Proceedings of the 1995 Winter Simulation Conference
ed. C. Alexopoulos, K. Kang, W. R. Lilegdon, and D. Goldsman

STOCHASTIC OPTIMIZATION APPLIED TO A
MANUFACTURING SYSTEM OPERATION PROBLEM

Robert W. Brennan
Paul Rogers

Department of Mechanical Engineering
University of Calgary
2500 University Drive NW
Calgary, Alberta T2N 1N4, CANADA

ABSTRACT

This paper deals with stochastic optimization of a
discrete-event simulation model for the solution of a
manufacturing system operation problem. Gradient
estimates are obtained by the application of the
infinitesimal perturbation analysis (IPA) technique.
We begin with background material on stochastic
approximation (SA) and the IPA technique, their
potential value in finding optimal solutions to
manufacturing system operation problems, and limita-
tions concerning their applicability. Next we present
our attempt to solve a real problem (the design of a
partially-automated assembly line in an electronics
manufacturing facility) using this approach. A
sequence of models is described moving from one
which embodies some restrictive assumptions through
to models which more closely approximate the real
system. All of the models are implemented in the
SIMAN IV simulation language incorporating user-
written code (written in C++) implementing the SA
and IPA algorithms. We report and interpret the
results obtained with the different models and close
with concluding remarks on the current value of this
technique in solving this kind of system design prob-
lem.

1 INTRODUCTION

This study concerns optimizing the performance of an
asynchronous line used for component assembly in
electronics manufacturing. As is typically the case
with serial systems, the objective here is the minimiza-
tion of station idle time and the maximization of
throughput (Askin and Standridge 1993; Buzacott and
Shanthikumar 1993). This is equivalent to minimizing
the proportion of time that the bottleneck station
spends in either the "blocked" or "starved" states.

857

The fixed layout of this assembly line as well as a
mixture of both manual and automatic assembly sta-
tions combine to make line balancing impractical in
this situation. An additional factor also makes this
situation difficult to analyze: on any given shift, a
different product type can be introduced to the line.
This results in the need for a model that can respond
to a changing system.

The model available to the authors at the time of
the study was a discrete-event simulation model of the
assembly line that was used during the detailed
analysis stage of the manufacturing life-cycle (Singhal
et al. 1987; Suri 1988). Re-use of this tool would be
beneficial during the current operation stage in order
to gain insight into the effect that individual stations
have on line throughput performance. This type of
insight would show where to look in the line in order
to make changes that would most effectively improve
overall line performance.

More specifically, the objective of this study is to
determine an operational policy for a limited number
of service personnel. These service personnel are util-
ized on this line (and others in the facility) to bring
stations back on line when failures occur. As a result,
we are concerned with the line’s throughput sensitivity
to changes in the mean-time-to-repair (MTTR) for the
automatic stations.

One technique that can be used in combination
with a discrete event-simulation, or in some cases,
with the real system for sensitivity analysis is pertur-
bation analysis (Ho and Cao 1991; Glasserman 1991).
The advantage of this technique is that it can be used
to estimate gradients of a performance measure with
respect to multiple performance parameters of interest
in a single simulation run. As well, these gradient
estimates can then be used to determine optimum per-
formance parameters when used in combination with a

858 Brennan and Rogers

stochastic approximation (SA) algorithm (Kushner and
Clark 1978). In this case, experiments will be per-
tormed to determine optimum MTTR values for the
automatic stations in the line that can be then used as
guidelines for the operational policies of the service
personnel.

In addition to the objective of improved assembly
line performance, the authors wish to investigate the
applicability of perturbation analysis to real-world
problems such as this one. This includes both the use-
fulness of the experimental results as well as the ease
of use of this technique in the manufacturing system
life-cycle. An attempt is made to implement this tech-
nique using a relatively generic approach that could be
applied to the actual line as well to other simulations
that meet the conditions of the perturbation analysis
algorithm. To achieve this objective, the algorithm is
written in an object-oriented programming language
(C++) and can be interfaced with a simulation of the
assembly line or the actual line.

In the following section a brief description of the
SA algorithm and its application to this problem will
be given; next, a more detailed description of the
simulation experiments and results will follow; finally,
a discussion of the applicability of this technique to
problems of this nature will be given.

2 SINGLE RUN STOCHASTIC OPTIMIZATION

Recent advances in the area of single run gradient
estimation techniques have provided the potential to
move the powerful evaluative tool of discrete-event
simulation into the same category as generative tools
such as mathematical programming. This added
insight, in combination with the reduction of experi-
mental effort offered by these new techniques prom-
ises to widen the scope of modeling and simulation by
providing efficient performance optimizaton tech-
niques (L’Ecuyer er al. 1994), and sensitivity analysis
(Strickland 1993).

Gradient estimation is an important requirement
for the optimization of analytically intractable systems
through stochastic approximation (Robbins and Monro
1951; Kiefer and Wolfowitz 1952). The gradient
estimate’s role in determining an optimum solution
can be seen in the basic stochastic approximation
algorithm:

9n+1 = en + Th Yn (1)

where 0, is a parameter value, y, is a deterministic
sequence of gains, and Y, is the gradient estimate at
iteration n of the algorithm. In order to achieve con-
vergence to an optimum parameter value, 0%, the

sequence of gains, 7Y,, are decreased in steps to zero as
the simulation experiment proceeds. The choice of a
function for v, in this case should have the following
properties:

lim,_,.. %, =0 2)
ZYn = 3)
n=1

One example of a gain reduction equation that meets
the requirements of equations (2) and (3) and has also
been successfully applied to SA algorithms for the
M/M/1 queue (Suri and Leung 1989; L’Eculyer er al
1994) and for closed loop flexible assembly systems
(Suri and Leung 1987) follows:

Yo =" ﬂ_] (4)

In the experiments that follow, this equation is
used to determine the gain reduction after each itera-
tion of the SA algorithm.

One difficulty in applying equation (4) to an
optimization problem is the choice of the initial gain,
Yo: a value that is too large will result in 6, "bouncing”
between the upper and lower allowable limits of the
parameter value; a value that is too small will con-
verge very slowly. The method used here to choose
the initial gain is based on the method used by (Suri
and Leung 1987): vy, is chosen such that the first few
steps of the SA algorithm are of the same order of
magnitude as the actual 6; values (i=1,2,...M). The
order of magnitude referred to here can be determined
by observing the gradient estimates for each of the
parameter values in a preliminary simulation experi-
ment. In this case, perturbation analysis was used to
determine the gradient estimates for each of the sta-
tions in the assembly line in a series of preliminary
experiments (Rogers and Brennan 1995).

2.1 Single Run Gradient Estimation

As can be seen in equation (1), at the end of each
iteration of the SA algorithm, a gradient estimate, Yy,
must be obtained from the simulation experiment.
Since Y, is required as the simulation experiment is
run, single run gradient estimation techniques such as
perturbation analysis (Ho and Cao 1991; Glasserman
1991) and likelihood ratio (Glynn 1987) are particu-
larly suitable to this type of application. In this paper,
we are primarily interested in the first technique; for
an overview of other techniques that can be used with
the SA algorithm see L'Ecuyer er al. (1994).

Stochastic Optimization for Manufacturing 859

The infinitesimal perturbation analysis (IPA) tech-
nique takes advantage of the structure of a discrete-
event dynamic system (DEDS) to obtain an estimate
of the gradient of a performance measure, VyL(0),
using one experimental observation, where L(0) is the
performance measure of interest, and 0 is the perfor-
mance parameter. In order to develop this estimate,
the technique is concerned with how the value
VGE[L(6)] will be calculated as well as what interac-
tions exist between service events in the sample path
when 0 is perturbed by A6. The basic requirements
for IPA to obtain an estimate of the gradient are sum-
marized by Suri and Zazanis (1988) into the following
categories:

(a) Perturbation Generation: the eftect of A8 on a
single service completion event.

(b) Perturbation Propagation: the effect of perturba-
tions on current events and future events.

(c) Effect on Performance: the combined effect of
the perturbation generation and propagation
effects on the overall system performance.

The IPA algorithm is a combination of (a) and
(b), with V4E[L(0)], the gradient of an expectation, the
combined result. The combination of the perturbation
propagation rule and the perturbation generation rule
allow perturbation analysis to be expressed in terms of
an algorithm. There are several examples (Ho and
Cao 1991; Suri and Leung 1987; Suri 1989) of IPA
algorithms that can be applied to tandem networks
with the addition of only a few lines of code to the
simulation or monitoring program. In very general
terms, the structure of an IPA algorithm is as follows:

1) Initialize the accumulators

2) Update the accumulators

(a) Perturbation Generation: Add dX(8)/d8 to
the accumulator, A,, at the end of a service
completion.

(b) Perturbation Propagation: Apply the pertur-
bation propagation rule to determine if the
perturbation propagates (if a customer leaving
station i terminates an idle or a blocked
period at station k then copy A; (0 Ay).

3) Branch: If the last service completion has been
reached END, else go to 2.

4) END: Calculate the IPA estimate of the gradient
from the accumulator values.

At this point, there are a few interesting observa-
tions that can be made about the IPA algorithm.
Probably the most obvious observation is the simpli-
city of the algorithm; the few lines of code and
minimal storage space that would be required to
implement the algorithm would have very little impact
on the processing time of the simulation. In addition
to the simplicity of the algorithm, it iS non-intrusive,
working merely by observing the simulation program
(or real system).

Finally, k gradient values can be estimated simul-
taneously from a single sample path (simulation exper-
iment). If one considers the amount of experimental
effort that this would require if a finite ditferences
technique is used, it can be seen that the savings
offered by IPA is very encouraging.

The IPA algorithm described above can now be
combined with equation (1) to form an optimization
algorithm for the assembly line. The form of the
algorithm that is used is based on the algorithm of
Suri and Leung (1987) for an M station assembly line:

1) Initialize: Initialize the parameter values, 6;,
i=1,2,..,M, and set n=1.

2) Estimate Gradients: Run the simulation until ¢,
parts are completed, calculating the gradients (i.e.,
dL(6,)/d6;) using the IPA algorithm.

3) Estimate Optimum Parameter Values:
(a) Apply equations (1) and (4) where,
_ dL(e,) 1 M dL(ej)

"Tde, ME do

(5)
(b) If 0,,, is less (greater) than the interval
lemin ’ emax]v set to 9min (emax)~

4) Check Stopping Criterion: End the algorithm if
the stopping criterion is satisfied, i.e.,

Yo MaXizy 2, M(Sg) < € (6)
where,
dL(8;) 1 M dL(o) if n=l
sg = - =Y —ifn=
57700, T ME de,
or

dL®) 1 MdL(®)
sg = 0.8sg; + 02— — —
sg; = 0.8sg; + 0 {) Mg‘ 3,

if n>1.

860 Brennan and Rogers

S) Return: Setn=n+ 1 and go to step 2.

At the beginning of cach experiment, the initial ;
values are chosen randomly from values uniformly
distributed across the interval [0, , 6.x) = [0.5, 5.0]
minutes. The limits, 6., and 6,,,, arc related to the
physical constraints of the system. The minimum
value, 0, represents the shortest length of time that
a repair can be completed. Similarly, the maximum
value, 6. 1s the longest period of time that is
acceptable for a repair. Each of these constraints are
related to factors such as the number of service per-
sonnel available in the facility, the time it takes a ser-
vice person to respond, and typical MTTR values for
the stations in the assembly line.

The SA algorithm is then run untl the stopping
criterion is satisfied. As can be seen in equation (6),
the stopping criterion is based on a compromise
between the actual error and the number of iterations
performed (i.e., the term, 7y, will decrease as the simu-
lation experiment progresses). The value, €, is typi-
cally chosen by comparing experimental results with
known optimal results (Suri and Leung 1987). Since
optimal parameter values are not known for this prac-
tical application, € is based on empirical results (i.e.,
initial experiments are conducted to determine the
value of sg; when convergence appears to occur).

2.2 Applying IPA to the Assembly Line

As shown in Figure 1, the assembly line studied here
consists of a combination of both manual and
automatic stations connected by a conveyor system.
The service times are deterministic for the automatic
stations, and are modeled by a triangular distribution
for the manual stations. As well, each station is prone
to failure with exponentially distributed mean-time-
between-failures (MTBF) and MTTR.

For any given shift, a single class of product types
is introduced to the assembly line from what is,
effectively, an infinitc supply of parts. Each product
follows a fixed routing, visiting each station in the line
then waiting in the next station’s buffer until that sta-
tion is available.

As well as having random service times, the
manual assembly stations also follow a break schedule
illustrated in Figure 2. While the assembly workers
are taking breaks, the line continues to run until each
of the automatic stations are blocked or starved.

It has been shown that, for closed, tandem,
single-class networks, the IPA algorithm produces con-
sistent estimates of the gradient. The system studied
here meets all of these requircments except the "closed
network" requirement.

#8
#9 XX xx
#7
#10 XX XX
#11 XX XX #6
#12 XX Iﬁp #5
XX
#13 XX
XX #4
#14
XX XX #3
XX
#16 'ﬁ XX XX ﬁ #1
’ A}
|
N Buffer 7
- -
@ - Manual Staions - Automatic
Stations
xx - Buffer Spaces
Figure 1: The Assembly Line
Time Status Time Status Note
7:00 down meeting
13:15 down lunch
7:20 up 13:45 up
8:00 down 14:00 down stretch
8:07 up 14:07 up
9:00 down 15:00 down rotation
9:02 up 15:02 up
9:15 down 15:15 down break
9:30 up 15:30 up
11:00 down 17:00 down rotation
11:02 up 17:02 up
11:15 down 17:15 down break
11:30 up 17:30 up
13:00 down rotation
13:02 up
18:55 down cleanup
19:00 down meeting

Figure 2: Manual Station Break Schedule

Stochastic Optimization for Manufacturing 861

In order to use the algorithm here, the assembly
line is approximated in our simulation by a closed
line. As can be seen in Figure 1, an additional station
has been added that is eftectively an "infinite" buffer
between the input and output stations. We assume
that the input station is never starved and that the out-
put station is never blocked. This assumption is rea-
sonable in this situation.

In order to test the IPA algorithm for this applica-
tion, a number of ditferent scenarios are tried with
each scenario more closely approximating actual
operation of the assembly line. The main difference
between each of the test cases is the representation of
the manual stations’ service time by the simulation
model. These scenarios can be described as follows:

(a) Deterministic service times for both manual and
automatic stations with no scheduled breaks.

(b) Random service times for manual stations with no
scheduled breaks.

(¢) Random service times for manual stations with
scheduled breaks.

For each of these test scenarios, stochastic approx-
imation will be used to maximize a cost function,
OF(6):

OF(8,) = TH(®,) — 99 7)

where C is a constant (a value of 0.1 is chosen for the
experiments). The first term of equation (7) represents
assembly line throughput, TH(B); the second term
represents the "cost" associated with assigning service
personnel to station i. Differentiating equation (7)
results in the gradient:

OF’(9;) = TH'(8;) + EC; (8)

where TH’(0) is represented by a location parameter
(Glasserman 1991) in the IPA algorithm. In the fol-
lowing experiments the SA algorithm is used to max-
imize the cost function represented in equation (7).

3 EXPERIMENTAL RESULTS

3.1 The Experimental Testbed

The three test scenarios described in the previous sec-
tion are implemented using the existing SIMAN
discrete event simulation model with minor
modifications to support an interface with a C++ pro-
gram that performs the SA algorithm calculations. To

allow SIMAN and the C++ program to communicate,
the standard SIMAN user code (ANSI C) is used with
data transfers taking place over a UNIX socket. A
schematic of the implementation is illustrated in Fig-
ure 3. The modular implementation used here is
intended to encourage re-use of the SA/IPA module
with discrete-event simulation models of other lines in
the manufacturing facility.

DISCRETE-EVENT
SIMULATION MODEL
(SIMAN)

COMMUNICATION UNIX SOCKET
SHELL (ANSI C)
PA
ALGORITHM
(C++)

Figure 3: The Experimental Testbed

3.2 The Simulation Experiments

When a specific product order is sent to the shop floor
in the actual system, the assembly line is run continu-
ously until the order is completed. Manual assemblers
operate in 12 hour shifts with the break schedule illus-
trated in Figure 2.

For the simulation experiments of the three
scenarios described previously, a non-terminating
analysis is used to allow the system to approach
steady-state. Statistics on the SA algorithm are col-
lected at the beginning and the end of each SA run
(each SA "run" lasts the length of time required to
reduce sg; to below €).

In order to provide a "warm-up" period for the
system, the first iteration is started after 500 parts are
completed, then subsequent iterations are performed
after each 100 parts are completed. The length of
time between SA iterations will have an effect on the
accuracy of the [PA gradient estimates and, as a result,
on the SA algorithm: short iterations may not provide

862 Brennan and Rogers

the system with enough time to stablize after a param-
eter change, long iterations will adversely elfect the
rate of convergence. The value chosen here (i.e., t, =
100 parts) gives the system approximately one hour
(real system time) to stablize after each iteration.

As noted previously, the initial system gains are
based on the magnitude of the gradients investigated
in previous experiments with this system (Rogers and
Brennan 1995). These initial gains are shown in
Table 1.

Table 1: Initial SA Algorithm Gains

Station Yo Station Yo
1 250 9 110
2 90 10 120
3 110 11 110
4 120 12 120
5 10 13 130
6 110 14 90
7 110 15 90
8 30 16 80

The SA algorithm stopping criterion for the exper-
iments is based on sg; < 0.2. Once this criterion is
met, a new set of initial parameters are randomly
selected from a uniform distribution.

3.3 Results

Each of the three test scenarios described previously
were simulated using the experimental testbed shown
in Figure 3 in order to determine the convergence rate
of the SA algorithm as well as the optimum MTTR
values. In each of the three cases, the SA algorithm
converged to consistent parameter values after each
SA run. The convergence rate for the algorithm also
appeared to be very similar for each test scenario:

(a) Deterministic service times: [= (76.9, 77.4)

(b) Triangularly distributed service times: 1 = (78.7,
79.0)

(c) Triangularly distributed service times with the
break schedule of Figure 2: I =(67.4, 69.8)

where, [is the 95% confidence interval (C.I.) for the
number of iterations. Figure 4 shows an example of
the error reduction for a single SA run. Typical
results for a single station (staton 14) are shown in
Figure 5. In each of these figures, of the three test
scenarios shown, the third scenario approximates the
actual assembly line most closely.

Tables 2, 3, and 4 show the 95% C.I. results for
the MTTR values (by station, Stn.) for scenarios (a),
(b), and (c) respectively. These results were generated
at the end of each SA run by the C++ program
described in the previous section.

The stations with 6; values of (0.5,0.5) in Tables
2, 3, and 4 indicate those stations with optimal values
that are less than 6, (e.g., stations 5 and 8 of Table
2). As a result of step 3(b) of the SA algorithm, 6, is
set to O,,;, in this case.

1 T I ! 1
600.0 — —
° i w ——————— scenarlo (a) T
8
8- 4000 +——— + scenario (b) |
3
- X¥—————————X scenario (c)
x | -
g
5
2000 —
0.0 ' | '
10.0 30.0 50.0

Number of lterations

Figure 4: SA Algorithm Convergence (Error)

4.0 . — . I

scenario (a)

“
=}

+———+ scenario (b)

X¥——————X scenario (c)

MTTR (minutes)
N
o
T

0.0 20.0 40.0

Number of Iterations

Figure 5: SA Algorithm Convergence
for Station 14 (MTTR)

Stochastic Optimization for Manufacturing 863

Table 2: SA Results for Scenario (a)

Stm. 6, (min) Stn. 6, (min)
1 (1416,1.463) 9 (1.793,1.813)
2 (1.402,1.461) 10 (1.970,1.990)
3 (1.716,1.735) 11 (1.440,1.465)
4 (1.442,1.462) 12 (1.873,1.917)
5 (0.5,0.5) 13 (1.054,1.080)
6 (1.587,1.600) 14 (0.643,0.665)
7 (0.651,0.659) 15 (2.743,2.988)
8 (0.5,0.5) 16 (0.923,0.947)

Table 3: SA Results for Scenario (b)

Stn. 6; (min) Stn. 6; (min)
1 (1.244,1.271) 9 (1.841,1.868)
2 (1.678,1.726) 10 (1.025,2.059)
3 (1.757,1.777) 11 (1.489,1.531)
4 (1.439,1.458) 12 (1.840,1.892)
5 (0.5.0.5) 13 (1.188,1.213)
6 (1.383,1.403) 14 (0.756,0.768)
7 (1.222,1.232) 15 (2.794,2.965)
8 (1.017,1.034) 16 (0.930,0.966)

Table 4: SA Results for Scenario (c)

St. 0, (min) Stn. 0, (min)
1 (1.925,1.999) 9 (2.145,2.314)
2 (2.443,2.670) 10 (2.219,2.409)
3 (2.532,2.745) 11 (1.824,1.965)
4 (2.133,2.265) 12 (2.052,2.177)
5 (0.5,0.5) 13 (1.514,1.699)
6 (1.867,1.976) 14 (0.899,0.940)
7 (1.689,1.784) 15 (3.533,3.820)
8 (1.468,1.532) 16 (1.309,1.393)

4 INTERPRETING THE RESULTS

As noted previously, the primary objective of the
current study is to provide operational guidelines for
the assembly line service personnel in order to deter-
mine which machines can be considered to be of high
priority when failures occur. The results in Tables 2-4
do provide this type of information by indicating
where service personnel should focus their attention on
the assembly line. For example, Table 4 (random ser-
vice times with scheduled breaks) indicates that sta-

tions 5 and 14 must be repaired as quickly as possible
when a failure occurs. Station 15 in this case, can be
considered to be of lower priority.

In order to validate these results, a comparison
was made in a previous study (Rogers and Brennan
1995) between the IPA gradient estimates and gradient
estimates obtained by finite differences. The two tech-
niques showed a close correspondence for each of the
three test scenarios described in this paper.

In addition to investigating the performance of the
SA/IPA algorithms, the authors are also interested in a
secondary objective of evaluating the applicability of
this type of analysis to problems of the type described
in this paper. The line studied here is part of a larger
electronics manufacturing facility consisting of a
number of similar lines used to manufacture a variety
of components. Since a limited number of service
personnel are are assigned to all of the equipment in
the manufacturing facility, information similar to that
given in Tables 2-4 can be of great benefit in deter-
mining service priorities.

As well, the modular approach used here is
modifiable and extendible: the SA/IPA algorithms can
be easily applied to discrete-event simulation models
of other lines in the manufacturing facility. This
extendibility will be dependent, of course, upon the
applicability of the SA/IPA algorithms to the simula-
tion model they are to be applied to.

Finally, the difficulty (or impracticality) of per-
forming this type of analysis on the actual line makes
this technique particularly beneficial as an off-line
analysis tool. In the dynamic environment of an elec-
tronic manufacturing facility (e.g., where changes in
product type or, additions and removals of machines
from the line can occur), a single-run analysis tool
such as this can be used to provide insight into the
effect of changes.

ACKNOWLEDGEMENTS

The authors wish to thank the Natural Sciences and
Engineering Research Council of Canada for their gen-
crous support of this research under grant OGP-012-
1522 and scholarship PGS-B #178095.

REFERENCES

Askin, R. and C. Standridge. 1993. Manufacturing
Systems Modeling. John Wiley & Sons.

Buzacott, J.A. and J.G. Shanthikumar. 1993. Stochastic
Models of Manufacturing Systems. Prentice Hall.
Glasserman, P. 1991. Gradient Estimation via Pertur-

bation Analysis. Kluwer Academic Publishers.
Glynn, P.W. 1987. Likelihood ratio gradient estima-

864 Brennan and Rogers

tion: an overview. In Proceedings of the 1987
Winter Simulation Conference, ed. A. Thesen, H.
Grant, and W. David Kelton, 366-375.

Ho, Y.C. and X.R. Cao. 1991. Perturbation Analysis
of Discrete Event Dynamic Systems. Kluwer
Academic Publishers.

Kiefer, J. and J. Wolfowitz. 1952. Stochastic estima-
tion of the maximum of a regression function.
Annals of Mathematical Statistics 23:462-466.

Kushner, H.J. and D.S. Clark. 1978. Stochastic
Approximation Methods for Constrained and Uncon-
strained Systems. Springer-Verlag.

L’Ecuyer, P., N. Giroux, and P.W. Glynn. 1994. Sto-
chastic optimization by simulation: numerical exper-
iments with the M/M/1 queue in steady-state.
Management Science 40:1245-1261.

Robbins, H. and S. Monro. 1951. A stochastic
approximation method. Annals of Mathematical
Statistics 22:400-407.

Rogers, P. and R.W. Brennan. 1995. Applying
infinitesimal perturbation analysis to a manufactur-
ing system design problem. In Proceedings of the
Summer Computer Simulation Conference, ed. T.I
Oren and L.G. Birta, 422-427.

Singhal, K., C.H. Fine, J.R. Meredith, and R. Suri.
1987. Research models for automated manufactur-
ing. Interfaces 17:5-14.

Strickland, S.G. 1993. Gradient/sensitivity estimation
in discrete-event simulation. In Proceedings of the
1993 Winter Simulation Conference, ed. G.W.
Evans, M. Mollaghasemi, E.C. Russell, and W.E.
Biles, 97-105.

Suri, R. 1988. A new perspective on manufacturing
systems analysis. In Design and Analysis of
Integrated Manufacturing Systems, ed. W. Dale
Compton, 118-133. National Academy Press.

Suri, R. 1989. Perturbation analysis: the state of the
art research issues explained via the GI/G/1 queue.
Proceedings of the IEEE 77:114-137.

Suri, R. and Y.T. Leung. 1987. Single run optimisa-
tion of a SIMAN model for closed loop flexible
assembly systems. In Proceedings of the 1987
Winter Simulation Conference, ed. A. Thesen, H.
Grant, and W. David Kelton, 738-748.

Suri, R. and Y.T. Leung. 1989. Single run optimiza-
tion of discrete event simulations-an empirical study
using the M/M/1 queue. IIE Transactions 21:35-49.

Suri, R. and M. Zazanis. 1988. Perturbation analysis
gives strongly consistent sensitivity estimates for the
M/G/1 queue. Management Science 34:39-64.

AUTHOR BIOGRAPHIES

ROBERT W. BRENNAN is a graduate student in the
Department of Mechanical Engineering (Division of
Manufacturing Engineering) at the University of Cal-
gary, working towards his Ph.D. degree. His research
interests include control architectures for manufactur-
ing systems, optlimization of discrete-event simulation,
and models for the analysis of manufacturing systems.
He has over seven years industrial experience in pro-
ject management and control systems and is a Profes-
sional Engineer and a member of IIE. He holds a
B.Sc. degree in Mechanical Engineering from the
University of Calgary.

PAUL ROGERS is an Associate Professor in the
Department of Mechanical Engineering (Division of
Manufacturing Engineering) at the University of Cal-
gary. His research interests include discrete-event
simulation, production planning and control systems,
object-oriented modeling for intelligent manufacturing,
and models for the analysis of manufacturing systems.
He is a Professional Engineer and a member of IIE,
INFORMS, SME, and SCS and serves on the Editorial
Board of the International Journal of Computer
Integrated Manufacturing. He holds Ph.D. and
M.Eng. degrees from Cambridge University in Eng-
land.

