Proceedings of the 1995 Winter Simulation Conference
ed. C. Alexopoulos, K. Kang, W. R. Lilegdon, and D. Goldsman

SIMULATION OF FLEXIBLE CONTROL STRATEGIES

Glen D. Smith
D. J. Medeiros

Industrial and Manufacturing Engineering Department

Penn State University
University Park, PA 16802, U.S.A.

ABSTRACT

Flexibility in developing and testing operating policies for
manufacturing systems requires the ability to quickly and
easily change a simulation model to incorporate the new
policy. To achieve this goal, the model of the system
control strategy should be separated from the model of the
physical system. Using a flexible manufacturing cell as an
example, we first show how this separation can be
accomplished, and then discuss desirable features in a
language that would simplify the approach.

1 INTRODUCTION

Selection of an appropriate operating strategy is an
important issue in many manufacturing systems; issues
such as job scheduling, material handling system operating
rules, buffer sizes and line rates can have a major impact on
productivity (Norman et al. 1992). Simulation has long
been recognized as a method of evaluating alternative
system control policies in manufacturing systems, as
evidenced by the Manufacturing Simulation track which
has become a feature of the Winter Simulation
Conferences.

In this paper, the term "control strategy" will be used
to refer to a number of related decisions in manufacturing
system operation, such as:

® sequencing of operations at a work center,
® scheduling operations across multiple work centers,
® assignment of resources (including manufacturing
equipment, personnel, and material handling
equipment) to specific operations, and

® assignment of operations to specific resources,

799

including splitting or combining lots.

Examples of control strategies that are evaluated using
simulation include:

® the effect of running a line in a "just-in-time" mode
(Corbett and Yucesan 1993),
® the effect of various alternative process plans, or

flexible process plans (Mauer and Schelasin 1993),

® the effect of using complex scheduling rules, such as
scheduling to a bottleneck machine, lot splitting, or
scheduling to minimize job cost or flowtime (Ernst
and Matevosian 1993), and

o the effect of different allocation rules for interacting
resources such as personnel, fixtures, and tooling

(Kashyap and Khator 1994).

Development of a good control strategy (by testing and
evaluating several alternatives) is particularly important in
automated manufacturing systems (such as FMS) or semi-
automated manufacturing systems (such as production
lines). On-line data collection in such systems provides a
basis for global control of the system by ensuring that
information concerning system status is readily available.
Control strategies tend to be complex because of part
variety and interactions among resources (Evans et al.
1994).
overcome by human intervention because the opportunities

Furthermore, poor control strategies cannot be

for such intervention are limited.

Although simulation is frequently used to evaluate
alternative control strategies, the process is ditficult and
time-consuming. Most discrete event simulation languages
employ an entity flow world view (Schriber and Brunner
1994); these languages typically support models in which
the control logic is distributed throughout the simulation

model via methods such as conditional branching of

800 Smith and Medeiros

entities or interaction among multiple resources. Changing
from a push to a pull strategy, for example, often means
completely rewriting the simulation model. Simulation
based finite schedulers typically allow queue disciplines to
be specified for a single operation or group of operations,
but don't easily support the concept of refraining from
processing a waiting job because a higher priority one will
arrive in a short time period. Davis et al. (1993) discuss
the difficulty of modeling control strategies in current
simulation languages with specific reference to flexible
manufacturing systems.

Because the control strategy is distributed throughout
the model, major changes in strategy can mean major
changes in the model code. The time required to build,
verify, and validate a simulation model is substantial, and
these steps must be repeated each time the model code is
changed. To overcome this difficulty, new simulation
languages have been proposed which use concepts such as
autonomous agents (Lin and Solberg 1994) and objects
(Davis et al. 1993) to model the control strategy.

Object-oriented programming has been recognized as
an enabling technology for implementing a flexible control
strategy. Goble (1994) shows that the language
SIMOBIJECT separates process and routing behavior,
allowing routers to be easily replaced. Mize et al. (1992)
present a conceptual approach which divides a model into
three types of objects: physical objects, information
objects, and control objects. Control elements are modeled
as three classes: queue controllers, assembly queue
controllers, and work order controllers. Bodner et al.
(1993) model controllers as objects and illustrate deadlock
detection and resolution in an FMS.

In this paper, we demonstrate that the separation of the
control strategy from the system description can be
implemented in a conventional simulation language,
thereby combining the benefits of flexibility with existing
We illustrate the
approach using SIMAN to model a FMS, then discuss
features of a simulation language which would simplify the

simulation language technology.

separation of system description and control.
2 EXAMPLE SYSTEM

An example small manufacturing system is described; the
system is part of the Penn State Flexible Manufacturing

System described by Smith et al. (1994), and is shown in
Figure 1. The system will be used to illustrate some of the
control decisions that must be incorporated in a
manufacturing system control strategy, and a flexible
method for doing so.

Kardex
AS/RS

Fanuc AO & k

VoA

Q IBM 7545

Assembl
6.Workstat¥on 5

IBM 7545

v oA

[&

Figure 1: Flexible Manufacturing System

The system consists of an input point, 2 machining
cells, and an exit point, with all of these connected by a
transport system. The first processing cell contains a
turning center and a horizontal machining center and the
second contains only a vertical machining center. The
input and exit points are located at the Kardex vertical
storage system. Transportation is performed using a cart-
on-track system. Cart stopping points are shown in Figure
1, and the direction of travel is indicated by the arrows. A
variety of parts are produced in the facility and parts may
have alternative process plans.

Parts enter this manufacturing system at the input

Simulation of Flexible Control Strategies 801

point. Here large part batches may be divided, or smaller
batches may be combined, in accordance with the
requirements of the transportation, tooling, and fixturing
available. After batching, parts are fixtured or kitted then
transported to the first processing station. The production
route may be completely specified at the input point, or the
routing decision may only include the first processing step
to be performed. Decisions about batching and routing at
the input point must consider the shop wide state of the
transportation system, the load at each processing center,
and the tooling and fixturing available.

Processing cells consist of work center(s), an industrial
robot to move parts within the cell, and buffer space.
When a part arrives at a processing center it may be loaded
directly into a work center or may loaded into a buffer to
wait. Similarly, when parts have completed processing
at a work center they may be moved to another work
center, moved directly to a transport device if one is
available, or moved to an in-process buffer for storage. If
dynamic routing is implemented this movement decision
must include the determination of the next processing step
to be performed. Refixturing may also be required based
on the routing decisions made.

The parts are transported to the exit point after they
have completed processing within the system. Parts are
defixtured and de-kitted, and these components are
returned to the input point for reuse. The original batches
are also reassembled at the exit point for release from the
system.

Even in this simplified version of a facility, routing
determination is complex and requires information about
the shop wide state of equipment, fixturing, tooling, and
other jobs. Decisions made at one work center or cell may
impact the alternatives available at another station or at a
later time. Clearly, experimentation with various control
strategies will be required to develop one which meets
system objectives while retaining flexibility.

3 MODELING METHODOLOGY
Description of the model is divided into two sections.
First, the model of the physical system is described,

followed by the model of the control system.

3.1 Physical System

An entity representing the physical part is created in the
simulation when an order is entered. At this time a data
record of the part is also created in the simulation's control
section. Communication between the control system and
the part entity is performed through discrete channels. The
control system issues commands to the part entity
consisting of resources required and production
parameters, such as processing times. Part entities are
assumed to perform the commanded tasks using the
specified resources and parameters. After completion of
the issued commands, the part notifies the control system.

In our current implementation the physical system is
described using SIMAN's station elements, and the
communication channels are implemented as signals and
global variables.

A station in the simulation represents a machine,
manufacturing cell, or other piece of equipment in the
physical facility. The simplest set of actions at a station are
to process a part via a time delay then signal process
completion (Figure 2). For this type of station, any required
resources must have been previously allocated to the entity
representing the part.

; * Machining Stations
STATION, 3 - 5;
DELAY: PartParam(ParmIndex,ProcTime) ;

ASSIGN: SiglIssue = PartID;
SIGNAL: SigMach;

QUEUE, M+10;

WAIT: PartID, 1;

ROUTE: RobotID;

Figure 2: Code for Machining Station

In the code shown in Figure 2, the ProcTime attribute
represents the processing time at the machine tool. The
assign and signal statements implement the notification to
the control system that the part has completed processing.
After notifying the controller of completion, the part waits,
continuing to hold any allocated resources (in this instance,
a machine tool resource), until receiving a command from
the controller to continue.

More complex stations include additional actions, but
are similar to the simple stations in that they also perform
a task, signal task completion to the controller, and wait for

802 Smith and Medeiros

further instructions. In this implementation, robot stations
(see Figure 3) are used to allocate both the robot and
machine tool resources. This is done to satisfy the physical
preconditions that the machine resource is not deallocated
until the part has been removed from the machine by the
robot. If such preconditions were not required, the
machine tool could have been allocated in the previously
described station.

. *
’

; * Robot Station

. *
STATION, 1 - 2;
BRANCH, 1:
IF, HeldRes == 0, GetRes:
ELSE, FreeRes;

FreeRes RELEASE:Equip(HeldRes) ;
GetRes ASSIGN:

RobotID =
PartParam(ParmIndex, VRobot) ;

HeldRes =
PartParam(ParmIndex, VMach) ;

QUEUE, M;

SEIZE: Equip (RobotID),1:

Equip (HeldRes),1;
DELAY : MoveTime;

RELEASE: Equip{(RobotID) ;

ASSIGN: SigIssue = PartlID;
SIGNAL: SigRobot;
ROUTE: HeldRes;

Figure 3: Code for Robot Station

The branch statement releases any resources held by
the part. The first assignment stores routing instructions
for the entity representing the part. Because the robot to be
used for machine loading and unloading is assigned to a
specific cell, it can be determined in the cell logic. If this
was not the case, the robot to be used for unloading the part
from the machine would be contained in the control
command to the part. The seize command obtains the
robot and the machine that the part is to be moved to.
After the move has been completed the robot resource
(only) is released. The control system is notified that the
movement has been completed and the robot is free to
perform another task. At this point, the part is sent to the
machine station to undergo processing.

3.2 Control Logic

In this implementation, we assume that control decisions
are required only at the completion of tasks assigned by the
control section. Entities in the control section represent the
channels from parts in the physical section of the model.
Each of these entities performs an appropriate action based
on the state of the entire system. Figure 4 illustrates a
portion of the control logic responsible for routing an order
when it arrives to the system.

BRANCH, 1:
IF,SigID==SigEnter, EvEnter:
IF,SigID==SigRobot, EvRobot:
IF,SigID==SigMach, EvMach:
IF,SigID==SigDone, EvDone;

EvEnter BRANCH, 1:
IF,WIPAmount<MaxWIP, BringIn:
ELSE, ResetEv;

BringIn ASSIGN:WIPAmount=WIPAmount+l;
BRANCH, 1:
IF,MachlWIP<MachlCap, DoM1l:
IF,BufflWIP<BufflCap, DoBl:
ELSE, OverCapErr;

DoM1 ASSIGN:MachlWIP=MachlWIP+1:
PartParam(SigIssue,VMach)=
Machinel:
PartParam(SigIssue, VPTime)=
Proc_Time_M1;
SIGNAL:SiglIssue:
NEXT (ResetEv) ;

DoB1l ASSIGN:BufflWIP=BufflWIP+1:
PartParam(SigIssue, VRobot)=
Robotl:
PartParam(SigIssue, VMach)=
Bufferl;
SIGNAL:Siglssue:
NEXT (ResetEv) ;

Figure 4: Control Logic

To simplify exposition, the code fragment in Figure 4
shows control logic in which all parts are directed to follow
the same production plan: they may wait to enter the
system, be assigned to Machine! or be assigned to Bufferl.
If the number of parts currently in the system would exceed
a specified quantity, the new part will be held in a queue of
work waiting to enter the system (not shown). If the part is
allowed to enter the system, it will be routed to Machinel
if sufficient capacity exists at the machine, or to Bufferl
otherwise.

If the part is to enter the system, the control entity

Simulation of Flexible Control Strategies 803

establishes a communication channel to the part (by
utilizing global variables to pass information concerning
the appropriate resource identifiers and processing time),
then signals the part entity to proceed. The part entity in
turn reads the communication channel and implements the
instructions contained therein (see Figures 2 and 3). The
variable 'Siglssue' is the identification of the part which
issued the message to the control section.

As previously noted, the example has been greatly
simplified for ease of presentation. The control system
illustrated only considers the alternatives 'move to the
buffer', 'move to the processing machine' or 'do not enter
the system'. In the full simulation, the decision making
logic is greatly expanded to allow flexibility of routing and
scheduling. Each part type has a set of feasible process
plans, one of which is implemented based on system status.

4 BENEFITS OF THE APPROACH

This explicit separation of the control strategy from the
physical system logic allows us to 'plug-in’ alternative
decision making methods. Changes are confined to the
section of the model responsible for implementing the
control strategy, and verification activities can focus on this
section of the model.

Additionally, this implementation allows the decision
maker to perform operations on one part based on the
actions posted by another part. Thus, quite complex state-
dependent control strategies can be implemented in a
straightforward manner. If the control strategy requires
operations at specific times or intervals in addition to the
discrete events as above, timer entities similar to the event
catching control entities could be easily implemented.
These timers would perform a delay instead of issuing a
wait for a part message.

Implementing an approach that separates control
strategy from the physical flow of entities provides benefits
to the designers responsible for developing and
implementing a system controller, as well as for users
attempting to optimize system operations. Use of a
conventional simulation language provides advantages in
developing a model of the physical system, but is
somewhat awkward for modeling control systems, as
compared to the object-oriented approach. Explicit support
for a control logic model in conventional simulation

languages is required, perhaps through use of a modeling
paradigm such as Petri Nets. Pointers or explicit message
passaging functions would also simplify the modeling
effort. This paper has illustrated some of the functions that
would be performed by such a model, and how it could
interact with the entity flow model.

REFERENCES

Bodner, Douglas A., Suzanne Dilley-Schneider, S.
Narayanan, Uday Sreekanth, T. Govindaraj, Leon
McGinnis, and Christine Mitchell. 1993. Object-
Oriented Modeling and Simulation of Automated
Control in Manufacturing. In [EEE International
Conference on Robotics and Automation, vol 3, pp.
83-88.

Corbett, Charles and Enver Yucesan. 1993. Modeling
Just-In-Time Production Systems: A Critical Review.
In Proceedings of the 1993 Winter Simulation
Conference, pp. 819-827.

Davis, Wayne J., Duane Setterdahl, Joseph Macro, Victor
Izokaitis, and Bradley Bauman. 1993. Recent
Advances in the Modeling, Scheduling and Contro! of
Flexible Automation. In Proceedings of the 1993
Winter Simulation Conference, pp. 143-155.

Ernst, Thomas, and Avetik P. Matevosian. 1993. A
Flexible Assembly Global Control Simulation. In
Proceedings of the 1993 Winter Simulation
Conference, pp. 897-903.

Evans, Gerald W., William E. Biles, and Michael W.
Golway. 1994.
Manufacturing Systems. In Proceedings of the 1994

Simulation of Advanced

Winter Simulation Conference, pp. 141-148.

Goble, John G. 1994. SIMOBJECT: From Rapid
Prototype to Finished Model - A Breakthrough in
Graphical Model Building. In Proceedings of the
1994 Winter Simulation Conference, pp. 437-442.

Kashyap, Arun S., and Suresh K. Khator. 1994. Modeling
of a Tool Shared Flexible Manufacturing System. In
Proceedings of the 1994 Winter Simulation
Conference, pp. 986-993.

Lin, Grace Y., and James J. Solberg. 1994. An Agent-
Based Flexible Routing Manutfacturing Control
Simulation System. In Proceedings of the 1994
Winter Simulation Confercnce, pp. 970-977.

804 Smith and Medeiros

Mauer, John L., and Roland E. A. Schelasin. 1993, The
Simulation of Integrated Tool Performance in
Semiconductor Manufacturing. In Proceedings of the
1993 Winter Simulation Conference, pp. 814-818.

Mize, Joe H., Hemant Bhuskute, David Pratt, and
Manjunath Kamath. 1992. Modeling of Integrated
Manufacturing Systems Using an Object-Oriented
Approach. IIE Transactions, vol. 24, no. 3, pp. 14-26.

Schriber, Thomas J., and Daniel T. Brunner. 1994. Inside
Simulation Software: How It Works and Why It
Matters. In Proceedings of the 1994 Winter
Simulation Conference, pp. 45-54.

Smith, Jeffrey J., Richard A. Wysk, David T. Sturrock,
Sanjay E. Ramaswamy, Glen D. Smith, and Sanjay B.
Joshi. 1994. Discrete Event Simulation for Shop
Floor Control. In Proceedings of the 1994 Winter
Simulation Conference, pp. 962-969.

AUTHOR BIOGRAPHIES

GLEN D. SMITH is a Ph.D. candidate in the Industrial
and Manufacturing Engineering Department at the
Pennsylvania State University. His interests are in
manufacturing system simulation, computer control of
manufacturing systems, and artificial intelligence.

D. J. MEDEIROS is an Associate Professor in the
Department of Industrial and Manufacturing Engineering
at Penn State University. She holds a B.S.I.E. from the
University of Massachusetts and an M.S.I.E. and Ph.D.
from Purdue University. Her research interests are in
computer integrated manufacturing systems, material
handling, and applications of coordinate measuring
machines. She is a member of IIE and the College
Industry Council on Material Handling Education.

