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ABSTRACT

Comparison of two competing pharmacometric models is
undertaken using graphic representations to elucidate their
similarities and differences. The effect compartment
model and the indirect response model are simulated and
compared for a range of parameters to determine to what
extent their dynamic characteristics can be matched.
Visual tools such as hysteresis curves are used to examine
model dynamics in a variety of ways. Differentiation is
facilitated to the extent that competing models have
distinctly defined dynamics. For the models studied here,
the degree of difference depends on the region in
parameter space which in turn relates to clinical response.

1 INTRODUCTION

Clinical trials are used to establish the safety and efficacy
of drugs. Dose levels and frequency of medication are set
for testing both safety and efficacy. Data from clinical
trials are then studied to characterize the response to
medication levels in terms of successful endpoints and
adverse events. Efficacy and adverse events are both
affected by the amount of drug the person is exposed to.
Trials serve to estimate optimal dosages. Optimality
varies by individual depending on drug concentration and
drug sensitivity. The same dosage leads to different
concentrations in individuals due to many causes, such as
variability in rates of metabolism and drug clearance.
Pharmacokinetics, therefore, focuses on determining
blood plasma concentrations of drugs. Pharmacokinetics
deals with the response to the presence of drugs. A central
idea is the postulation of a direct link between
concentration and response. This framework led to
progress in many cases by guiding the adjustment of
dosages to get desired concentration levels.

Taking the concentration-response viewpoint literally
failed to explain cases where greater effects occurred after
concentrations were falling. This paper deals with two
classes of models formulated to account for this and the
similarities and differences in model predictions.
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2 BACKGROUND

Compartmental analysis assumes that the distribution of
drugs in the body can be modeled by a discrete number of
well stirred compartments. In the simplest case one
compartment can satisfactorily fit the plasma
concentration data. We deal with such a case. Effects
considered are those which lag plasma concentration. We
do not consider lag cases where the cause for delay of
effect is the time needed for a drug in plasma to
equilibrate with a target organ as such cases are accounted
for by multicompartmental models.

When delayed effects are graphed versus plasma
concentration, the data form loops with two values
associated with a single concentration (Roland and Tozer
1995). An example is shown in Figure 3b. Such graphs
are referred to as hysteresis curves and are known in other
disciplines as phase space diagrams.

A way out of the multiple value dilemma regarding
concentration and effect is known as the effect
compartment model (Segre 1968, Verotta and Sheiner
1991). This approach postulates that the drug acts from a
hypothetical ~effect compartment which uses an
unobservable amount of drug. Concentration in the effect
compartment, for cases considered in this paper, lags the
concentration in the central blood compartment. By
adjusting the elimination coefficient of the effect
compartment (Keo), it is possible to "collapse the
hysteresis loop" so that effect versus effect compartment
concentration is a univalued function. Essentially the
effect compartment concentration profile is shifted so that
its time course coincides with the course of the effect.

In our study of data for nonsteroidal anti-inflammatory
drugs (NSAIDs) given for pain and fever, we have used
this effect compartment methodology to account for the
data. However, delay mechanisms in such cases might
arise from the existence of a classical feedback loop
controlling the level of fever or pain (Katzper and Holford
1990). In the case of fever, the effect compartment
approach is now not considered reasonable on
physiological grounds (Roland and Tozer 1995).



Intrinsic Dynamics and Pharmacometric Model Discrimination

Later observations showed that open control loop
mechanisms are sufficient to model many cascs of interest
including pain and fever (Dayneka et al. 1993, Katzper
1992). Jusko has disseminated this approach, calling it the
indirect pharmacodynamic response model and applying
it to a wide variety of drugs. In this model the effect is
seen as the result of a balance of physiological forces,
and the drug acts in affecting factors controlling the
maintenance or loss of response. For this reason, it is
referred to here as the dynamic response model.

The direct effect model, the cffect compartment model
and the dynamic response model and their linkages are
each illustrated schematically in Figure 1.

In subsequent sections these models will be explained
further. Then by using identical pharmacokinetics, the
pharmacodynamics of the models will be compared in a
variety of physiological ranges.
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Figure 1: Pharmacokinetic/Pharmacodynamic Models

4 PHARMACODYNAMIC FORMULATION

Consider the pharmacodynamics of a one compartment
model where the concentration in the blood is
representative of the concentration in all affected parts of
the body. A widely used empirical equation for relating
concentrations directly to effects, and known by a number
of different names, is the Emax model,

E(C) = Eo + Emax*C/(EC50+C)
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where Eo is the baseline, Emax is the maximum
difference from baseline, C is the concentration and EC50
is the level of concentration required to reach Emax/2
from the baseline. The effect depends on the current value
of the concentration.

The equation captures the physiological reality of
effects going to a hmit. That is, the body can only respond
up to a certain amount. At higher concentration values,
one obtains smaller incremental responses. We use this
equation in the different model constructs to be studied.

When multiple compartments are required for
representing drug distribution and equilibration, and an
effect depends on the concentration in a physiological
compartment other than the central blood compartment,
then there is a phase difference between the blood
concentration profile and the effect profile. When such
compartments are physiologically definable and they
contain a non-negligible portion of the drug, then the
influence of the additional compartments can be seen in
the blood concentration profile. Visual inspection of
blood concentration data thus provides partial guidance as
to the choice of the appropriate compartmental model.
When data is not available for the other compartments
then the solution is frequently not unique, a difficulty
referred to as the “identifiability problem.”

Let us consider the case where drug response lags
behind plasma concentration not due to an unequilibrated
physiological compartment. If one is to subscribe to the
notion that the effect is solely and instantaneously related
to the drug concentration, then a possible explanation is in
terms of an effect compartment which does not affect the
blood level concentration noticeably. Specifically we will
look at this model in the context of an intravenous
infusion which is terminated after a time.

Our models are formulated using STELLA (Bogen
1989). The visual programming approach simplifies the
formulation of complex models (Katzper 1992). Our
model illustrations are presented using STELLA icons. A
rectangle is a quantity or level. A pipe with a circle
defines rates of change. Circles are for calculations or
parameter settings. Arrows link quantities. For clarity of
presentation some secondary calculations are suppressed
in the STELLA model figures.

The top of Figure 2 shows a one compartment
pharmacokinetic model with constant infusion, first order
clearance and elimination rate Ke. The middle of the
figure is the effect compartment model. The line from
Concentration to Transfer links the effect compartment to
the plasma concentration. Keo is the dissipation rate for
the effect compartment, which controlls the phase of this
compartment with respect to the concentration. The Effect
Concentration drives the Effect circle at the bottom of the
figure. The Effect circle at the bottom contains the Emax
equation. It is shown explicitly attached to it’s parameters.
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Figure 3a: Concentration and Effect time course
3b: Hysteresis loop. Effect versus Concentration

The plasma concentration of drug rises during the
infusion and subsequently falls as shown for a sample
case in Figure 3a together with the associated effect.
Plotting effect versus plasma concentration, we obtain the
hysteresis curve shown in Figure 3b.

Katzper

The elimination coefficient of the effect compartment,
Keo, due to its controls of the effect compartment
concentration with respect to the central compartment,
controls the shape of the hysteresis curve. When
experimental data is being fit, by varying Keo, it is
possible to “collapse the hysteresis loop” so that effect
versus effect compartment concentration is a univalued
function. This is achieved by alignment of the phase of
the effect compartment concentration with the phase of
the effect. In this way there is a one to one relationship
between effect compartment concentration and the effect.
In the simulation, Keo is specified and the effect
compartment concentration drives the simultaneous Emax
model.

If we consider the effect to be influencing a
physiological dynamic process, then one way in which it
can be modeled as an open loop control system. Such a
control system can be represented as shown in the upper
part of Figure 4. We shall refer to this model as the
dynamic model as it attempts to represent the dynamics of
the system. After a perturbation, the system will return to
its equilibrium level. Under changed conditions, it will
reequilibrate to a new level. The lower part of the figure is
the drug pharmacokinetics. The connecting arrow
between the models is a possible effect of the drug. The
functional relationship is taken as an Emax form
dependent on the plasma concentration, C/(C50+C)
,where C50 is the concentration to reach half maximal
indirect influence on the effect. This equation is
incorporated in the Link circle. The relationship can be
thought of as a receptor response curve. Results similar to
those shown in Figure 3 can be obtained for this model.

Plasma Concentration
@ Infusion Elimination
Kd
Effect dissipation Maintenance

Figure 4: Dynamic Effect Model
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5 COMPARATIVE DYNAMICS

In their study of the dynamic response model, Dayneka et
al. carried out a series of simulations comparing four
variants of the model structure to the effect compartment
model (Dayneka et al. 1993). Using literature values for
the parameters of a selected drug (Methylprednisolone)
they simulated widely differing dose levels with bolus or
infusion delivery. They then investigated how well the
effect compartment model could fit this data. Reasonable
fits could be obtained for any given dose. The most telling
critique was the observation of the dose dependency of
the parameters to achieve the best fit. This is biologically
implausible. Verotta turned the approach around (Verotta
1995). He showed, using simulation and experimental
data, good fits with the effect compartment model in cases
where the dynamic response model gave inferior results.
None of this dose respone related work will be replicated
here. Our conclusion from this dispute is that unbiased
guidance is needed to assist in determining the
appropriate model.

The question I thought worthwhile to explore was
whether the models have distinctive intrinsic behavior
which can be compared to experimental data to indicate
which model to choose. When we look at the data that we
collect for pain or fever alleviation, we seek to identify
the underlying model which is the basis of the results we
see. Identifications are strengthened if they match a
distinctive feature in the time course of the data. To study
the issue of intrinsic dynamic behavior, we chose
parameters to represent distinctive clinical responses.
Dosing was set to a constant level infusion for a fixed
time. For such cases the concentration rises to a
maximum and then decays, as shown in figure 3a,
allowing us to observe the range of responses of the
system. If the drug is effective, we expect pain or fever
alleviation after a time lag, and as the concentration
vanishes the pain or fever will resume if underlying
conditions are unchanged. A number of reasonable
models can fit this behavior. We therefore will look at our
models over a range of parametric values to see if we can
determine when the models results can be differentiated
and when hysteresis representations help in the process of
discrimination.

All of the cases are setup with the same
pharmacokinetics. A single compartment model is used.
An infusion of 20 units per time interval is given for 18
intervals. Data is collected for 18 more intervals.
Subsequently this was extended to a total of 50 intervals
to capture late differences between the models. The
number of intervals affects the parameter estimates and
the apparent closeness of the model results.

Elimination is via first order kinetics and the
elimination constant is .2 per unit time. If the infusion
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were given till equilibration the concentration reached
would be 100 units.

Since both our dynamic response model and the effect
of the effect compartment model will be driven by Emax
formulations the relative value of the relevant half
maximum concentration (C50 or EC50, see Figure 2 and
Figure 4) will affect the time course of the drug effect. So
these two parameters should have a large degree of
comparability. For convenience, in both cases we have set
the baseline value Eo to zero. For the effect compartment
model the dynamics of concentration buildup in the effect
compartment and the controller of phase is the elimination
rate Keo. For increasing values of Keo the phase of the
effect compartment will approach that of the central
compartment. For the dynamic response model the speed
of dissipation of prior infleences is controlled by KD, the
dissipation rate. Larger values of KD will have the effect
more closely track the concentration. So we expect the
effects of Keo and KD to be comparable. Experimentation
with the models for different parametric values showed
that this was the case. We present and discuss a number of
examples systematically to show the relationship between
parametric values and comparative model results.
Matching of the models was carried out by fixing the
parameters of one model and varying those of the second
model. At first matching was done visually and then with
a least squares fit.

Our first case is set for a large time lag between
concentration and effect. As explained, this is achieved by
setting KD and Keo low. The relationship between
concentration and effect is set to be highly nonlinear. This
is achieved by setting C50 and EC50 low with respect the
associated concentrations achieved. The figures provide
alternate representations comparing model results. Figure
5 shows a direct comparison of effect versus time.
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Figure 5: Comparative time course of effect
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Figure 6 is the hysteresis loop comparison. Direct
comparison shows an apparent closeness in results
between the two models, but with systematic differences.
The large area enclosed by the hysteresis loop indicates a
large lag in effect relative to plasma concentration.
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Figure 6: Comparative hysteresis loops

An interesting f{eature is that the dynamic model
achieves its maximum fairly late during the decline of the
concentration. Another feature, which is good from a
medical perspective is the maintenance of the effect after
infusion stops for a steep drop in concentration.

Figure 7, a plot of the effects predicted by one model
versus the other, would give a straight diagonal line for
identical models. As such, the deviations from fourty five
degrees show the deviations of the models from each
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Figure 7. Comparative effect predictions

other. The reclining figure eight in this figure indicates
the lead , lag, lead, lag, reversals of the two models. Now
that we know this, by looking back at the other two
representations, this pattern of Iecad and lag is also seen in
those plots. Such systematic variation over a range of
values, if it is sufficiently large, allows one to

Katzper

discriminate between models for a given set of data.

Figure 8 plots the difference between the models (Ec
effect- dynamic effect) as a function of time. At this scale,
the systematic variation in leading and lagging is very
clear. The influence of the infusion and subsequent decay
1s noticeable.
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Figure 8: Time course of model difference

The second case was set to retain a large lag by keeping
KD and Keo low but was set to approximate linearity in
the dynamic model link by setting C50 high and in the
effect link by setting EC50 high. One might think of the
modeling process as the application of transformation
operators on the input variables. An examination of the
structure of the two models shows that they can be looked
upon as two similar transformations taken in different
sequence. The operations are non-commutative. However,
for certain parametric combinations they approach
commutativity. In plain English, the models approach
each other in terms of their results.

For this case, we describe the graphic results. There is a
near superposition of model results in a direct comparison
versus time. The size of the effect is a little less than half
of that in the first case. The hysteresis curve still has a
large lag, but the linearity of the underlying relationship
causes a slower rise in effect and a more rapid decline.
This 1s the case for both models which are nearly
superimposed. The direct comparison of the effects (not
shown) maintains the reclining figure eight, butin a
squashed form approximating a diagonal line. The models
difference curve (not shown) retains lead lag variations
because the plot scale is an order of magnitude smaller
than the prior case. This demonstrates that systematic
variation between the models is maintained. An improved
match between the two models can not be expected from
further parameter variation. This is acceptable for
practical purposes as there is no known outcome which
would be affected.

The third case is that of a small lag between blood
concentration and effect. This is achieved by setting KD
and Keo high. In addition the effect is in the linear
relationship range for linking effect to concentration.
Linearity is achieved by setting C50 and EC50 to high
values.
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In this case, not only do the time curves of the models
coincide but the effect curve closely approximates the
shape of the infusion plasma concentration curve. At the
selected parameter settings, both models still retain a lag
as seen by the reduced enclosed area in Figure 9. The
hysteresis curve for each model nearly coincide, though
the minor differences are seen when high resolution
graphics are used. A single example is shown here.
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Figure 9: Effect versus concentration with reduced lag
and a partially linearized link.

As KD and Keo are increased, the loop collapse tends
to a straight line. The theoretical difference between the
models is much smaller than measurement noise. This
same loop collapse, which results in both models, has a
completely different interpretation in each model. Here
we directly face the issue that two very different models
can be so dynamically similar as to be indistinguishable.
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Figure 10: Consequence of a nonlinear link and
reduced lag on the hysteresis curve
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The final case in our illustrative set is also chosen to
retain a small lag between blood concentration and effect.
As before, the lag is achieved by keeping KD and Keo
high. However, here the nonlinear range for linking effect
to concentration has been chesen by setting C50 and EC50
lowwith respect to the concentration level achieved by the
dosing regimen. The two parameters of the respective
models can be adjusted so that the model results nearly
coincide. The hysteresis curve, Figure 10, clearly shows
the nonlinearity of the effect. The comparative computer
graphics of the hysteresis curves (not shown here)
demonstrate the retention of the lead-lag pattern, but with
only a very small gap between the curves. The collapse of
the area of the hysteresis curve in the limit will lead to a
logistic like curve.

6 DISCUSSION

All of these studies have been made without the random
variability which accompanies experimental data. A
reason for this investigation was to determine whether the
structural form of the model formulations was sufficient
to create dynamic results which could not be made to
coincide. Then it might be possible to differentiate
between models based solely on the observed data even
when noise is present. Furthermore, different graphical
representations were used to enhance the difference
signal. The rather unexpected result, as has been shown, is
that for the present dosing regimen, differences are
discernible only in the parameter range giving strong
model effects of large lag and nonlinearity. The limits of
differentiation are dependent on the noise level.
Combining information regarding the intrinsic response
with results from multiple dose level fitting will enhance
model discrimination.

Real data also do not allow for the density of
observations or the length of observation used here. It
must be kept in mind that we have purposely dealt with an
idealized case. In our studies of pain the data are more
complex with contributions from placebo effects and
gastric transit variability forcing us to construct more
complex models (Harter and Katzper 1994).

In matching complex data our guidance has come from
having multiple data sources and from physiological
considerations (Harter and Katzper 1993, Harter and
Katzper 1995).

Phase relationships between the models require a long
interval of data for the changing relationships to aid in
discerning which model is in better agreement with the
data. Short interval fits will not do the job.

This model study with its limited focus only provides
general guidance for the real problems we are addressing.
Additional sources of information must be sought in
deciding which model is more appropriate.
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7 CONCLUSION

To assist in interpreting the time course and hysteresis
loops of the data we have scen, a series of simulation
experiments have been carried out for competing models.
A selected summary of these runs has been presented.
These are used to compare results from matched alternate
models. The simulations have shown under what
conditions model results are most easily differentiated.
Under single dose conditions, maximum separation will
occur for the greatest lag between concentration and

effect and for highly nonlinear links between the
pharmacokinetic and pharmacodynamic model
components.

A finding which is important to note is that in spite of
disparate conceptual formulations, the intrinsic model
dynamics 1s such that it is frequently difficult to
discriminate between models. Parametric values of
interest are  physiologically determined. Current
experimental approaches are not intentionally designed to
affect these physiological values directly. Discrimination
may be achieved by observation of many individuals with
their naturally occurring physiological variability. This is
especially so for drugs in which model effects are strong.

On the other hand, with only limited noisy data, one
might be misled by the model fit obtained. When both
models are approximately equivalent in their ability to fit
available data one may ask why worry about which model
1s used? Because the model is our conceptual framework
for understanding the subject matter. A model
corresponding to the underlying reality has the possibility
of forming the basis for further fruitful investigation and
elaboration. In the converse situation, we have a well
fitted dead end.
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