Proceedings of the 1995 Winter Simulation Conference

ed. (. Alexopoulos, K. Kang, W. R. Lilegdon, and D. Goldsman

AN OBJECT-ORIENTED SIMULATION MODEL FOR COMMUNICATION
NETWORK TRAFFIC AT A GENERAL MAIL FACILITY

Duane L. Setterdahl

Wayne J. Davis

Edward Barkmeyer

Joseph G. Macro

Cap Gemini America

S Westbrook Corporate Center, Suite 600 Department of General Engineering
University of Illinois

West Chester, Illinois 60154, U.S.A.

National Institute of Standards
and Technology
Gaithersburg, Maryland 20899 U.S.A.

Urbana, Illinois 61801, U.S.A.

ABSTRACT

This paper discusses an object-oriented simulation project
conducted for the United States Postal System (USPS) to
test the reliability of an Ethernet LAN to support commu-
nication among various equipment contained at a General
Mail Facility. The study was authorized by the National
Institute of Standards and Technology to verify that the
communication requirements derived from the implemen-
tation of their developed Postal Equipment Management
System would not saturate the communication network.
The simulated network handles over 400 transactions per
second, and the USPS specified that eight hours of opera-
tion (one shift) must be simulated. The simulation was
programmed in C++, and the completed study demon-
strated that an Ethernet LAN can reliably support the

communication requirements.
1 INTRODUCTION

For the United States Postal System (USPS), the General

Mail Facility (GMF) represents the primary regional pro-

cessing center for the sorting and distribution of all mail

items except express mail, which is handled in a separate
system. The GMF contains several basic types of mail
processing equipment (MPE) whose integrated operation

is depicted in Figure I:

¢ The Automated Face Canceling System (AFCS) can-
cels the postage on each mail packet to prevent its
reuse.

e TheOptical Character Reader (OCR)reads the address
and attempts to assign the 9-digit zip code for the mail
packet. If it is successful, (which is the case for
approximately 75 percent of the mail packets), then the
OCR prints a bar code representation of the 9-digit zip
code at the bottom of the packet. If the OCR cannot
assign the proper 9-digit zip code, the OCR first prints
aunique bar code identifier on the back of the envelope
and then captures an image of the face of the mail

988

packet which it then sends to the Image Processing
SubSystem.

e The Image Processing SubSystem (IPSS) stores the
image for the mail packet with its identification num-
ber. These images are then passed to terminals staffed
by postal workers, who type in the address at the
keyboard until a computer can assign the proper 9-
digitzip code. The zip code is then returned to the IPSS
and stored with the mail packet identifier number.

e The Outgoing SubSystem (OSS) prints the correct bar
code for the 9-digit zip code on the mail packets which
were not successfully processed by the OCR. The OSS
first reads the identifier bar code from the back of the
mail packet and then sends a request for the corre-
sponding zip code to the IPSS. The IPSS thenresponds
with the zip code for the packet, and the OSS prints the
appropriate bar code at the bottom of the packet.

* The Delivery Bar Code Sorter (DBCS) sorts the mail
using the bar code for the complete 9-digit zip code.

» The Flat Mail Sorter (FMS) is designed to sort larger
letters.

* The Small Parcel Bundle Sorter (SPBS) is designed to
sort parcel post packets.

» Finally, the Real-time Performance Monitoring Sub-
system (RPMS) is responsible for monitoring the
status of the entire configuration of MPE.

—> Parcels - » Messages FMS
—| AFCS OCR / DBCS \
271
Not Recognized \
-7 J SPBS
£L
IPSs [0 oss |

Figure 1: Integrated Operation of MPE

Simulation Model for Communication Network Traffic 989

AFCS FMS SPBS

OCR RPMS DBCS
Status Message

IPSS :—_-_—T OSS Response Message

Figure 2: Communication among MPE under PEMS

All MPE is designed for high speed operation. Typi-
cally,each type of MPE, excluding the RPMS, processes 10
mail packets per second or a packetevery 100 milliseconds.
Operating under the Postal Equipment Management Sys-
tem (PEMS) developed by the National Institute of Stan-
dards and Technology (NIST) for the USPS, it was pro-
posed that each MPE unit update its status to the RPMS
after every ten mail packets are processed or approximately
once per second (Figure 2).

PEMS also specifies the protocol for the interaction of
the OSS with the IPSS. The OSS generates and sends a
request message to the IPSS for every processed mail
packet. The IPSS must respond with the correct bar code
for the requesting packet within 225 milliseconds from the
time that the OSS generated its request. If the correct zip
code is received within the 225 millisecond interval, then
the OSS prints the bar code at the bottom of the envelope.
Otherwise, the specific mail packet will be diverted and
must be reprocessed by the OSS.

Using Ethernet protocols, it is assumed that every
message will be acknowledged. Ifthe acknowledgment for
amessage is not received on time, then the message will be
resent. For all messages, the acknowledgment returned by
the Ethernet software provides the verification that the
message was received. As a special case, when the IPSS
receives a bar code request from the OSS, it generates (in
addition to the acknowledge message) a response message
in the form of the correct zip code.

At the request of the USPS and NIST, a simulation
model was constructed to assess the ability of an Ethernet
LAN toreliably support the required communication among
various components of MPE at a GMF under the operation
ofthe proposed PEMS. The simulated configuration for the
GMF included 16 Delivery Bar Code Sorters, 14 Bar Code
Sorters operating as Outgoing SubSystems, 9 Automated
Face Cancelling Systems, 16 Flat Mail Sorters, I Small
Parcel Bundle Sorter, 10 Optical Character Readers, 1
Image Processing SubSystem, and 1 Real-time Perfor-

mance Monitoring System. This operational configuration
15 typically employed during the third shift when outgoing
mail is being processed.

We cxpected that this configuration of MPE would
generate approximately 210 messages per second with
cach message requiring an acknowledgment. Thus, over
400 transactions would be transmitted upon the network
cach second. The USPS also indicated that an eight-hour
(28,800 seconds) shift must be simulated. During a typical
eight-hour shift, we expected that over 12,000,000 transac-
tions would be processed by the network.

In Section 2, we briefly describe the operation of the
network under the PEMS protocols. In Section 3, we will
provide an overview of the developed model. In the
remaining sections, we will summarize the statistical re-
sults for the simulation of the investigated GMF configura-
tion operating over an eight-hour period.

2 MODELING THE OPERATION OF THE NET-
WORK

In modeling the operation of the GMF network, we as-
sumed that four types of messages are transmitted on the
network: a status message from a MPE to the RPMS, a
request message from the OSS to the IPSS, a response
message from the IPSS to the OSS, and an acknowledg-
ment message for every transmitted message. In Figure 3,
we depict the basic steps associated with sending any
message on the Ethernet from the sender to the receiver.
(The standards for the operation of the ethernet and the
associated time intervals were provided by NIST to the
modelers.) First, the sender application generates the
message and places it on the CPU’s queue for processing.
The processing of the message by the CPU is depicted in
Figure 4. Once the message hasreceived the attention of the
CPU, the first step is to formulate the transport packet. This
task requires approximately 10 microseconds to accom-
plish. The second task is to formulate the data packet and
place it at the Ethernet card. We modeled this duration as
being normally distributed with a mean of 100 and a
standard deviation of 5 microseconds. After the data packet
has arrived at the Ethernet card, it waits until the network
is silent. When the Ethernet LAN becomes available, the
sender Ethernet card transmits the message to the receiver
Ethernet card.

The duration required to send the message is assumed
tobe 51.2 microseconds plus 100 nanoseconds per bittimes
the length of the message (in bits). The constant 51.2
microseconds includes the time to transmit the header,
which is assumed to be the same for every type of message.
Therefore, the body of the message includes only informa-
tion generated by the PEMS. Status messages have alength
of 960 bytes; request and response messages are 64 bytes;
and an acknowledgment contains all essential information

990 Setterdahl, Davis, Macro, and Barkmeyer

sender
Application

Generate Mcssage ¢

sender
CPU

Send Ether Packet i

sender
Ethernet Card

End
Transmission of
Acknowledgement

Begin Transmission

Network

Begin
Transmission of
Acknowledgement

End Transmission

receiver
Ethernet Card

Send Ether
packet for
Acknowledgement

Receive Ether packet

receiver
CPU

Receive Message ¢

receiver
Application

Figure 3: Steps Executed When Sending a Message

in its header and has zero length. In addition, between each
sent message, there must be a silent period (or interframe
gap) of 9.6 microseconds. Note that this gap time will not
be counted toward the total network busy time, but it does
provide an essential overhead in the operation of the net-
work.

Arrival of Message or
Acknowledgement
for Sending
CPU
Queue
4 Prepare
& Transport Acknowledge
. Packet Time Established
58
S Prepare
A Ether
* Packet

Ether Packet queued
at Ethernet Card
for Transport

Figure 4: CPU Processing of an Outgoing Message
or Acknowledgment

Two special situations are modeled here. Since there
is no controller to assert which message will be transmitted
next, if more than one sender is prepared to send a message
when the network becomes available, all available mes-
sages are assumed to initiate transmission simultaneously.
This situation leads to a network collision. If a collision
occurs, then each sender will pause (or back-off) for a
random delay before trying to send the message again. This
delay is computed (individually by each sender) by first
sampling a uniformly generated integer between 0 and
1023 and then multiplying the sampled integer by a pre-
specified constant, denoted as the slot time and specified
here as 51.2 microseconds. Thus, a transmitter could wait
for over 50 milliseconds before attempting to retransmit the
message. After the network experiences a collision, it is
jammed for 9.6 microseconds during which no new mes-
sages can be sent.

A second special situation occurs when the message’s
data is corrupted during transmission. The probability that
agiven bit of information will be corrupted in the transmis-
sion is approximately one in 10 million (107). If the
message is corrupted, it is assumed to die after transmission
and will not be assigned to the receiver for further process-
ing.

After the message reaches the receiver Ethernet card,
the receiver CPU is alerted and the tasks shown in Figure 5
are implemented. First, the incoming data packet is trans-
lated into a transport packet. At this point, the message
acknowledgment is formulated. As illustrated in Figure 5,
two tasks must be initiated at this point. However, since
there is only one CPU, the tasks will be performed serially.
Next, the acknowledgment is treated as amessage arrival in
Figure 4. Specifically, transport and data packets for the
acknowledgment are formulated, and then a data packet is

Simulation Model for Communication Network Traffic 991

Receipt of Message
from Ethernet Card

CPU
Queue

Translation of
Ether Packet and
Formulation of
Acknowledgement

2 \
- N
g ¢
©g | Prepare
& Transport
Translation of Packet
Transport Packet and
Notify Application Prepare
| Ether
A Packet
Ether Packet queued
at Ethernet Card
hg:ggigvi?t for Transport
Application

Figure 5: CPU Processing of an Incoming Message

placed upon the receiver’s Ethernet card for transmission to
the original sender. The durations for these tasks are
assumed to be similar to those for the processing of the
original message. The transmission of the acknowledg-
ment across the LAN is also similar to that for the original
message. We will discuss the handling of the acknowledg-
ment at the original sender shortly.

Returning to the receiver CPU in Figure 5, the trans-
port packet for the original message is now translated and
forwarded to the receiver application. At this point, the
transmission of the original message is assumed to be
complete, and the receiver CPU can be assigned to its next
task. The duration for the last translation and forwarding to
the application is assumed to be normally distributed with
amean of 100 and a standard deviation of 5 microseconds.

We now discuss the handling of the acknowledgment
when it arrives at the Ethernet card for the sender of the
original message. In Figure 4, we note that after the
transport packet for the original message was formulated,
the time at which an acknowledgment must be received was
established. If the transport layer (CPU) does not receive
an acknowledgment of its transmission before the estab-
lished deadline, the message will be re-sent. This re-
sending process requires that the sender CPU formulate
another transport and data packet and place it upon the
Ethernet card as depicted in Figure 4.

The steps in Figure 3 depict the sending and receipt of
a single message only. This situation is similar to a given
MPE sending its status information to the RPMS. The
interaction of the OSS with the IPSS is not completely
detailed in Figure 1. When the OSS sends its request to the
IPSS for a bar code, Figure 3 can be employed for the
transmission of the request with the OSS as the sender and
the IPSS as the receiver. When the message reaches the
IPSS application, IPSS must formulate its response. The
duration needed to formulate this response is assumed to be
normally distributed with mean of 10 and standard devia-
tion of 1 microsecond. Once the response message is
formulated, the IPSS becomes the sender and the request-
ing OSS becomes the receiver (in Figure 1) and the entire
process is repeated. Note that both the request by the OSS
and the response by the IPSS will be acknowledged.

As stated above, the timely acknowledgment of a
status message to the RPMS is not critical in the sense that
it will not delay the operation of the sending MPE. For the
OSS/IPSS interaction, the timely response by the IPSS to
the OSSrequestis critical. Atthe momentin which the OSS
generates its request and places it on its CPU queue, a clock
is initiated. The response by the IPSS must be returned to
the OSS application in a pre-specified interval of 225
milliseconds. If the response does not arrive on time, then
the correct bar code cannot be printed upon the requesting
packet. In this case, the mail packet must be diverted and
reprocessed by the OSS. Obviously, reprocessing mail
packets reduces the efficiency of the General Mail Facility
and should be minimized.

3 THE MODELING APPROACH

The approach adopted for this study was influenced by
several factors. First, the budget size would not permit the
acquisition of a special purpose simulation tool to model
communication networks. Second, there were the detailed
operational characteristics which had to be addressed.
NIST specified thatevery detail of the network's operation,
(described above), had to be modeled. We initially at-
tempted to use one of the general purpose simulation tools
such as Siman (Pegden et al. 1990) or SLAM (Pritsker
1986) to model the network dynamics but soon found that
this was not a feasible approach. In fact, we requested that
a special version of Siman be compiled to provide a double
precision representation for the simulation time, given the
microsecond subintervals of time which had to be consid-
ered across an eight-hour period. Third, the eight-hour
length for the simulation run was deemed essential. We, in
conjunction with NIST, attempted to persuade the USPS
that it was unnecessary to model eight hours of activity.
That is, if the network was going to fail due to saturation,
it would do so in a few short minutes. Recall that over 400
transactions were to be modeled each second. In each

992 Setterdahl, Davis, Macro, and Barkmeyer

minute of operation, ncarly 25,000 transactions would be
addressed. Seldom do we address this number of simulated
entities in an entire simulation run. The USPS repeated
their request, and the operations of full cight-hour shift
were investigated.

Given the number of message transactions thatmust be
considered in analyzing an cight hour shift, we chose to
develop the model in C++ using the object-oricnted para-
digm formulated by Booch (1994). We also reviewed the
object-oriented modeling approaches developed by Zeigler
(1990) especially for the simulation task. The algorithms
used to generate random deviates were taken from Law and
Kelton (1991).

Although the development of the model took only a
one person-month, the effort was significant. Objects were
used to model every element of the simulation including:
equipment, queues, messages, and events. Given that over
14,000,000 messages transactions were processed in an
eight-hour shift, literally hundreds of millions of objects
were constructed and destructed during a single simulation
run.

Developing the object-oriented model using C++ did
permit us to model and validate every operational detail
with our clients, NIST and the USPS. In fact, modeling in
C++ eliminated the need to make simplifying assumptions
that are usually essential to generate a model using the
constructs of a given simulation language. The model that
resulted was extremely efficient in that only one to two
hours was required to execute a simulation run. We only
reportone investigated configuration of MPE here. Several
others were considered as the project evolved. In fact, our
developed simulation software would permit NIST to specify
the number of each of the equipment type to be considered
for a given simulation study. The programming was
implemented in ASCII standard C++, permitting it to be
executed on virtually any workstation. We executed it on
both SUN and Motorola workstations to verify its portabil-
ity.

In retrospect, this simulation study was a major benefit
to our laboratory. It verified the reliability of the network
which is reported in the next section. It also introduced us
to amuch more sophisticated method for developing simu-

lation models. Using off-the-shelf packages, we were
constantly attempting to program a given behavior within
the constraints of the language. This was particularly
apparent when we modeled flexible manufacturing sys-
tems. Earlier simulation studies conducted in our labora-
tory demonstrated the importance of modeling controller
interactions which coordinate the flow of all entities includ-
ing jobs and supporting resources, such as tools (see Dullum
and Davis 1992 and Davis et al. 1993). As aresult of this
study, we now develop the complete object-oriented defi-
nition of the modeled system before attempting to employ
asimulation language. If the requirements can be satisfied
using a conventional simulation tool, then we use it. In
most cases, however, we find ourselves using C++ and
modifying objects which we have previously developed
whenever possible.

4 RESULTS FOR THE SIMULATION STUDY

In Table 1, we summarize the configuration of MPE con-
sidered in this study. In Table 2, we summarize the
statistics for the ether network. Observing that the total
load of 3011 seconds for the network and that the length of
the simulation run is 28,800 seconds, the network is loaded
atapproximately 11%, which is well below saturation. The
calculated total load percentage does not include the
interframe gap times or the jam times after a collision has
been experienced. In retrospect, we should have added
these interframe gap times and jam times to the total load
time to compute the total busy time. Using the statistics on
the messages sent, we can estimate the time associated with

Table 1. Simulated MPE Configuration

Number of BCS: 16
Number of OSS: 14
Number of AFCS: 9
Number of FMS: 16
Number of OCR: 10
Number of IPSS: 1
Number of RPMS: 2

Table 2. Reported Final Attribute Values for the Network

numCollisions numBadMessages

originalLoad totalLoad

203,579 191

2,343.07 3,010.81

numCollisions = number of collisions recorded by the network

numBadMessages = number of messages corrupted during transmission

originalLoad = total time (seconds) spent transmitting status, request and response
messages excluding resends, retransmissions or acknowledgments.

totalLoad = total time (seconds) in transmitting all messages

Simulation Model for Communication Network Traffic 993

interframe gap times and jam times to be approximately
200 seconds, giving a total busy time of approximate 3300
seconds and a percentage busy of 11.1%.

In Table 3, we provide the statistics for the RPMS.
Note that nearly 3 million status messages were received
during the simulation. In Table 4, we report the final
statistics for the IPSS in its interaction with the OSSs. Note
that this summary does not include the status messages sent
by the IPSS to the RPMS at arate of one status message per
ten response messages sent.

In Table 5, we summarize the statistics for the 14
included OSS’s. It is important to note that no OSS ever
received a late response to its request to the IPSS for a zip
code. This is remarkable considering that over 4 million
requests were sent by the OSSs to the IPSS for zip codes.
Due to space limitations, we do not include the statistics for
the 16 BCSs, 16 FMSs, the 10 OCRs and the 9 AFCSs
employed in this study as they generate status messages
only.

5 CONCLUSIONS

The primary concern in performing this simulation was to
determine if an Ethernet LAN could adequately serve the
various MPE’s while operating under the proposed PEMS
developed by NIST. A special concern was the ability of
the IPSS to provide timely responses to the OSS’s request
for bar codes within the maximum permissible interval of
225 microseconds. In this simulation study, over 4 million
requests were processed without a single late response.
Even this statistic does not depict the true communication
reliability projected by this simulation. In Figure 6, we

provide a histogram for the empirical probability and
cumulative density functions pertaining to the response
interval, the time between the origination of the request at
the OSS and the time that the response is received by the
OSS from the IPSS, observed in the simulation study. Over
91% of the responses occurred within 5% of the permissible
225 microsecond interval or 11.25 microseconds. Over
95% occurred within 10% of the maximum interval. No
responses required more than 50% of the maximum inter-
val or 110 microseconds.

The data presented in this paper represent the results
from a single simulation run which considered millions of
transactions. Additional replications were performed, and
as expected provided very similar results. (Due to their
similar results and space considerations, their results have
not be detailed.) In particular, there were no late responses
from the IPSS to the OSS requests. We also analyzed other
potential configurations of equipment, and again there
were no late responses.

There are, however, additional concerns that have not
been addressed that prevent us from positively stating that
the proposed PEMS network configuration will be totally
reliable. The firstconcern s that our current model does not
consider any additional message traffic that may occur on
the network. In particular, does the possibility exist for
large messages to be transported on this network? If large
messages do occur, they could temporarily congest the
network and reduce the probability of the IPSS's response
arriving on time. Our second concern arises in the avail-
ability of the CPU to process the message packets. Cur-
rently, no other loading upon the CPUs beyond that result-
ing from the implementation of PEMS is being considered.

Table 3. Reported Final Attribute Values for the RPMS

numStatusReceived

1,957,191

numCollisions

25,703

cpuBusyTime
645.867

numStatusReceived = total number of status messages received during simulation

numCollisions = number of collisions experienced in sending acknowledgment as
RPMS sends no original messages

cpuBusyTime = total time (seconds) that the RPMS’s CPU devoted to
processing messages

Table 4. Reported Final Attribute Values for the IPSS

numCollsn

252,098

numResnd

146,028

numRequestRcv

4,189,297

cpuBusyTime
2,378.17

numAckn

4,189,297

numRespSent

4,189,297

numRespSent = total number of response messages sent during simulation

numAckn = the number of response messages that were acknowledged

numRequestReceived = the number of requests received from the OSS’s during the simulation
numCollsn = number of collisions experienced by the IPSS

numResends = number of responses resent due to late acknowledgments

cpuBusyTime = total time (seconds) that the IPSS’s CPU devoted to processing messages

994

Hence, the CPU is always available when itis needed. This
certainly will not be the situation while the equipment is
processing mail as each CPU will likely have other respon-
sibilities associated with managing the operation of a given
MPE.

The model has already been programmed in a manner
that will permit these additional loads to be considered.
However, the characteristics for these additional loads had

Setterdahl, Davis, Macro, and Barkmeyer

not been quantified when this study was performed. Until
additional simulation studies are conducted to consider this
loading, it is difficult to fully endorse the proposed system.
The developed model was submitted to the United States
Postal System and the National Institute of Standards and
Technology who will likely perform the future simulation
studies.

Table 5. Reported Final Attribute Values for the 0SS

0SS numStatSnd numReqSnd numAckn numRspOT numCollsn numResnd cpuBusy
0 28,802 287,918 316,720 287,918 10,619 12,213 174.541
1 28,791 287,916 316,707 287,916 10,179 12,082 174.482
2 28,793 288,028 316,821 288,028 10,356 12,181 174.628
3 28,785 287,964 316,749 287,964 10,194 12,214 174.600
4 28,807 287,911 316,718 287,911 10,210 11,959 174.388
5 28,786 287,974 316,760 287,974 10,463 12,227 174.673
6 28,812 288,098 316,910 288,098 10,217 11,982 174.589
7 28,803 288,047 316,850 288,047 10,248 12,259 174.688
8 28,799 287,921 316,720 287,921 10,386 11,886 174.350
9 28,790 288,105 316,895 288,105 10,398 12,200 174.683
10 28,792 287,993 316,785 287,993 10,368 12,123 174.554
11 28,800 287,967 316,767 287,967 10,358 12,256 174.637
12 28,804 287,895 316,699 287,895 10,097 11,883 174.348
13 28,791 288,011 316,802 288,011 10,379 12,056 174.570

OSS = the OSS unit number from 0 to 13

numStatSnd = number of status messages sent

numReqSnd = number of request messages sent to the IPSS

numAckn = number of status and request messages acknowledged

numRspOT = number of responses to requests received on time within the required 225 microsecond interval
numCollsn = number of collisions experienced by the OSS

numResnd = number of messages resent due to a late acknowledgment

cpuBusy = total time (seconds) that the OSS’s CPU devoted to processing messages

1 -+ .—.’._.—-l—l—-—l—.—I—I—I—I—I—I—I—I—I—l
0.9 Hm
0.8 1
0.7 A
0.6 4 B empirical probability
) density function
0.5 4 “"- empirical cumulative
0.4 - density function
0.3 1
0.2
0.1
0 - pr—p—t—t—t—————————t

10 20 30 40 50 60 70 80 90

Percentage of maximum allowable
response interval (225 microseconds)

Figure 6: Histograms for Observed IPSS Response Times

Simulation Model for Communication Network Traffic 995

REFERENCES

Booch, G. 1994. Object-Oriented Analysis and Design
with Applications. Redwood City, California: Ben-
jamin/Cummings Publishing.

Law,A.M.,and Kelton, W.D. 1991. Simulation Modeling
and Analysis (Second edition). New York: McGraw-
Hill.

Pegden, C. D., Shannon, R. E., and Sadowski, R. P. 1990.
Introduction to Simulation Using SIMAN. New York:
McGraw-Hill.

Pritsker, A. A. B. 1986. Introduction to Simulation and
SLAM II (Third edition). New York: Halstead-Wiley.

Zeigler, B. P. 1990. Object-Oriented Simulation with
Hierarchical Modular Models. New York: Academic
Press.

Davis, W. J., Setterdahl, D., Macro, J., Izokaitis, V., and
Bauman, B. 1993. Recent Advances in the Modeling,
Scheduling and Control of Flexible Automation. In
Proc. of the 1993 Winter Simulation Conference, eds.
G. W. Evans, M. Mollaghasemi, E. C. Russell, W. E.
Biles, 143-155. The Institute of Electrical and Elec-
tronics Engineers, Piscataway, New Jersey.

Dullum, L. M., and Davis, W.J. 1992. Expanded Simula-
tion Studies to Evaluate Tool Delivery Systems in a
FMC. Proc. of the 1992 Winter Simulation Confer-
ence, eds. J. J. Swain, D. Goldsman, R. C. Crain and J.

R. Wilson, 978-986. The Institute of Electrical and
Electronics Engineers, Piscataway, New Jersey.

AUTHOR BIOGRAPHIES

DUANE L. SETTERDAHL is systems analysis consult-
ant for Cap Gemini America, an engineering consulting
firm, in West Chester, Illinois. He received his master's
degree from the Department of General Engineering at the
University of Illinois.

WAYNE J. DAVIS is a professor of General Engineering
at the University of Illinois. His active research areas
include simulation, computer-integrated manufacturing,
and real-time planning and control of discrete-event sys-
tems. He collaborates with the Automated Manufacturing
Research Facility and the Electronics Manufacturing Pro-
ductivity Facility. He is a member of ASME and IN-
FORMS.

JOSEPH G. MACRO is a doctoral student in the Depart-
ment of Mechanical and Industrial Engineering at the
University of Illinois. He is a recipient of the US Depart-
ment of Energy Integrated Manufacturing Predoctoral Fel-
lowship.

EDWARD BARKMEYER is a systems analyst at the
National Institute of Standards and Technology where he
specializes in the application of computer science tech-
nologies to advanced manufacturing systems. He received
his masters degree from the University of Maryland in
applied mathematics.

