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ABSTRACT

Decision making is an active area of research in simu-
lation, systems engineering and artificial intelligence.
One subset area of decision making, automated route
planning, is covered in our paper with our approach
being based on the technique of simulation rather
than on purely heuristic or geometric techniques. This
new technique is called simulation-based planning.
Simulation-based planning is useful for route plan-
ning under various conditions including uncertain lo-
cations and events with potential adversarial activ-
ity. We claim that it is only by using simulation that
one can make the most effective plan in uncertain
and complex environments. An experimental design
is outlined along with our plans for further develop-
ment.

1 INTRODUCTION

At a fundamental level, general Al planning, decision
making, intelligent control and route (path) planning
in robotics, all strive to solve a common problem—
based on some model of a given process, determin-
ing what actions will affect the process in a desired
way. The problem appears different because each area
deals with different levels of abstraction and applica-
tions.

Planning becomes very complex for real world plan-
ning problems that take place in an environment over
which the planner has no control, such as with an-
other agent or an enemy or when there is uncer-
tainty of available information or agents’ reactions.
In such cases, accurate prediction of the resulting
states of plan execution will be difficult. To overcome
this increase in complexity of reasoning, many new
approaches have been introduced (Schoppers 1987;
Dean and Kanazawa 1987; Kanazawa and Dean 1989;
Hammond 1989). To handle these uncertainties in

real time is the ultimate goal of any planner. Simulation-

Based Planning (SBP) can solve the problem of pre-
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diction of uncertain environment by allowing the use
of multiple simulations of simulation models to pre-
dict the behavior of individual objects using data
sampled from a predetermined distribution. More-
over, SBP can produce plans in real time since we
can allow simulation of plans at different levels of ab-
straction. A high-level, simulation can be done by
simply sampling numbers from a distribution or a
complex low-level simulation can be done by simu-
lating the state change in greater detail at each time
step. Our previous work in military mission planning
with Computer Generated Forces shows preliminary
results of our SBP approach (Lee and Fishwick 1994).
The related background research areas to plan-
ning are discussed in Section 2. In Section 3, we dis-
cuss SBP as a general methodology. Our example
problem—the rover route planning problem—is pre-
sented in Section 4 and experimental design issues are
discussed in Section 5. Finally, conclusions appear in
Section 6 and future work appears in Section 7.

2 BACKGROUND RESEARCH AREAS RE
LATED TO PLANNING

To view the problem of route planning as part of a
larger picture and to gain better insight into the na-
ture of our problem, we will overview different areas
that are relevant to planning.

2.1 Artificial Intelligence

The general problem of planning in Al is commonly
identified with problems that are highly conceptual
where actions are of the form “Go To Supermarket”
and “Buy milk” (Russell and Norvig 1995). A plan
is an ordered sct of these high-level actions. Here,
the concern is not how one will physically (at a de-
tailed level) get to a supermarket, but rather on the
ordered set of actions whose logical effects will satisfy
the goal. STRIPS (Fikes, Hart, and Nilsson 1972a;
Fikes, Hart, and Nilsson 1972b) is a classical exam-
ple of such an approach to planning. This approach
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is reasonable if the cxecution of the produced plan is
not a responsibility of the planner. Difficulties arise
when execution becowmes part of the planning system.

2.2 Intelligent Control

Intelligent control deals with problems that are more
physical and less conceptual. The problem of steer-
ing a cargo ship to a desired heading (Antsaklis and
Passino 1993) is a typical problem in intelligent con-
trol. Even though this whole task can be just simply
stated as “steer the ship to heading x”; at the control
level, we are more concerned with tuning the control
input to physically steer the ship to a precise heading.

2.3 Decision Science and Game Theory

Decision science involves the creation of decisions based
on a game-theoretic foundation. Given the current
“state of the world,” one can embark upon several
courses of action (decisions) each of which will yield
a payoff or utility (Luce and Raiffa 1957). Games can
be naturally extended to continuous systems (Basar
1995)(often found in simulation) by equating the in-
put (or forcing) function to a continuously changing
decision which alters the payoff given the correspond-
ing state changes.

3 SIMULATION-BASED PLANNING

In the simulation literature, simulation is defined as
“the discipline of designing a model of an actual or
theoretical physical system, executing the model on
a digital computer, and analyzing the execution out-
put” (Fishwick 1995). In the planning literature,
planning is defined as using models to formulate se-
quences of actions and given a sequence of actions,
models are used to simulate the future as it would oc-
cur if the actions were carried out (Dean and Wellman
1991). So simulation provides the robot with informa-
tion which can be used to suggest modifications or to
compare the proposed sequence with an alternative
sequence. Humans, who plan using a similar over-
all approach, have models built and stored in their
brains for most objects or systems. These models are
used to formulate sequences of actions which would
occur in the future if a plan was executed. There-
fore, once simulation models have been built for a
system, simulation can be used as a tool to provide
the system with information useful for evaluating an
hypothesis. It is logical that we employ simulation
within the planning process to gather information
about each candidate plan (sequence of actions) and
to compare them. Some recent work (West, Mellon,
Ramsey, Cleary, and Hofmann 1995) presented in this

conference also bears significant relation to our work.
Their work focuses on speeding up the execution of
models for military strike-planning using parallel and
distributed simulation. Our approach can potentially
use their method for further increasing the speed of
plan and route evaluation, in addition to using paral-
lel replication by simulating, in parallel, models with
separate factor values.

Once a plan is chosen for execution, the simu-
lation data that was generated during the planning
process can be used to match with the current real
world state. This can be compared to a common
technique used in adaptive control theory where a
reference model is compared with the actual perfor-
mance data in order to tune the controller to a desired
state (Antsaklis and Passino 1993).

4 EXAMPLE PROBLEM: ROVER ROUTE
PLANNING

Our focus is near-optimal route planning. Route plan-
ning is in-between the higher level of symbolic Al
planning and the lower level of intelligent control.
There are several application areas that are related
to route planning. Mission planning within the mil-
itary domain almost always involves route planning.
Routes can greatly affect the success of the whole
mission, whether the mission takes place on ground
or in the air. Some of our previous research was fo-
cused on this aspect; we used simulation-based plan-
ning to perform mission planning at the company
level of command (Lee and Fishwick 1994). Using
simulation-based planning in the military domain was
a natural extension of the already existing wargame
approach where the mission plans were tested off-
line via constructive simulations. Related work by
(Czigler, Downes-Martin, and Panagos 1994) demon-
strates the usefulness of simulation as a decision tool.

Robot route (i.e. path) planning is another appli-
cation area. If there is little uncertainty involved, as
is sometimes the case in many robot route planning
problems, the existing approaches such as potential
fields (Barraquand, Langlois, and Latombe 1992) do
quite well. But, when uncertainties exist in the envi-
ronment, these methods alone cannot produce good
results. The main algorithm of producing a graph of
traversable paths and searching the graph for a best
route is still the same, however. The part that is dif-
ferent is how we measure the goodness of a route. If
the goal is to select a route that is the shortest in
distance, we can use any of the standard algorithms
that exist for finding shortest paths in a graph. But,
if the problem is in an environment that is unknown
or uncertain, we must use different ways to evaluate
each path. Our claim is that we can use simulation to
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Figure 1: Mars Microrover. Provided by permission
of Jet Propulsion Laboratory (Matthies, Gat, Harri-
son, Wilcox, R., and Litwin 1995)

quantatively compute the outcome of a future action.
The way we do this is by using simulation models for
each entity or object in the world using data sampled
from a probability distribution, and performing mul-
tiple simulations to obtain an estimate of the state
variables.

In 1996, NASA plans to launch a spacecraft to

Mars to explore the environment of the planet (Matthies,

Gat, Harrison, Wilcox, R., and Litwin 1995). The
spacecraft will carry an 11 kg rover, called the Mi-
crorover, that will move around the vicinity of the
landing site to explore the territory for a duration
of approximately 1 to 4 weeks. Figure 1 shows the
Microrover traveling over a rock.

Because the Martian surface is not completely known,

JPL is undergoing a process of performance evalu-
ation of the rover’s autonomous navigation system
with varying terrain characteristics. The Microrover
testbed contains the Microrover vehicle and an indoor
test arena with overhead cameras for automatic, real-
time tracking of the true rover position and heading.
In the arena, they have created Mars analog terrains
by randomly distributing rocks according to an expo-
nential model of Mars rock size and frequency created
from Viking lander imagery. Figure 2 shows a nomai-
nal Mars terrain which was adopted from (Matthies,
Gat, Harrison, Wilcox, R., and Litwin 1995). The
term nominal is explained in more detail in Section
5. JPL has decomposed the rover navigation task
into four functions: 1) goal designation; 2) rover lo-
calization; 3) hazard detection; and 4) path selection.
Although these four functions are integrated, for pur-
poses of research, we will focus mainly on route selec-
tion. The first three functions are largely connected

with problems in sensors (stereo camera pair, wheel
encoders, solid state turn rate sensor, light stripe
ranging sensor, inclinometers) and their uncertain-
ties. Path selection uses the information gathered
from these three functions to navigate to a goal des-
tination. Currently the route selection is achieved
by a simple behavior control algorithm which is reac-
tive and does not take any excess knowledge—such as
maps-into account. Our approach is to use simula-
tion at this stage of route planning to select the route
to the goal. Once a more detailed map is constructed
of the vicinity, the planning will involve multiple sim-
ulations of each virtual route to the goal.

4.1 Simulation-Based Route Planning System

Figure 4 illustrates the basic components of our Simulatior

Based Route Planning system. Initially, the planner
takes the goal location of the route as input and se-
lects a route plan for output. This selected plan is the
input to the Control Subsystem which performs a su-
pervisory control of the process. The output of the
rover process is the actual sensory output of the rover.
The sensory output will include camera images, haz-
ard detections and position information. Along with
the plan, a simulation log (the simulation data that
was produced previously during the plan evaluation
process) of the chosen plan is provided as input to the
Control Subsystem. This can be used to serve as a
reference model to track the state of the execution in
order to monitor its progress towards the goal. The
monitoring information can be used further to tune
the system towards the goal (i.e. correct its route
or position estimation) or to generate a failure signal
to the planner as soon as it decides that the current
route is unlikely to succeed.

4.1.1 Planner

The planner has three major modules:

1. The Route Generator uses a map of the vicin-
ity leading to the goal to extract rocks that are
large enough to be considered as obstacles. The
threshold size is determined by the size and abil-
ities of the rover. In the case of the Mars Micro-
rover, it has been determined to be rocks that
have diameters larger than 23 cm. In Figures
2 and 3, the rocks arc represented by hexagons
drawn with dotted lines. There are three rocks
which are big enough to be considered as ob-
stacles. A bounding box is drawn around each
of the rocks. A visibility graph is produced
connecting the start location and the goal lo-
cation via these bounding boxes (Figure 2).
The dotted lines in the figure represent routes
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that will be eliminated via the reduced visibility
graph method. The visibility graph is a com-
mon approach used to create paths between ob-
stacles (Latombe 1991) by connecting vertices
of each obstacle to every othier obstacle, includ-
ing the start and goal location. The reduced
visibility graph is a graph having the minimal
Euclidean route length between the start and
goal location and the obstacles. This is what
appears in Figure 3. The reason for generating
routes between obstacles is because we use the
obstacles as landmarks during navigation. If a
direct (as opposed to indirect which means the
route touches an obstacle) route exists to the
goal location, the reduced visibility graph will
produce it since this is the shortest route to the
goal.

. The Simulator simulates each route of the pro-
duced graph and records the result. The sim-
ulation is based on the physical and empiri-
cal models of the rover and the terrain. The
physical model includes specific characteristics
such as translation (max 0.67 cm/sec) and rota-
tion speed, step climbing ability (max 19.5 cm),
and specification for the hazard detection sen-
sors (range of view is about 120 deg. with 30
cm max distance). We also incorporate empiri-
cal models for dead-reckoning error and hazard
detection error (failure rate of 1 in 1000 given
that hazard frequency is 1/100). For the ter-
rain, we use the Moore’s model of rock size-
frequency distribution to create terrains of dif-
ferent rock sizes and frequencies. More detail
about this is discussed in Section 5. Using these
models of the rover and the Martian surface,
we perform multiple simulations of cach route.
There are several ways to proceed in the simu-
lation. To perform in real-time, it’s preferable
that we proceed in a breath-first manner; for
example, in Figure 2, we simulate routes to
the first set of obstacles and then to the scc-
ond set and so on. This approach is similar
to the approach we have taken in our previ-
ous work in mission planning (Lee and Fish-
wick 1994). To reduce the amount of compu-
tation, we use the A* search method if we can
build a heuristic function which can estimate
the cost of the remaining route. Another pos-
sibility is the branch and bound method used
in the area of Operations Research. Due to un-
certainties which exist in the models, simula-
tions must be performed multiple times using
the available stochastic information to reduce
the variance of the outcome variables.

3. The Plan Evaluator/Selector evaluates the
results of the simulations and selects a route for
execution. Currently, three elements are consid-
ered: 1) the outcome of plan failure or success;
2) the total time elapsed; and 3) final position
of the rover. These elements can be combined
into a single score but, because the objectives
may be different in different situations, we eval-
uate them individually and then select a plan
according to a predetermined criterion.

5 EXPERIMENTAL DESIGN

In simulation, experimental design is a method of
choosing which configurations (parameter values) to
simulate so that the desired information can be ac-
quired with the least amount of simulating (Law and
Kelton 1991). In experimental design terminology,
the input parameters and structural assumptions com-
posing a model are called factors and the output per-
formance measures are called responses. Our exper-
imental design approach to the SBP method is to
choose different rock distributions (both in terms of
size and frequency) and different routes as our factors,
and the simulation results according to the evalua-
tion function as our responses. Thus, we vary two
elements of simulation within the planning process:
1) the route; and 2) the terrain. If the planning ex-
periment is performed using the full factorial design
approach, the number of combinations to simulate
will be prohibitive. However, optimization techniques
such as response surfaces and metamodels can be used
to alleviate the problem. Currently, JPL is experi-
menting their Microrover by performing test runs on
Mars analog terrains which has been created artifi-
cially by randomly placing rocks according to a rock
size-frequency model developed by Moore (Moore and
Jakosky 1989). Moore’s model is based on data ob-
tained from images taken by Viking Lander 2. Since
a similar rock density is expected for the Microrover
experiment, the same model can be used. The orig-
inal Moore’s model for rocks down to a diameter of
0.14 m is represented by N = 0.013D~>%¢ where N
is the cumulative frequency of rocks per square meter
with diameters of D and larger. This model predicts
that about 18.8% of the landing site area is covered
by rocks. However, the model used by JPL so far in
creating the actual test terrains is based on the modal
valuc of the surface rock cover over the whole planet,
which is estimated to be at 6%. The terrain created
from this model is called nominal. A computer sim-
ulation is under development at JPL in order to test
terrains with rock frequencies ranging up to 19%.
We base our simulated terrains on this model in
creating simulated Mars analog terrains. There are
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three major factors to consider in creating the terrain:
1) rock sizes; 2) rock frequencies; and 3) rock place-
ments. For each simulation, the ranges of rock sizes
and frequency are sampled from the Moore’s model.
Once the rover is on Mars, the map that is gencrated
from photographs will be used to place rocks that
are large enough to be obstacles in their absolute lo-
cations. The remaining terrain in between the large
rocks can be estimated through the Moore’s model
during simulation. We can use any additional infor-
mation that is available (distribution of rock sizes and
frequency) of the landing site to design a non-uniform
sampling distribution. Initially, the sampling distri-
butions are uniform. By using visual information of
the landing site, we can build rock distributions that
are similar to the actual terrain characteristics. The
placement of these smaller (less than 23cm in diam-
eter) rocks will be random. If time permits, multiple
simulations with different small rock placements will
be performed. On a higher level, the percentage of
rock cover can be varied to be between 6% to 19%.
Figure 5 illustrates the variable factors in the simu-
lation.

For the simulation, we use discrete time step sim-
ulation and the following algorithm:

While (Goal is not reached) do
Sample sensor data
Execute control action on rover
Update rover state variables
Update current clock time by AT
End While

Until the rover’s state variables indicate it has
reached the goal location, the planner continues above
loop. Sampling sensor data involves sensing the rocks
placed and sized on the map according to the pre-
viously discussed method. Depending on the size
and location of a rock, the planner may also invoke
the hazard detection sensors-indicating that the rover
will have to maneuver around the obstacle. Smaller
rocks (with diameter less than 23 cm) are ignored
by the hazard detection sensor but is likely to cause
the dead-reckoning error to increase. This effect can
be captured by incorporating a dead-reckoning er-
ror model into the simulation. This is planned for
later experiments. The control algorithm of the rover
is very simple: if an obstacle is detected then the
rover turns in place until the hazard is no longer de-
tected. If there is no obstacle then it continues to
move forward while turning towards the goal loca-
tion. The control action is calculated to take place
for AT seconds and the state variables (location x,y)
are updated accordingly using control dynamics of
the rover.

6 CONCLUSIONS

We have shown how we are able to build a real-time
route planning system, the Simulation-Based Route
Planning System, by integrating ideas from different
but related fields of research.

There are several advantages to the method of
simulation-based planning:

1. By employing models to simulate and predict
the outcome of the process, we are able to cap-
ture the effects more accurately and completely
(given that the models are built appropriately).

2. The use of simulation models allows us to use
standard simulation analysis methods in tuning
the simulation models to closely reflect actual
processes.

3. The ability to use distributed object-oriented
concept in planning without having to reason
about the combined effects of agent’s actions or
changes in the environment within one central
node enables the evaluation of a plan as a nat-
ural result of simulating different models in the
system.

4. The ability to “track” progress and performance
during execution allows finer tuning of the exe-
cution process.

5. We can easily extend the set of models to in-
clude additional properties (especially proper-
ties that may be difficult to create physically
such as creating the atmosphere of Mars) in
testing plans.

Some potential difficulties exist in using simula-
tion in the planning process. Defining appropriate
models may be difficult and time consuming. The
simulation process itself can be computationally in-
tensive. However, we plan to overcome this problem
by varying the level of aggregation of our simulation
models.

7 FUTURE WORK

Once the implementation of the rover problem do-
main in our Simulation-Based Route Planning (SBRP)
system is finished, we will experiment with our method
by building a response surface of the problem and
then using various ways to search for the near opti-
mal solutions. In the long term, we plan to extend
our SBRP system to the domain of Air Force mission
planning problems.
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