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ABSTRACT

The Standard Clock method is an efficient approach for
discrete event simulation. Its basic ideas are quite
different from traditional approaches. SC has neither an
event list nor event lifetimes. However, its applicability
is limited to exponential distributions and a class of non-
exponential distributions. In this paper we provide an
effective approach to extend SC to all general
distributions, while preserving the efficiency advantage
of SC. Numerical testing shows that our approach can
effectively accomplish this goal.

1 INTRODUCTION

The Standard Clock (SC) method (Vakili 1991 and
Vakili, Mollamustafaoglu, Ho 1992) is an efficient
technique for Discrete Event System (DES) simulation,
particularly for simulating a set of parametrically
different but structurally similar DES's. The basic ideas
of SC are quite different from traditional approaches
(event-scheduling simulation, ESS). ESS builds an
active event list based on the current state, determines
lifetimes for each event in the list, and chooses the event
with minimum lifetime to be the next triggering event
for state transition. By contrast, SC has neither an event
list nor event lifetimes. Events for all
experiments/simulations are derived from a global cvent
strcam. However, SC is limited by Markovian
assumption, i.e., all lifetimes must be exponentially
distributed.

Chen and Ho (1995) provides an effective approaches
for extending the applicability of SC to a class of non-
exponential distributions. Although their approach
performs very well in most cases, it becomes inefficient
when dealing with deterministic problems or
distributions having very small variance. How to
overcome the difficulty and preserve the efficiency
advantage of SC 1s the main issue of this paper.

Our approach is a hybrid approach of ESS and SC.
For ease of explanation, we will give a brief description
of ESS and SC in Sections 2 and 3. The difficulty of SC
for general distributions will be discussed in Section 3.
Section 4 presents our hybrid approach. Numerical
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testing in Section 5 demonstrates that this hybrid can
effectively deal with the difficulties that the existing SC
suffers, and accomplish our efficiency goal.

2 EVENT SCHEDULING SIMULATION

Event-scheduling simulation approach has been well
used. It can be found in many simulation books. In
particular, Cassandras (1993) and Nelson (1995) provide
very good introduction to this approach. ESS builds an
active event list based on the current state, determines
lifetimes for each event in the list, and chooses the event
with minimum lifetime to be the next triggering event
for state transition. The cycle repeats with event time
determination and state transition interacting
continuously. The major components are: simulation
clock t, system state x, feasible event set I'(x), event
types ek, event times tx, and event list {(ex, tx)}, where
k=1, 2,3, .... The ESS algorithm is as follows:

Step 1. Initialization.

Step 2. Event Triggering. e <— arg kr?li_R) {t}.
Step 3. Time Advancing. t ¢ te.

Step 4. State Transition. x < f(x, e).

Step 5. Feasible Event Set and Event List Updating.
Step 6. Go to Step 2.

3 STANDARD CLOCK METHOD

The basic ideas of SC are quite different from ESS. SC
has neither an event list nor event lifetimes. Events for
all experiments/simulations are derived from a global
event stream. For simplicity, we explain the SC
approach by using an M/M/1 queue simulation example
with arrival rate 0.5 and service rate 1.0.
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Instead of generating the two types of events (arrival
and departure) from separate exponential distributions, we
consider a single stream of events that occur at the
(faster) rate 0.5 + 1.0 = 1.5. Namely, the interval time
between two events is exponentially distributed with rate
1.5. In Figure 1, a straight line denotes an event.

EXP(1.5)
- -

Figure 1: An Example of An Event Stream Before The
Determination of Event Types

Because of the properties of Poisson processes, we would
expect 0.5/ (0.5+1.0) = 1/3 of the events to be arrivals,
and 2/3 of the events to be departures. We determine the
event type according to the outcome of a Unif[0,1)
random number r placed onto a ratio yardstick.

r € Unif(0,1)

I | I
| arival | departure |
1/3 |

Figure 2: An Example of Ratio Yardstick for
Determining Event Types

If r < 1/3, this particular event is an arrival event.
Otherwise, this event could be a departure event. A
Unif[0,1) random number is generated for each event in
Figure 1 and the event types are determined shown in
Figure 3. A down arrow denotes an arrival event and an
up arrow denotes a departure event.
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Figure 3: An Example of An Event Stream After The
Determination of Event Types.

Statistically, this process is equivalent to generating two
separate Poisson event streams at rates 0.5 and 1.0. These
two event streams, representing the maximal rates of
arrival and departure events, are further thinned (deleted)
according to the state of the DES. We ignore departurc
events whenever the queue is empty, since the events are
infeasible. A sample path based on the event stream in
Figure 3 is constructed as follows.

x(t)

Time
Figure 4: The Sample Path Constructed From
The Event Stream in Figure 3

Because of exponential distribution's memoryless
property, the sample path constructed in this way is
statistically indistinguishable from the path constructed
by ESS. The idea of thinning a Poisson event stream can
be applied to all networks subject to Markovian
assumptions (1.e., the interarrival and service times must
be exponentially distributed). In general, if we want to
simulate a DES with n types of exponential events at
n

rates A;, i=1,..n, let A = Ai.

i=1
SC Algorithm
Step 1. Initialization.

Step 2. Time Advancing. t < t+ &, where & is
exponentially distributed with rate A.

Step 3. Event Type Determination.
The event type e =1, if 0 <r < A/A
e = 2, if )L]/A <r< ()L]‘i’)\«z)//\

e=n, if (A +Aa+ A /A <1< ]
where r is a Unif[0,1) random number.

Step 4. Event Feasibility Checking and State
Transition.
If feasible, State Transition: x « f(x, e).
Else, ignore this event.

Step 5. Go to Step 2.

Note that the generation of event streams (Steps 2 and
3) is independent of system states and, therefore, can be
done off-line. Given an event stream, we only need to
continually check event feasibility (Step 4) during
simulation. This significantly reduces on-line simulation
cost. Simplicity and ease of implementation are
additional advantages of the SC method. When SC is
applied to a set of parametrically different but structurally
similar (pdss) simulation experiments (e.g., the testing
example in Section 5), the superiority of SC to ESS 1s



788

more significant. These pdss experiments are individually
“thinned” from the same global event strecam using the
same set of simulation program instructions. Other
statistical advantages of common random numbers
(Glasserman and Yao 1992), coupling (Glasserman and
Vakili 1992), and correlation (Deng, Ho, and Hu 1992)
further accrue to such a simulation approach.

As previously discussed, when event lifetime
distributions are exponentially distributed, SC is not
only an efficient simulation approach, but also can be
easily implemented on computers. For non-exponential
distributions, Chen and Ho (1995) provides efficient
approaches for extending the applicability of SC to a
class of general distributions. They approximate non-
exponential distributions using either shifted exponential
distributions (when the coefficients of variation are
smaller than 1) or hyperexponential distributions (when
the coefficients of variation are bigger than 1). They also
show that good approximation property can be obtained
by only matching the first two moments of non-
exponential distributions.

The main difficulty emerges when applying to
distributions having very small variance. A shifted
exponential distribution can be represented by K+T,
where K is a constant and T is an exponentially
distributed random variable with rate pu. To use K+T to
approximate a non-exponential random variable S, we
choose K and T such that

E(K + T)=E(S) and Var(K + T) = Var(S).

Solving the above two equations,

_ 1 _ v N
p=——=—— and K=E(S)- ¥Var(S)
Y Var(S)

W is the rate which SC has to generate for this event.
When ¥ Var(S) is very small, 4 can be very large. In this
case, SC may become inefficient.

4 AHYBRID APPROACH

We propose a new approach to overcome the difficulty of
SC for general distributions, while preserving the

Hybrid Event List
(0, to) } SC:
(ex.  t)

forallk e EESS

Chen

efficiency advantage of SC. The basic idea is as follows.
SC can efficiently simulate a DES in which the
distributions' variances are not too small. We want to
take such an advantage of SC. On the other hand, we use
ESS to deal with those distributions which are not
suitable for SC. Under this structure, our approach is a
hybrid approach of SC and ESS.

First of all, we identify which events are suitable for
SC and which events are not. Then the event set is
decomposed into two subsets: Egc and Eggs. Egc
contains those events which are suitable for SC and Eggg
contains the remaining events. The events in Egc will be
simulated using SC and the events in Eggg will be
simulated using ESS. Thus, we can avoid the difficulty
of simulating those tough events when using SC. The
remaining question is how to aggregate the two
approaches into one simulation structure and to assure
that the correct statistical property is maintained.

SC has neither an event list nor event lifetimes.
Simulation clock proceeds based an exponential
distribution with rate A. Event type is not determined
until the event epoch. From the ESS point of view,
before event type determination, all the events from SC
can be treated as one single special type of events, say
€9, which is scheduled to happen at some special event
time, say ty. Thus, we can extend the event list by merge
the original event list of ESS and this special event from
SC. The whole structure of this approach is like an ESS
approach with the following additional definitions:

* Hybrid Event List: {(eg, t)} U {(ex, tk)}, where k €
Egss.

* ESS Feasible Event Subset: I"'(x) = T'(x) M Egss.

* n": the number of elements in Egc.

* Function g: I — 1. g(i) denotes the event type of the
i-th event in Egc, i.e., events g(1), g(2),.., g(n') are
included in Esc.

n
¥ A'= z xg(i)~
1=1

Figure 5 illustrates the basic idea of our hybrid
simulation structure.

ESS &. ~ EXP(A))

Figure 5: A Hybrid Event List
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When the lifetimes of all events in Egc are exponentially
distributed, the algorithm is as follows:

Hybrid Algorithm

Step 1. Initialization.

Step 2. Triggering Evente=arg min { ).

ke {0)ulM(x)

Step 3. Time Advancing. t « te.

Step 4. Ife#0(ie, e € Eggg), Go to Step 9.-

Else (i.e., next event € Eg¢), Go to Step 5.

Step 5. Event Type Determination. The event type e

= g(l), lfO <r< }\g(])//\'

= g(2), lf )\.g(]//\' S r< ()\.g“)‘f')\,g(z))/A'

= g(n'), if (Kg“)+7\.g(2)+ ..+7\,g(n-_|))//\' <r<1
where r is a Unif[0,1) random number.
Step 6. Event Feasibility Checking and State
Transition.

If feasible, State Transition: x « f(x, e).
Else, ignore this event.

Step 7. ty « t+ 8, where & is exponentially
distributed with rate A'.

Step 8. Go to Step 10.

Step 9. State Transition. x « f(x, e).
Step 10. ESS Feasible Event Subset and Hybrid Event
List Updating

Step 11. Go to Step 2.

When the lifetimes of all events are exponentially
distributed, the sample path obtained by SC is
statistically indistinguishable from the sample path by
ESS. Due to memoryless property of exponential
distribution, the sample path obtained by our hybrid
approach is also statistically indistinguishable from the
sample path by ESS. In general, the sample path by the
hybrid approach is statistically equivalent to the sample
path by ESS whenever the lifetimes of all events in EgC
are exponentially distributed.

If the lifetimes of some event types in Egc are not
exponentially distributed, we may apply the Chen and

Ho (1995)'s extension approach and revise Steps 5 and 6
to deal with non-exponential distributions. The details
are omitted here.

S NUMERICAL TESTING

The following examples are used to demonstrate that our
approach can effectively deal with distribution having
very small variance, while preserving the efficient
advantage of SC.

Inter-arrival:
K+EXP(A)

EXP(y) EXP(0.1) EXP(0.1) EXP(0.1) EXP(0.1)
n=0900951.0,1.05,1.1

Figure 6: A Five-Node Tandem Network

There are 5 nodes serially connected in this network.
Jobs will be sent to the node i+1 after the service at node
1is completed. The queue discipline is FIFO. The service
times are exponentially distributed with rate 1.0 at Nodes
2 ~ 5 and with rate B at Node 1. Given an job-arrival
distribution, we want to simulate the systems with five
different p's from 0.9, 0.95, 1.0, 1.05, to 1.10. The
distribution of the inter-arrival times of jobs are shifted
exponential distribution, which is represented by K +
EXP(A). By varying K and A, we can obtain different
coefficients of variation to compare the performance of
different simulation approaches. We test ESS, SC, and
our new hybrid approach for different coefficients of
variation of inter-arrival times.

In this testing example, Egc contains the departure
events at all nodes and Eggg contains the arrival events.
Figure 7 on the following page shows the testing
results.

In this numerical testing, SC beats the others when
coefficient of variation is not too small. However, SC
becomes inefficient when coefficient of variation is close
to 0. Our hybrid approach and ESS are not sensitive to
coefficient of variation. The hybrid approach is more
efficient than ESS throughout the testing.

6 CONCLUDING REMARKS

In this paper, we presented a hybrid approach for
extending SC to non-exponential distributions. This is
done by aggregating SC and ESS. Numerical testing
shows that the hybrid approach can effectively deal with
distribution having very small coefficient of variation (or
variance), while preserving the efficient advantage of SC.
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Hybrid Approach
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Coefficient of Variation
Figure 7: Numerical Testing Results

In the numerical testing, when the coefficient of
variation is not too small, SC is much more efficient
than ESS. The performance of our hybrid approach is in
between. When Eggg has only one event, the hybrid
approach is slightly slower than SC. If the number of
events in Eggg increases, we believe that the hybrid
approach will behave more like an ESS and the
performance will get closer to ESS. As a result, there is
a tradeoff in determining the event subset Eggg for the
hybrid approach. If we put more events in Eggg, the
hybrid approach is less sensitive to variances, but may
suffer from lower efficiency. On the other hand, if we put
less events in Eggg, the hybrid approach will behave
more like a SC and is more efficient in some cases, but
may suffer from being sensitive to variances.

Which events should be included in Eggg to guarantee
highest efficiency is remained to be investigated.
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