK, h > [) and the
remaining terms are as defined in (1). This model is
used to perform a canonical analysis which involves
evaluation and analysis of the stationary point. Using
this analysis, an optimum is reported, perhaps following
some additional investigation in the case of a detected
ridge system. The next sub-section presents the CRN
strategy which is combined with this algorithm to
improve the RSM technique in practice.

1.2 Common Random Number Strategy
The idea of the CRN strategy is to compare alternative

simulation models under similar experimental
conditions in order to improve confidence that observed

differences in performance are due to the differences in
the model structure rather than to the differences in the
experiment itself (see p. 61 of Law and Kelton 1991).
Under the CRN strategy, the same set of random
number streams, R, = (r;, r,,, ..., r,) is applied to all m
design points in the /th replicate where g is the number
of streams used to drive the simulation model. Also,
independent random number streams are used across
replicates of the experimental design. Replications
reduce the variance of the outputs and also present
means of computing pure error.

For the CRN strategy applied to simulation
experiments, we make the following assumptions:
1. The response variance is constant across all design
points, so thatforj=1,2, ... mandi=1,2, .., r,

o) = var(y,(R)) = o’. 3)

2. There is a constant nonnegative correlation between
all pairs of responses within a given replicate, y; and y,
(j=k). Thatis, forj + k,and / (j, k(m,and 0 ( p, (1,

corr (V) = P - @)

3. The vector of responses comprising the ith replicate
has a multivariate normal distribution. Under the first
two assumptions, the covariance matrix between
observations within a replicate is given by

1 p, P.
p. 1 P,

e ! | )
PP 1

Note that the variance on the estimates of the
unknown parameters of the linear model in (1) is o?
under IS strategy, but is reduced by a factor of (1-p,)o"
under the CRN strategy (see Joshi and Tew 1995). The
next section discusses the gains of using the CRN over
IS strategy in RSM studies.

2 ANALYTICAL RESULTS FOR RSM UNDER
THE CRN STRATEGY

As the gradient search is performed, the statistic of
interest is the difference between the responses along the
path. If we denote y, as the mean response at the center
of the current design, and )7] G=1,2, .., w)as the w
mean responses along the gradient search path, then our
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statistics of interest are )7,- }7/-1 (=12,..,w). Under
the CRN scheme, we apply the same random number
streams to drive the stochastic components to obtain
simulation responses )7] (j=0,1, .., w). By the first two
assumptions of the CRN strategy, we have positive
correlations p, induced among all these responses.
Under the independent strategy, (j = 1, 2, ..., w)

2 2
Var(yj '}’,-l) = %v (6)

while under the CRN strategy,

20%(1-p?)
£,

Var(l’,‘yj-l) = (7)

where r is the number of replications performed at each
design point, and o° is the homogeneous variance of the
response at each design point (see Joshi and Tew 1995).

From (7) we see that as p — 1, the variance on the
statistic of interest in the gradient search procedure
approaches zero. That is, if we can induce large
covariances or correlations between responses, then we
have a larger reduction in variance of the statistics of
interest under the gradient search method. The expected
reduction in variance being the magnitude of the
induced correlation.

The advantage of using CRN for the gradient search
can be characterized in another way. In the gradient
search, assume that once the step length A is fixed, we
need to take exactly w steps before the response starts
increasing. That is, after fixing the step length, we
should get responses to improve exactly until the
(w-1)st step, and on the w-th step, the response should
increase forcing us to stop the gradient search
procedure. However, due to natural variation in y, the
variance in the mean responses may be so large that this
could result in the search taking something other than
exactly w steps along the gradient. We would like to
increase the probability that the experimenter stops after
exactly w steps.

In other words, the gradient search procedure is
similar to performing sequential tests of the form (j =
1,2, .., w)

Ho: )71.-)7,,_, <0, vs, H;: }71-)7}_,)0.

If the search is performed accurately, then the
experimenter should fail to reject the first w-1 tests, and
reject the w-th test. For this purpose, let us first define
d=y.,-¥, (i=12,.w-1), and d, =y, -y, , Max-
imizing the probability that the experimenter stops after
exactly w steps, is therefore equivalent to maximizing
the following probability

Pr(d,20,d,20, ...,d >0). (8)

This probability is different under the IS and CRN
strategies. We now prove that the above probability is
higher under the CRN strategy than under the IS
strategy. Proving this would also indicate that the
power of the test under the CRN strategy is greater than
that under the IS strategy for the following hypothesis
test

H,:d)0,d,)0,..,d,) 0, versus,

H,: Any of the above conditions is violated.

We know that the d;'s are not independent and so
the tests on the d's are also not independent. Now,

var(d) = var(y)+var(y,_))-2cov(y,y, ). 9)

Note that while cov(y,y,.,) = 0 under the IS strategy, we
induce covariances between pairs of responses under he
CRN strategy such that cov(y,y,.,) = p?e”. Thus, we get
for the IS strategy,

2
var(d) = 2% (10)
and for the CRN strategy,
21 _
var(d) = 207(1-p) p)_ an
r

Also, under the IS strategy

2
cov(d,d,)) = cov(p,~y,_ )00, YD) = —ri, (12)

and under the CRN strategy,

cov(d,d,_)) = cov((y,~¥,.),,,, V) = M. (13)
r

The variance-covariance matrix of d,'s is thus a
tridiagonal matrix denoted by ©. Note that the structure
of this matrix is identical under the two simulation
strategies, and this matrix is represented as
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y 6 0

0
5y 6 0
A 00
0 . .
0 . . 056 vy

where y = 20°/r under the IS strategy and y = 20°
(1-p”)/r under the CRN strategy. Also, 86 =-0?/r under
the IS strategy and & = -0’(1-p°)/r under the CRN
strategy.

To obtain independent tests on ds, we use an
orthogonal transformation denoted by I, such that

e = rer (15)

is a diagonal matrix. Note that I" is an orthogonal matrix
whose columns comprise of the eigenvectors of ©. The
transformation T'" will be different under IS and CRN
strategies, but will have the same matrix structure.
Thus, if we transform & = ,, d,, .., d,) to d*such that

d = TId, (16)

and let ¢* = (d;, d;,..., d;,), then the tests performed on d*
are independent. The goal then becomes to maximize
the following probability

Prd\")0,...,d,)0) = Pr(d,")0) = Pr(d, ) 0). (17)

Using ¢ as the standard normal cumulative distribution
function, we can standardize the individual d;'s under
both strategies. For notational convenience, d;"'s are
replaced by d's so that the d/'s under the CRN strategy
would actually refer to the d™s from (16). The
probabilities are then obtained as (i =1, 2, ..., w),

d
Pr(d)0) = ¢($), (18)

where d, is the mean of d, (i = 1, 2, ....w) and o, is the
homogeneous variance of all d. Hence the
homogeneous variance of all d's is o,/ w. The goal in
(18) is now equivalent to minimizing a,. Equations (10)
and (11) give the expressions for ¢, under the IS and
CRN strategy, respectively. We notice that under the
CRN strategy, o, is less than that under IS strategy by a
factor of /1-p2, thus showing the superiority of the
CRN over the IS strategy.

3 COMPUTATIONAL RESULTS

An urban traffic network shown in Figure 1 is used to
compare the relative effectiveness of CRN and IS
strategies in the context of the RSM algorithm. The
simulation model used for the purpose of this study is a
microscopic model developed by the Federal Highway
Administration (FHWA), called TRAF-NETSIM. To
justify the validity of these quantitative results, five
optimization searches were conducted using the same
initial solution but employing different random number
seeds under each search. The relative performance of
the two strategies is quantified using the total delay in
the network as the measure of effectiveness (MOE).

Table 1 represents the geometric characteristics of
the urban traffic network under study. It is assumed that
at any stage of this search, the model can be represented
as a first-order model in x, and x,, as in (1) or a second-
order model as given by (2). A 2? factorial experiment
is used to construct the first-order model and a central
composite design for the second-order model. Two
replications are performed at each design point. The
decision variables are the green Splits for traffic at node
5 for approach node 13 (x,) and at node 8 for approach
node 14 (x,). The starting solution was 32 seconds for
each variable. Five optimization searches are conducted
under both strategies.

Table 2 exhibits the optimal solution for the total
delay in the network in person-minutes reported under
both strategies. The average delay in the network across
all five searches is 15085 under the CRN strategy and
15597 under the IS strategy. The RSM procedure
carried out under the CRN strategy yields a delay
estimate which is 8 hours less than that carried out under
the IS strategy, thus illustrating the superiority of the
CRN strategy. We also observed that only one of the
five searches conducted under the IS strategy achieves
improving direction, in contrast to all five searches
conducted under the CRN strategy.

Table 3 indicates the average gain in delay per
simulation run. This can be an extremely important
statistic for practitioners, especially if the network under
study is large and therefore requires large amounts of
simulation time. In such a situation, the analyst would
like to achieve the optimal (or near optimal) solution in
as small number of simulation runs as possible. In
addition, it will also necessitate a reduction in the
number of replications at each design point.

4 CONCLUSIONS
The application of the CRN strategy in a standard

simulation-RSM algorithm is demonstrated with an
illustrative traffic network. Correlation-induction
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strategies have not been employed in sequential Table 2: Total Delay in the Network
simulation-RSM studies in traffic optimization and
hence this application of the CRN strategy is an addition
to the existing literature. At each stage of the RSM
algorithm, analytical results to show the gains of the
CRN strategy over direct simulation are developed. To

Search # Optimal reported total
delay in the network
(person minutes)

quantify the ga.in.s of the CRN strategy over the IS CRN IS Strategy
strategy, an empirical investigation on the example was Strategy
described in Section 3. These performance measures
exemplify the superiority of the CRN strategy over 1 15038 15794°
direct simulation.
2 15087 15616°
Table 1: Network Description 3 15113 15650
4 15054 15203
Link length 5 15135 15681°
All links 500 ft. Average 15085 15597
Signal Control Lo .
Nodes 5.6, 7, and 8 Signal Control. * indicates that the search failed.
All other nodes Perpetual Green. ) ]
Table 3: Improvement per simulation run
Number of Lanes
All links Two lanes. CRN Strategy IS
Entry Volume Strategy
All nodes 1600 vph. Reduced delay 19.45 8.43
Turning Movement (person minutes)
At four-way 25% left, 50% through, per simulation
intersections 25 % right. run
At other 100% through.
intersections

Figure 1: Traffic Network
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