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ABSTRACT

We describe the concept of a carousel as seen from the
business-process and the system-modeler viewpoints,
compare and contrast various algorithms for picking
from a carousel, and discuss the simulation modeling
logic of one such algorithm in detail. The results and
conclusions from simulations of two carousel systems
are presented.

First, we present an introductory overview of a
simulation study motivating a detailed examination of
carousels. Next, we define a carousel and present an
overview of the picking operation relative to a carousel.
We then describe four algorithms for picking and
discuss in detail the representation of these algorithms
within simulation models, followed by a presentation of
results from such simulations. In conclusion, we
summarize carousel-configuration and picking algorithm
conclusions.

1 INTRODUCTION

A supply company in the Detroit area wanted to improve
its parts storage and order retrieval system. The existing
system stored all items on shelves, from which orders
were picked manually. Two proposed systems from two
vendors replaced most of the shelves with flowracks,
horizontal carousels, and vertical carousels, from which
orders could be picked semiautomatically. Production
Modeling Corporation wrote computer simulations of
the two proposed systems in AutoMod II, so that the
supply company could compare their performances.
When programming the simulation model, one goal
was to determine realistic carousel picking times without
increasing the simulation run time by scheduling every
carousel move. An algorithm was developed that
computes the picking time for multiple picks at one
carousel bank, allowing one simulation event to be
scheduled to simulate several carousel actions. We
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claim the improvement in simulation run time was
significant.

To provide background, we describe the concept of a
carousel as seen from the business-process and system-
modeler viewpoints, and compare and contrast various
algorithms for picking from a carousel. We then discuss
the modeling logic of the algorithm for computing the
time for multiple carousel picks. We conclude with
some results and conclusions from the comparison of the
two proposed order-picking systems.

2 DEFINITION OF A CAROUSEL

A carousel is a storage area where components for
filling an order are stored in anticipation of that task. A
rotating spice shelf ("lazy susan") in a kitchen serves as
an example of a carousel. Every spice bottle in the shelf
will be needed for some recipe; probably no particular
spice bottle will be needed for all recipes; some spice
bottles will be needed more often than others. Each of
these considerations affects the efficient design and
operation of a carousel.

In industrial practice, a carousel comprises multiple
shelves, drawers, or bins containing parts or workpieces.
These parts or workpieces will be needed to fill orders,
just as the spices will be needed to follow a recipe. The
orders to be filled may be external (destination a

customer) or internal (destination a downstream
process).
Industrial carousels characteristically implement

semi-automated storage and retrieval. The carousel may
be connected to a chain loop that moves the storage
location to the carousel's exit point.  Hence the
implementation is neither completely manual (a worker
goes to the shelves, drawers, or bins to select the needed
parts) nor completely automatic (an automated storage/
retrieval [AS/RS] system). For visualization, consider
the laundry shop's chain on which customers' clean
laundry is sorted by last name; the clerk steps on a
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treadle, thereby revolving the chain and bringing the
individual customer's laundry to the service counter.

3 OVERVIEW OF THE PICKING OPERATION

Picking is the operation of selecting needed items from
the carousel and moving them from the carousel's cxit
point to an order contaner.  Picking is typically a
manual operation, such as the laundry clerk removing
laundry from the chain loop and handing it to the
customer.  Picking 1s frequently controlled by a
computer, which sorts the picks and controls movement
of the carousel with the goal of making picks as fast as
possible.

Optimization of the picking operation, as discussed
below, may require multiple carousels, collectively
called a "carousel bank." Multiple carousels allow the
operator to make a pick from one carousel while the
other carousel(s) are rotating to the next pick. By the
time the operator completes a pick, another carousel will
probably be ready for the operator to make the next pick.
Therefore, operator waiting time is reduced and the
number of picks per operator-hour is increased.

4 VARIOUS ALGORITHMS FOR PICKING

Algorithms for picking compete with one another
relative to various objectives such as:

e minimizing capital investment for the carousel or

carousel bank

e minimizing total motion of the carousel

e minimizing the average time to fill an order

¢ minimizing the worst-case time to fill an order

e maximizing the utilization of the picker

e maximizing the fraction of orders correctly filled.
These objectives and performance metrics are similar to
those identified by Takakuwa (1991) for computer-aided
cart systems and by Gunal, Grajo, and Blanck (1993) for
automatic storage and retrieval systems.

Four commonly used algorithms are individual
picking, cluster picking, rolling picking, and pick-to-
light.

In individual picking, one order enters the carousel
(or carousel bank), all picks required for its fulfillment
are determined, the sequence in which these picks will
be performed is determined, the picks are performed,
and the order is moved from the carousel exit point to
the order container. This process is then repeated for the
next entering order.

In cluster picking, multiple orders enter the carousel
bank simultaneously. The determination of the picks
and their sequence is made, and the picks are performed.

All orders then exit the carousel. This process is then
repeated for the next entering group of orders.

In rolling picking, multiple orders may be in the
carousel bank concurrently, but need not enter
simultaneously. When a new order enters the carousel,
its required picks are determined, their best sequence
determined in view of the picks already scheduled, and
this sequence merged timewise with those previously
scheduled picks. Orders exit the carousel when filled,
and the exit sequence of orders need not match their
entry sequence.

Pick-to-light picking can be used in conjunction with
any of the above picking algorithms. In pick-to-light,
containers for orders are placed on a "sort bar." When an
item is ready to be picked from the carousel, one light
shows the exact location of the item within the carousel
and a corresponding light shows which order contained
on the sort bar will receive that item.

These competing picking algorithms have various
advantages and disadvantages. For example, the pick-
to-light method tends to maximize the fraction of orders
filled correctly, but increases the capital expenditure.

S SIMULATION MODELING OF PICKING
ALGORITHMS

The valid, credible modeling of picking algorithms for
carousels requires attention to several key issues.

First, realistic orders must be generated. In this
context, the end user of the model will probably have
available massive historical data gathered trom actual
orders. Statistical parameters needed in the model can
then be conveniently obtained by loading these historical
data into a spreadsheet, thereby advantageously using
the large data capacities and statistical capabilities of
current spreadsheets.  In the simulation study that
motivated this paper, 78,000 orders representing
230,000 picks were conveniently analyzed using the
macro features and rich statistical function set of
Microsoft Excel 4.0.

Second. especially if there are many carousels in the
model, scheduling events for each pick will drastically
increase simulation run time. This problem is especially
severe when the picking algorithm under analysis is
either cluster picking or rolling picking. Candidate
solutions to this run-time problem are:

a) Develop a separate micromodel of the carousel: use
the results of this micromodel in a macromodel of
the entire order-picking or work-process simulation.
This constraint of model scope is analogous to that
advocated by Graehl (1992) in the context of power
and free conveyors, which are likewise material-
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handling systems of high complexity and potentially
intricate detail.

b) Reduce the number of scheduled events by
explicitly calculating the time required to pick an
entire cluster of multiple orders. Performing this
calculation usually works well tfor cluster picking,
because the programming etfort to pertorm the
calculation saves the run time required for
scheduling all the picks of the cluster. However,
performing this calculation is less advantageous
with rolling picking, because events must still be
scheduled to check for newly arriving containers
when space is available in the cluster and to release
each container when it is finished picking.

For the simulations of the two proposed order picking
systems, an algorithm was developed to implement
alternative (b). The explanation and Figure 1 below
describe how the algorithm works for a bank of three
horizontal carousels with one picker. With minor
modifications, the same algorithm was also used for
vertical carousels and with carousel banks containing
two carousels.
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first pick, and to the previous pick for all other picks.
In the diagram above this two-stage sort would
produce the pick list A,, A|, B,, C,.

2) Calculate the move time for each carousel move.
In the example above, the moves would be: current
location of carousel A to position A,, position A, to
position A}, current location of carousel B to position
B, current location of carousel C to position C,.

3) Set the cumulative order pick time to 0.

4) Determine which carousel has the minimum
next-move-time. In the diagram above, that carousel
is B because B, is closer to the operator than either A,
or C,. Add the minimum next-move-time to the
cumulative order pick time.

5) Subtract the minimum next-move-time from the
first move times for all carousels.

6) Subtract the time needed to pick the item out of
the carousel (in this example, the B, pick time) from
all other carousels (in this example, carousels A and
C) because the other carousels are still moving while
the item is being picked from carousel B. Add the
pick time to the cumulative order pick time.

A2 Al Carousel A

B1
OPERATOR Carousel B
Cl Carousel C

Figure 1: Bank of Three Carousels with One Picker

Suppose the following picks must be made to fulfill an
order: A, from carousel A, B, from carousel B, C, from
carousel C, and A, from carousel A. The modeling
algorithm would then undertake the following steps:

1) Sort the pick locations by carousel. Within that
sort, sort by closest location to the operator for the

7) Determine the next-move-time of the carousel
from which the current pick is being made (in this
example, carousel B).

8) Subtract the time required to place the picked
item into the order container from the movetime of all
carousels. In this example, subtract the time required
to move pick B, to the carousel-bank exit point, since
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all carousels A, B, and C will be advancing to their
next pick positions while B, is being transported to
the exit point.  Add the place time to the cumulative
order pick time.

9) If any carousel move time becomes less than zero
as a result of this subtraction, set that move time to
zero. If this reset occurs, it represents the situation
wherein the carousel advancement time was less than
the move-time + pick-time + place-time elapsed in
steps (4), (6), and (8).

10) If the cluster pick is incomplete, return to step 4.
If the cluster pick is complete, the calculated
cumulative order pick time should then be used to
schedule the time-of-completion event for this cluster
pick.

6 SIMULATION RESULTS

The two systems were simulated multiple times with
multiple replications to determine the maximum orders
per day that could be processed in an average of seven
hours. Processing time and picker utilization statistics
for the two systems are presented below. The results
summarized in Table 1 use rolling picking, whereas
those summarized in Table 2 use cluster picking.

7 SUMMARY OF CAROUSEL-CONFIGURATION

AND PICKING-ALGORITHM CONCLUSIONS

Based on the above results, the following conclusions
were made regarding the carousel picking objectives and
picking algorithms:

¢ In the carousel systems simulated, cluster picking
yielded the highest number of picks per operator-
hour.

e In the carousel systems simulated, rolling picking
was less efficient than cluster picking. Two
possible sources of inefticiency were discovered
for rolling picking: (1) the extra operator work
required to process individual containers may
outweigh any carousel movement efficiencies
gained from always having a large number of picks
for the carousel to choose from; (2) with cluster
picking, the fastest picking order usually causes the
carousel to move in one direction for the entire
cluster.  With rolling picking, the continual
introduction of new picks will sometimes cause the
carousel to change direction, resulting in wasted
carousel movement over areas of the carousel that
were already recently picked.

Table 1: System #1. Rolling Picking at Carousels, two Carousels per Bank

Orders per day

Minimum Processing Time (hours)

Average Processing Time (hours)

Maximum Processing Time (hours)

Average Operator Utilization at:
Vertical Carousels (%)
Manual Picking at Shelves (%)
Horizontal Carousels (%)
Flowracks (%)

1400 1500 1550 1600
6.09 6.57 6.86 6.97
6.20 6.79 7.11 7.39
6.42 6.94 7.40 7.77
54.9 53.8 S4.1 548
64.0 73.1 75.3 77.9
83.6 90.3 93.9 97.4
53.4 62.3 64.1 66.0

Table 2: System #2.  Cluster Picking at Carousels, two or three Carousels per Bank

Orders per day

Minimum Processing Time (hours)

Average Processing Time (hours)

Maximum Processing Time (hours)

Average Operator Utilization at:
Vertical Carousels (%)
Horizontal Carousels (%)
Flowracks (%)

2500 2600 2700
6.37 6.57 6.97
6.54 6.79 7.39
6.76 6.94 7.77
89.5 91.4 96.7
89.0 92.0 96.0

86.7 88.3 93.9
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e In the carousel systems simulated, three carousels
in a carousel bank resulted in minimal operator
waiting time for carousel movement.

o In a picking system with multiple picking locations
or with multiple storage types (e.g.. horizontal
carousel, vertical carousel, flowrack), evenly
distributing the picking load among the picking
locations was extremely important for maximizing
system throughput. In the above simulation
results, system #l is very unbalanced, whereas
system #2 is very well balanced.

o In the cluster picking system, it is important to
provide a nearby accumulation space for the next
cluster to form while a cluster is being picked.
Otherwise, the operator has to wait while the orders
for the next cluster arrive.
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