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ABSTRACT

As responsiveness becomes more of a competitive is-
sue, knowledge of completion times of jobs and orders
on the shop floor is key to the success and even sur-
vival of many manufacturing firms. In this paper, we
present two approaches — a fast sample path gener-
ation technique and a numerical technique — to de-
termine the distribution of completion times of jobs
in stochastic production environments. We compare
our results with those obtained from conventional
discrete-event simulation and also compare speed of
execution. We also show that the distribution ob-
tained from the numerical integration technique pro-
vides a lower bound to the actual distribution of the
completion times.

1 INTRODUCTION

In this age of global competition, the ability to re-
spond quickly to the needs of customers is key to
the very survival of many manufacturing firms. Fre-
quently, a manufacturing firm has to negotiate the de-
livery dates with customers before accepting orders.
Under such circumstances it would be invaluable for
the firm to have an accurate estimate of when it could
possibly deliver the products, so as to set reasonable
delivery dates. In other words, the firm requires abil-
ity to predict the times of completion of various jobs
and orders, including those that are yet to be released
to the shop-floor.

At other times, a customer would like to know the
status of his or her order(s). Again, a knowledge of
the completion times of jobs on the shop-floor would
be invaluable. Furthermore, if it was possible for the
firm to know sufficiently in advance that some orders
would be delayed, then the firm could inform the con-
cerned customers and possibly re-negotiate the de-
livery dates, thereby leading to improved customer
relations.
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Knowledge of completion times of the jobs could
also be used in determining the optimal release times
for future orders such that the firm operates with
short cycle-times and low work-in-process (WIP).
This in turn would lead to improved quality of the
products, by reducing the time between defect cre-
ation and defect detection.

In a typical manufacturing environment, the pro-
cessing times at different process centers are not de-
terministic. Likewise, process centers may be subject
to random outages. Further, several jobs compete for
the same resources leading to queueing of jobs and
congestion at process centers. Finally, the system is
in a constant state of flux, with new orders being re-
leased and existing order requirements changing. All
these combine to make the determination of the com-
pletion times of jobs extremely difficult.

The contributions of this research is a method that,
given the current WIP situation on the shop floor and
the release times of jobs, determines with reasonable
speed and accuracy, the distribution of completion
times of jobs at different process centers. Such a sys-
tem enables the firm to

Predict completion times of various jobs and cus-
tomer orders

Determine the feasibility of different schedules

Set and modify due-dates for jobs for any desired
service level

Quote lead times for customers

Researchers investigating job shops have tradition-
ally assumed that determination of due-dates for jobs
was exogenous to the shop. Consequently, most of
the research has been focused on developing pro-
cedures that optimize various due-date performance
measures.

Eilon and Chowdhury (1976) were the first to pro-
pose that due-dates for jobs may be determined by
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the job shop internally and suggested a due-date set-
ting method that considers the average waiting time
and the number of jobs that would be encountered by
jobs entering the shop floor. Other duc-date setting
methods that consider the current workload have also
been investigated (Bertrand 1983, Fry, Philipoom and
Markland 1989, Weeks 1979, Baker 1984), as have
cost. based models (Weeks and Fryer 1977, Seidmann
and Smith 1981).

Service level was first used by Taylor and Moore
(1982) in the context of setting due-dates. They pro-
posed that a knowledge of flow times of jobs should
be used for negotiating duc-dates with customers.
Bookbinder and Noor (1985) also linked the setting
of due-dates with service-level constraints and shop
floor congestion information.

Recently, Wein (1991) unified the conflicting goals
of minimizing due-date lead times and maximizing
service level, by stating the problem as one of mini-
mizing the weighted sum of cycle times subject to a
minimum service level constraint. Wein and Cheva-
lier (1992) propose a two step approach to schedul-
ing the job shop—first use a job release policy that
balances workload at bottlenecks and then determine
due-dates using parameterized version of the rule pro-
posed by Wein (1991). Spearman and Zhang (1994)
use a formulation similar to Wein to determine an
optimal lead time quoting policy.

The estimation of actual job flow times appears to
have come up first in the context of finding an opti-
mal due-date setting rule. Miyazaki (1981) modeled
the job shop as a Jackson network (Jackson 1963)
and obtained an exact formulation for the mean and
an approximation for the variance of job flow times.
Cheng (1985), and more recently Koulamas (1992),
also using the Jackson network model, derived exact
expressions for the first two moments of the job flow
times. However, the models are not robust enough to
approximate non-exponential systems. Furthermore,
these results apply to steady-state conditions only.

While there exist some analytical solutions (Ross
1983, Kleinrock 1975) and approximations (Whitt
1983, Buzzacott and Shanthikumar 1985, Shanthiku-
mar and Sumita 1988, Fleming and Simon 1991) for
queueing systems in steady-state, transient analysis
of queues have yielded relatively fewer results (see for
e.g., Mori 1976, Kotiah 1978, Pack 1978).

Recent work by Saboo, Wang and Wilhelm (1989)
uses a model description and solution approach sim-
ilar to those described in this paper, but the goals
of their research are substantially different from ours.
Their work is discussed in more detail in the following
section.

Karmarkar (1993) points out that determination

of flow times for specific jobs and the use of such
information in setting due-dates and determining re-
lease times has not been addressed adequately by re-
scarchers. Our research attempts to fill this void.

2 MODEL DESCRIPTION AND NOTA-
TION

The system has a single part type (1.e., a single rout-
ing), and is an open serial, single-server queueing net-
work. Other assumptions are

e Each job has a release time associated with it. At
this point, it is assumed that the release time was
determined externally, according to some pro-
duction planning framework such as MRP.

e A process center may not be visited more than
once in the routing, i.e., no re-entrant flows are
allowed.

e Processing times for each part at a given pro-
cess center in the routing follow distributions
that are independent and identically distributed.
Further, processing times of parts at one process
center are independent of processing times of the
parts at other process centers.

e At each process center, jobs are processed in
strict FIFO sequence.

e Jobs cannot be pre-empted by other jobs while
they are being processed by a machine at any
process center.

e Resources do not fail, i.e., they have 100% avail-
ability

o There is no scrap loss in the system.

e The system operates 24 hours, 7 days a week,
1.e., shift operation is not modeled.

o The system is empty at time t = 0, i.e., there Is
no WIP in the system.

We use the following notation:

I : Total number of process centers visited by each
job in the routing. Since we assume that a job
does not visit the same process center twice and
that there is only one part type, this is also the
total number of process centers in the system.

J : Total number of jobs that are present on the shop
floor. Since we assume that the system is empty
at time ¢ = 0, this is also the number of jobs that
are being released to the system.
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7 : Release time of job j, j € {1,...,J}. Thisis the
time that job j becomes available for processing
at the first process center in the routing.

Si; © Random variable representing the process-
ing time of job j at process center i, i €
{1,....1}, je{1,...,J}.

C;; : Random variable representing the comple-

tion time of job j at process center i, 7 €
{1,...,1},j € {1,...,J}. The release time of
a job is considered to be the completion time of
that job at process center 0, i.e.,

Coj:f‘j Vj

The time that the resource at process center ¢ is
ready to process the first job is considered to be
the completion time of job 0 at that station and
is taken to be 0, i.e.,

Cio=0 Vi

3 COMPLETION TIME OF A JOB

It 1s obvious that for a particular process center i
to start processing a particular job j, two conditions
must be met—job j must be present at process center
i, and the machine at ¢ must be available to process
job j. Since the system is a push type system, the
former occurs when the job j completes processing
at center 1 — 1, while the latter occurs when center ¢
completes processing the previous job j—1. Thus, the
completion time of an arbitrary job j at an arbitrary
process center 7 along the routing can be obtained as

Ci; = (Cio1; VCi521) + 555 (1)

where z V y = max {z,y}.

Recall that we assumed that each process center in
the routing has exactly one machine. This assump-
tion, along with the assumption that jobs may not
pre-empt one another, gives this model an important
property, namely, for any arbitrary job j, there is
exactly one predecessor j— 1, and this precedence re-
lationship is maintained at every process center in the
routing. Thus, for any job, we can uniquely identify
the preceding job at every process center.

The structure of equation (1) suggests an itera-
tive approach to obtaining the completion times of
the jobs in the routing. Considering the jobs in the
sequence in which they are released, we could use
equation (1) iteratively to obtain the distribution of
the completion time of each job in each process cen-
ter, starting with the first process center in the job’s

routing. The basic mechanism of the algorithm is de-
scribed below:

Algorithm Ag:

1. Sequence the jobs in increasing order of
their release times, with 7 = 1 for the
job that is being released the earliest.

2. For 1 =1,...,1
For y=1,...,J
Obtain distribution of (j; using
equation (1)

3. Return the distribution of (; as that
of the completion time of job j in the
routing.

Equation (1) is reminiscent of the recursive equa-
tion used for the steady state waiting time distribu-
tion of a customer in a G/G/1 queuing system (Ross
1983, Kleinrock 1975), first established by Lindley
in 1952. Recursive approaches similar to the pro-
posed algorithm Ay have been used for estimating the
steady state waiting time distributions (Ross 1983,
Sumita 1981). Pack (1978) suggested the use of Lind-
ley’s equation for obtaining the transient completion
time distribution analytically, but was able to do so
only in the case of M/D/1 and D/M/1.

It is important to note that while the approaches
mentioned above have their similarities with our ap-
proach, they do not address the same issues as we
do, namely that of determining the transient state
distributions in a G/G/1 open queue network.

We propose two distinct approaches to implement-
ing algorithm Ajy:

1. Obtaining the distribution of C;; empirically, by
a fast sample-path generation technique.

2. Obtaining the distribution of (';; directly, using
numerical integration.

The following sections describe these methods in de-
tail.

Saboo, Wang and Wilhelm (1989) use a model de-
scription that is 1dentical to the one given by equa-
tion (1) and they too use a recursive approach. Be-
yond this point, however, their work differs from
ours. Their performance measures are the expected
makespan, delay in queues, station utilization and
lot tardiness. Further, they use a bivariate nor-
mal approximation for the maximum of two random
variables and consequently, require that the process-
ing times at the process centers be be normally dis-
tributed. They state that approximation errors grow
with the number of jobs and/or an increase in the
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number of process centers. They also state that their
algorithm substantially underestimates the variance
of the finish times in most cases and conjecturc that
1t 1s due to the normal approximation for the maxi-
mum of the two random variables.

3.1 Sample Path Generation Technique

It 1s certainly possible to obtain the cdf of the com-
pletion times of jobs using discrete-event simulation.
In fact, Taylor and Moore (1982) propose such an
approach for a relatively small job shop.

Since we are interested 1n the completion time dis-
tribution of the jobs, the stopping criterion would be
the completion of the last job at the last process cen-
ter. The release times of the jobs are known, and
thus, the sequence in which the jobs arrive at the
first process center is known. Further, with each pro-
cess center having exactly one machine and with the
assumption that the jobs do not preempt each other,
the sequence of jobs at the first process center is ex-
actly the sequence of jobs at every other process cen-
ter.

The fast sample-path generation technique (SPGT)
may be described as follows:

1. All the jobs are held in a job list in increasing
order of their release times into the system.

2. At each process center, for each job, a realization
of the processing time at that process center is
generated and equation (1) is used to determine
the completion time of that job.

3. This is continued until the completion time of
the last job at the last process center has been
determined.

Algorithm Ap can be implemented using SPGT as
follows:

Algorithm SE;:
1. Cojt — Tj, V},l
2. o — 0, Vil

3. For 1 =1,...,1
For j=1,...,J
For l=1,...,L
Generate one realization of S,
say $;j51
Compute c¢;;; using equation (1) as
ciji = (ciz1j1 V cij—11) + siji

ijs

4. Tabulate the cdf of (j; for various
values of time ¢

Note that while this technique may be similar to
Monte Carlo techniques used for obtaining steady
state waiting time distributions for M/M/1 queue-
ing systems using Lindley’s equation (Schmeiser and
Song 1989, Rubinstein 1986), it is not identical.
Further, the objectives are significantly different—
transient measures for our approach versus steady
state measures for the Monte Carlo approach.

Since the SPGT does not have events and the over-
head associated with maintaining an event list, it
is faster than conventional event driven simulation,
while retaining the same accuracy.

One single run of either conventional simulation or
SPGT results in a single realization of completion
times for the jobs. Since we are interested in the
transient behavior of the system, we need to repli-
cate the run several times. This results is a series of
completion times for each job from which the distri-
bution (cdf) of the completion job can be determined,
empirically.

Suppose we run L replicates and for each job j,
we store cyj;, the completion time of the job at the
last process center from replicate {. Since, we do not
possess any knowledge of the theoretical distribution
of Cs;, a natural estimate of the probability that Cy;
1s less than or equal to t is given by

L
Ij 1
pL (1) = I D lieri<o
=1

where 1(.,,,<¢) is the indicator function that is 1 if
crji <t and 0 otherwise. We need the following defi-
nition (Bickel and Doksum 1977, page 460):

Definition 1 A sequence of random variables {Z1}
converges to the random variable Z in probability if
P{lZy - Z| > ¢} — 0 as L — oo for every ¢ > 0 and
is denoted by Z, £ Z.

To determine L, the number of replicates required
to estimate the probabilities accurately, we proceed as
follows. Note that pij(t) is an unbiased estimator of
P (1) with Var(p}) (1)) = p' (£)(1 - p' (1))/L, where
p'i(t) = P{Cy; < t}. Further,

P
pf (1) =P (1)
From the Glivenko-Cantelli theorem (Fisz 1963, page

391), sup, |P£](t) - pli()] L 0, i.e., the empirical
distribution looks like the theoretical distribution for
large values of L. With this, we may use the Kol-
mogorov goodness of fit test as

Ho: pILj :plj
Ii )
Hy: PL] #p“
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with the test statistic defined as

[— [v j
D = Sup—oo(t<oo|pL](t) - p“(t)l.

We reject the null hypothesis for large values of Dy
(Bickel and Doksum 1977). For a (1 —a)% confidence
level, the critical value k4 is such that P{Dp > ko} =
«. For large L > 80 and o = 0.01, kg o1 is given by
(Bickel and Doksum 1977, page 483)

1.628
0.11
VL +0.12+ on

ko.o1 =

If we require that the maximum absolute error in our
estimate be 0.01, we set
1.628

0.11
¢E+0m+7f

=0.01

which yields L = 26464.56. For our purposes, we use
L = 26500.

The SPGT was used on two test problems and
the results compared with those from conventional
discrete-event simulation. The simulation program
used was an object-oriented (C++) version of MAC-
Sim, a simulation program developed by one of the
authors (Hasan 1991). All processing times were
modeled as truncated normal distributions. The first
test problem was a system with 2 process centers and
with 4 jobs being released to the system while the
second test problem was a system with 6 process cen-
ters and with 8 jobs being released to the system. A
detailed description of the two test problems may be
found in Section A. For each job, the completion time
distribution at the last process center in the rout-
ing obtained from simulation and SPGT were plotted
against each other, revealing no visible differences.

3.2 Numerical Technique

An approach different from simulation, is to compute
the distribution functions of interest directly. Let Fj;
denote the distribution of the completion time and
Gi;j denote the distribution of the processing time of
job j at process center i. If Cj_1; and Cj;— are
independent, then, from equation (1), we may obtain
the distribution of Cj; as

t
Fim):/o Fiosj(t = 2)Fyyoi(t — 2) gij(z) da (2)

However, C;_;; and Cjyj_; are not independent and
thus equation (2) is an approximation. Expanding
Ci—1j and C;j_1 along the lines of equation (1) as

Cic1j = (Ci=2; VCi_yj—1) + Si—yj

and
Cij—1 = (Ciz1j—1V Cij—2) + Sij—1

we see that C;_y;_1 appears in both the expansions,
and it is the same realization of C;_1;_1. We call
this correlation due to C;_1;_; as correlation of the
first order. In fact, if we do a similar expansion for
Ci—'zj,(f"vi—lj—l and C,'j_g, we find that Ci_gj and
Ci_1j-1 are similarly correlated, as are Cy_1j-1 and
Cij—2. It would be instructive, however, to see the
effect of ignoring the correlation between C;_1; and
Cij-1 on the distribution of C;j. As a first approxi-
mation, we assume independence between C;_1; and
Cij-1, and use equation (2) to determine the comple-
tion time distributions.

Despite the assumption of independence it is not
possible to solve equation (2) in closed form. The
“max” operation on the distributions destroys any
structure that we might use for the exact evaluation
of the convolution integral in equation (2). Hence, we
use numerical techniques. With the notation that

0 <0
A(x):{l 250

The basic mechanism of this method as follows:

Algorithm Ny:
1. Foj — A(t—rj), V j
2. Fjo — At), V1

3. Represent the processing time pdf’s
gij1, V i numerically

4. For i=1,...,1
For j=1,...,J
For [=1,...,L
Obtain cdf of max as the product
of

F;_1j and Fij

Obtain cdf of (j; by numerically
evaluating equation (2)

5. Tabulate the cdf of Cj; for various
values of time t

The primary implementational issue is one of rep-
resenting the various distributions in a form the lends
itself to convolutions as well as the “max” operation.
Distributions are represented as a finile sequence of
Nx ordered pairs (z;, Fx(z;)) where Fx(x;) is the
¢df of the random variable X', i.e., Fx(z;) = P{X <
z;}. The spacing between the z;’s is the lattice in-
terval denoted by 7. The value of 7 is chosen to be
the same for all the distributions used for a particular
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model. To minimize truncation errors in representing
distributions that have infinite supports, the points
r1 and zn, (and hence Ny ) are chosen such that

rp =sup{nr: P{X < nr} < o}
and
ry, =inf{nt: P{\N <nr}>1-a}

forn=20,1,2,..., and « sufficiently small.

Algorithm N; was tested against simulation and
the resulting cdf’s plotted were plotted together. For
both these test problems, the numerical distribution
of the completion time of the first job matched ex-
actly with the empirical distributions obtained from
simulation. This 1s only to be expected, since for the
first job, the completion time is just the sum of all the
processing times and there i1s no correlation effect.

However, the effect of correlation is apparent when
we compare the distributions of the other jobs (Fig-
ures 1 and 2). In fact, the distribution computed nu-
merically always seems to lie below the distribution
obtained empirically, and the gap between the two
distributions seems to increase with both the number
of jobs and the number of process centers.

N
05 +
o oLz | \ | |

460 490 520 550 580

Figure 1: Distribution plot for job 4 (Test Problem
1)

The execution time on test problem 1 was 36.3 sec-
onds (CPU time), whereas it was 1000.5 on the second
test problem, which is more than conventional simu-
lation (864.0 secs). The default value of the lattice
intcrval length, 7, was initially taken as 0.5. When
this was changed to 5, the resulting execution time on
test problem 2 was 14.7 seconds, which is a dramatic
improvement. The distrilutions comnputed using the
two different values of 7 were plotted against each
other. The plots showed that there is no significant
loss of accuracy despite a significant reduction in com-
putation time (Figure 3). It appears that the interval
length 7 requires more investigation.

1200 1400 1600

Figure 2: Distribution plot for job 8 (Test Problem
2)

05

1300 1400 1500

Figure 3: Comparison of distribution with 7 = 0.5
and 7 = 5.0 for job 8 (Test Problem 2)

Proposition 1 Let Fj;(t) be the distribution of Cij
and let Fij(t) be the distribution of C';; determined
numerically, ignoring correlation between the various
completion times. Then F’ij(t) < Fi(t), Vi, g, t

Consider a system with J jobs and I process cen-
ters. The very first job always sees an empty sys-
tem as it proceeds along the routing. The com-
pletion time this job, Cj;, is simply the sum of
the processing times at the various process centers.
Thus Cf; = Zi[:1 Si1 and Fiyq(t) 1s just the convo-
lution of the process time distributions. Since there
is no correlation effects for the first job, Fpi(t) =
Fri(t), ¥ t. For job j at the first process center,
("y; = (Co; VCijor)+ Sij = (rj VCij-1) + Sij. Since
release times of jobs are independent of the processing
times of the jobs, I'y;(t) = Fy;(t). V j, t.

Now consider the completion time of the second job
at the second process center,

Caa = (C12V Ca1) + Sao
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Since the correlation effect is due to the “max” oper-
ation, let us ignore S»5 and look at

Dyy = (Cr2VCa)
= [(CiaVv i)+ 9512V
[C11VC>0 +bql]

We need to use the same realization for (‘;; in both
terms the variable appears in. However, since the
numerical method does not actually use the expanded
equation for Chas, it effectively use two independent
realizations of C'1; in the two terms in equation (3).

Let the actual distribution of D25 be Hos and the
numerically estimated distribution of Dy be Has.
Conditioning on the processing times, i.e., letting
Si» = a and S3; = b, we have the two conditional
estimates as,

HE! () = Foa(t — a)Fyy(t — (a V b)) Faolf — b)

and

HE(t) = Foa(t — a)Fuy(t — a) Fra(t = b)Fao(t — b)

Note that Fgo, which is the cdf of 75, and Fag, which

is the cdf of C'gy are unit step functions, making the

transition at ro and 0 respectively. We have retained

them in the equation for the sake of generality.
Ifa>b,

HE(t) = Fou(t — a)F11(t — a)Fao(t — b)

and if b > a, then
HEE = Foat — a)Fyy(t — b)Fag(t — b)

In either case, Hfj < HY

Since H2(t) < HE(t), ¥ a, b, t, it follows that
Faa(t) < Hoy(t), V t. Thus, since Foz(t) = Hoo(t)
G1o(t) and Fuo(t) = Hag(t) ¥ Goa(t), it follows that
Fyy < Fop, V1.

Suppose now that we have the ezract distributions
F;_1j(t) and Fjj_1(t) for some ¢ and j. Then, from
the algorithm Ny,

Fz](t) ( i— l](t)Fij—l(t))*Gij(t)

However, since F;_1j(t) and Fj;_i(t) are correlated
through the term F;_1;_1(t) (just as F12(t) and Fa(t)
are correlated through the term Fi;(t)), ﬁ’ij(t) will be
less than or equal to Fj;(t). Note, however, that we
obtain the distributions of Cj_1; and Cj; _ iteratively
using algorithm N; and have only the approzimale
distributions Fi_lj(t) and Fij_l(t). Thus,

Fi(t) (Fi—1j(t) Fij-1(t)) * Gij(t)

F,'j(t)

IA

]

Using conditioning arguments on the process times
Si—1; and Sjj_y, it is possible to remove the first order
correlation effect and obtain a better approximation
for Fi;(t) a:

Fij(t) = Hyj(t) * Gyj(t)
where

Hij(f):

t t
/ / [Fiai(t — a)Fi_q1j—1(t — (a V b))
0 Jo

Fij—o(t — b)) gi-1j(a) gij-1(b) da db

However, we found that the speed of the algorithm
degraded by several orders of magnitude for very little
gain in accuracy (See Figure 4. “NUM1" refers to cdf
obtained ignoring correlation while “NUM2" refers
to cdf obtained after removing first order correlation.
Test problem 3 was used).

05 |

0 Lo ! | I
975 1050 1125 1200 1275

Figure 4: Comparison of distribution of job 8 (Test
Problem 3)

In order to remove the correlation effects com-
pletely, we would need to expand equation (1) recur-
sively until it could be written in terms of the Ch;’s
and Cjo’s and the various S;;’s. However, this ap-
pears to be completely intractable.

4 CONCLUSIONS

In this paper we have presented two techniques to
determine the completion time distributions of jobs
in stochastic production environments. The fast
sample-path generation technique was show to be
faster than conventional discrete-event simulation un-
der the model assumptions specified. It was also
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shown that the numerical technique gives progres-
sively looser lower bounds on the actual distributions
when correlations are ignored.

The assumptions for the model stated were indeed
somewhat restrictive. Currently, research is being
conducted on extending these techniques for use with
models with fewer assumptions. We are also inves-
tigating the use of SPGT in determining optimal re-
lease times of jobs in stochastic production environ-
ments.

A APPENDIX: Description Of Test Prob-
lems

A.1 Test Problem 1

Number of jobs released: 4

A.3 Test Problem 3

Number of jobs released: 8

Release Time
Jobl 0
Job2 0
Job3 0
Job4 10
Number of process centers: 2
Processing times:
Distribution | Mean | Std. Dev
stationl Normal 100 10
station2 Normal 100 15
A.2 Test Problem 2
Number of jobs released: 8
Release Times
Jobl 0
Job2 0
Job3 0
Job4 10
Job5 10
Job6 10
Job7 20
Job8& 20
Number of process centers: 6
Processing times:
Distribution | Mean | Std. Dev
stationl Normal 100 10
station?2 Normal 100 15
station3 Normal 100 30
stationd Normal 60 18
station5 Normal 75 20
station6 Normal 90 25

Release Times
Jobl 0
Job2 0
Job3 0
Job4 10
Job5 10
Job6 10
Job7 20
Job8 20
Number of process centers: 3
Processing times:
Distribution | Mean | Std. Dev
stationl Normal 100 10
station?2 Normal 100 15
station3 Normal 100 30
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