Proceedings of the 1995 Winter Simulation Conference
ed. C. Alexopoulos, K. Kang, W. R. Lilegdon, and D. (ioldsman

CREATE!: AN OBJECT-ORIENTED IDE FOR DISCRETE EVENT SIMULATION

Michacl Riiger
Thomas Behlau

Department ol Computer Simulation and Graphics
Otto-von-Guericke University of Magdeburg
P.O. BOX 4120
D-39016 Magdeburg, GERMANY

ABSTRACT

Create! is a graphical integrated development environ-
ment (IDE) for discrete event simulation. It features a
complete modelling and simulation environment for end
users working in a dedicated environment as well as an in-
tegrated development environment enabling advanced us-
ers or simulator developers to create extended or even new
simulation environments.

This paper presents major aspects of the Create!-envi-
ronment and some tools built using it.

1 INTRODUCTION

Through recent years new graphical simulation tools have
appeared on the market with remarkable success in the
simulation community. Most of these environments come
with a set of prepacked components aimed at a certain
application field and are more or less extensible.

Solutions to the problem of extensibility range from
simple programming language interfaces providing access
to external C(++) or Pascal code to combined library and
simulation language approaches for extending the set of
simulation elements. Finding a both flexible and intuitive
way of specifying the behavior of elements or processes is
another challenge in this context.

Allowing a user to create new or modify existing cle-
ments or process definitions implies the existence of a lan-
guage or process specification of some sort to describe the
desired behavior. Both compiling/linking on the one hand
and interpreting this code on the other have their pitfalls.
While the first generally produces faster models, it intro-
duces a potential danger of corrupting the system through
undesired side effects or simply programming mistakes.
Interpreting user code allows trapping errors at runtime,
but is somewhat slower.

Another important issue is the range of supported plat-
forms. When implementing a system as complex as a sim-
ulation environment one has to deal with all aspects like
releasing versions and providing easy-to-use graphical

775

user interfaces for all platforms. Maintaining an applica-
tion simultaneously on different platforms is both ex-
pensive and error prone.

By choosing Smalltalk as the underlying development
environment, most of the above problems could be solved
quite casily. ObjectWorks™-Smalltalk is binary portable
across all supported platforms, thus allowing us to use
Create! on workstations as well as on PCs. The incremen-
tal compilation and dynamic binding provides a way to
add code during runtime while providing the safety of an
interpreted system.

In the following we will show how these capabilities are
used to solve the problems mentioned above and together
with the modelling and development framework form a
powerful environment with low threshold and high ceil-

ing.
2 THE CREATE! CLOUD

The word cloud came up during the early Create! develop-
ment, when there was just this cloudy vision, but no idea
how to realize it. Realizing it produced a two step ap-
proach to the development of simulators. The first step is
the creation of

+ a generic runtime environment for building models,

performing simulation runs and evaluating the results
and

+ an integrated development environment containing

all necessary tools to create new librarics of elements
and objects.

Combining the librarics with the generic simulation en-
vironment in the second step results in a new simulator for
the end user (Figure 1).

Given access to the development tools, advanced users
can modify existing clements or complement the environ-
ment with new ones.

Building new or cxtending existing simulators is thus
accomplished by the same means.

776 Riiger and Behlau

=] Projects ‘Distribution”

k integrated

developer
advanced user

user

Figure 1: Create! IDE and Runtime Environment
3 MANAGEMENT FRAMEWORK

When building and running models the user has to deal
with the management of data files, models and evaluation
results. Organizing these manually into files and directo-
ries has two major drawbacks:

- dealing with platform specific filename conventions
- keeping track of versions.

Create! provides the concept of a simulation project to
support the management of models, associated parameter
sets and the results of simulation runs.

A simulation project is organized into studies, which in
turn contain models and experiment series. Models come
in two flavors: working versions and frozen ones. Frozen
models may not be modified and form the basis for exper-
iments, which therefore can be replicated at any time.
Each of these project parts can be created, renamed, dupli-
cated or deleted without the need to use the commands as
provided by the underlying operating system. Figure 2
shows the project management window for the project
"Distribution". The currently active study regarding Ger-
many contains several models, part of which are frozen.

Projects provide yet another functionality. Each project
forms a container for the installation of element and type
definitions, libraries and icons. In this way, parts of an en-
vironment, which are a specific extension for a simulation
project, are encapsulated within this project without clut-
tering the overall system. When entering a project, these
components are dynamically loaded and hidden again
when leaving the project.

motels . experiments ...

network(s.1my A | Experiment
nelwork with map(s.2)
network with map (5.2m)

: o = e

Figure 2: Project Management
4 MODELLING FRAMEWORK

There are two basic types of components in Create!:

* Elements. The "real world" items representing the ac-
tive units of a model (productions cells, network
nodes).

* Objects. The passive components (parts, packets)
flowing through the system or forming the data struc-
tures used (processing definitions).

Models are built by placing elements in the model lay-
out and connecting them (Figure 3). During the simula-
tion, objects are passed along these connections and cause
the execution of actions when entering the next element.

Figure 3: Create! Simulation Model

Elements consist of a runtime definition and an exter-
nal representation. The external representation defines all
properties needed for user interaction like icon, parameter
dialog and graphical editing behavior (collision handling,
auto-connect). The runtime specification is based on ex-
tended finite state machines with functions attached to the
transitions (see "Specification Framework: ParSEC"). It
also includes the internal data structures (parameters, var-
iables). Both parts of the specification are kept externally

on disk and are loaded into the simulation environment
only when needed.

An Object-Oriented IDE 777

element
editor

4

representation
editor

8

3

/ exterrial ¥
library

element

definition

runtime |

element

parameter
library

»

simulation
model

start
simulation
model
element

model
| editor |
Figure 4: Element Lifecycle

A copy of the external representation of an element is
stored in a library together with a reference to the runtime
specification. When building models, only the element’s
representation is used. This allows us to keep different
representations for the same runtime specification, e.g.,
presenting a set of preconfigured elements to the user by
presetting some parameter values and removing the corre-
sponding parameter entry fields in the dialog.

On simulation start elements are instantiated according
to their runtime specification and the parameters in the
model elements ("Element Lifecycle").

5 SPECIFICATION FRAMEWORK: PARSEC

Covering the problem of implementing a simulation ker-
nel, a couple of different approaches were reviewed and
analysed (Zeigler 1984, Paul 1993, Cota et al. 1994, Car-
rie 1988, SIMPRO 1985, Schruben 1983, Som and Sar-
gent 1989).

As a result, the Create! simulation kernel has been
based on extended finite automata. Each automaton is de-
fined by a set of states, state transitions and functions at-
tached to the transitions. The notion of finite automata is
extended in so far as some transitions may be guarded, so
that depending on the outcome of some boolean expres-
sion (condition), one of two alternate transitions will be
executed.

This concept reduces the simulation kernel to a tiny
mechanism for scheduling and distributing signals, and
places hardly any restrictions on the kind of elements and
models to be built.

Transition functions are defined (coded) using an ob-

ject-oriented programming language which is syntactical-
ly close to C++ and conceptually close to Smalltalk-80™.
It supports inheritance for data structures and simulation
elements as well as function polymorphism depending on
function name and parameters.

5.1 State Machines and Processes

The original SEC (State, Event, Condition) concept
(Ruger et al. 1990) has been further extended to allow
modelling of independent processes based on the SEC au-
tomaton definition (ParSEC: Parallel State, Event, Condi-
tion).

Therefore, an automaton definition is executed by a
state machine which reacts to input signals and performs
the appropriate transition depending on its current state.
Several of these state machines can be forked for the same
automaton definition, allowing several processes running
independently, but with the same behavior.

Although the concept is named parallel SEC, process-
ing of events takes place in a strictly sequential manner.
Nevertheless, as each process of executing a state ma-
chine has its own execution space, the developer can think
of these as executing in parallel without worrying about
mutual exclusion on variable access etc.

An example for the deployment of parallel processes is
a transport systems with several vehicles, all sharing the
same behavior, but acting independently. The behavior of
a vehicle would then be described by means of an autom-
aton definition, but vehicles acting independently in the
simulation model with a state machine forked for each
one.

During the simulation each state machine is either in its
current state or performing a state transition. Using hold
or wait functions for introducing time delays would vio-
late the concept of executing only one transition at a time.
Therefore, signals can be postponed by scheduling them
with a time delay. Signals, sent while executing a transi-
tion function, are queued and processed after completing
the transition.

5.2 States and Signals

The basic elements of an automaton definition are states
and signals.

The states of an automaton are a set of user defined
symbols plus a predefined pseudo state terminated. A
transition to this state terminates the currently active state
machine and frees the corresponding slot in the process
list.

Signals can be sent from within a transition or from a
signal pin in one of the interface plugs (see below). Each
signal carries exactly one object, which is provided as an
argument to the invoked transition function.

778 Riiger and Behlau

5.3 Transition

A transition is defined by:
* initial state S
* next state §°
(may be the same as S)
* signal s

* transition function f

signal

transition

imtal state

next state

Figure 5: Transition

The transition function f is executed, if the state ma-
chine's current state is S and the signal sent is s. After ex-
ecuting f, the state machine's current state is S".

5.4 Guarded Transition

A guarded transition is defined by:
* initial state S

* true state S’
(may be the same as S or §")

+ false state S"
(may be the same as S or §)

* signal s

* guard expression g

* truc transition function f
* false transition function f'

next state
true

signal \/
guard rue

eXpressy
PIESSIOn onsition

false
transition

initial state

next state
false

Figure 6: Guarded Transition

The transition [unction f is executed, if the state ma-
chine's current state is S, the signal sent is s and the eval-
uation of g returns frue. After executing f, the state
machine's current state is S'.

The transition function f' is executed, if the state ma-
chine's current state is S, the signal sent is s and the eval-
uation of g returns false. After executing f, the state
machine's current state is §”'.

5.5 Plugs and Sockets

Elements communicate with each other through plugs. A
plug is defined by a set of pins and guards:

* Pin. A pin transmits a signal from one element to the
other.

* Guard. A guard promotes a boolean value from one
element to the other. It emits a signal in the connected
element, when its value changes from false to true.

guard

e

g =y

N

pin
Figure 7: Simple Plug Definition

The very simple plug definition used in Figure 7 con-
sists of:
* Object (output pin). It sends an object to the connect-
ed element.

* Ready (input guard). It signals if the connected ele-
ment is ready to receive object. If the element be-
comes ready (sets the guard's value to rrue), a signal
1S sent.

When connecting two elements through a plug, the pins
and guards are connected and promote the objects sent to
a pin or guard in one element to the corresponding pin or
guard in the connected element.

An input pin or guard receives a value from the con-
nected plug and promotes it to the element's processes. An
output pin or guard receives values from the element’s
processes and promotes them to the connected plug.

A plug definition defines a plug seen as an output inter-
face. By reversing the direction of pins and guards a plug
is turned into an input interface, which is then called sock-
et (Figure 8).

An Object-Oriented IDE 779

guard

guard

value G: value

guard _\guard

signal G‘— signal
pin \ pin

signal signal

plug socket
Figure 8: Simple Plug and Socket Pair
5.6 A Simple Example

The task of passing an object from one element to the next
is illustrated in the following example.

After completing some task (leaving the state busy on
signal endBusy), the element passes on an object to the
connected element.

A guarded transition is used with:

S busy

s endBusy

g check if the element is ready
f output object

bl do nothing

S done

S wait

Another transition is used for handling the delayed ob-
ject passing:

S wait

s ready

f output object
S’ done

ready
Poutput.ready()
object

endBusy

Figure 9: Guarded Transition Interacting with a Plug

6 EVALUATION AND ANIMATION

Evaluation and animation depend to a large extent on the
application domain. Nevertheless, a set of basic evalua-
tion and animation methods is desirable. Based on a ge-
neric framework, domain specific evaluations can be
added when needed.

The solution chosen in Create! is to provide a method
to gencrate a stream of events during the simulation and
work on this stream online or offline (Riiger and Nyhuis
1992). The object-oriented nature of the underlying
Smalltalk™ system makes it easy to transparently handle
both internal and external streams or pipes.

L1 T T T T T T

Simuly
tmulator Evaluation
Trace Trace
Writer ASN.1 Reader
Library Trace Library

Figure 10: Trace Event Stream

The tracer interface allows element related trace events
like state, load or object count, as well as object related
events like creation, modification of attributes or deletion
(Nyhuis 1994).

All events are piped through an evaluation network
which consists of single data processors realizing tasks as
counting, averaging or other statistical filter functions.
Connected to the outputs of this network are visualization
components like graphs or animation views. As evalua-
tions only deal with events, they do not depend on the kind
of elements generating these events, thus allowing us to
provide a generic set of evaluation and animation meth-
ods.

7 EXISTING ENVIRONMENTS

Currently the following simulation environments have
been built using the Create! IDE:

* Create!-Structure: simulation of logistic systems at

structural level.

* Create!-LSG: simulation for strategic decision sup-

port.

+ Create!-Batch: simulation for batch oriented produc-

tion systems.

* Create!-Simple: simple single server environment for

teaching purposes.

* Create!-LogiChain: modclling and static analyzing of

processes (no simulation!).

All share the same runtime kernel with some minor
simulator specific changes in the user interface. Figure 11
shows a snapshot of the model editor within the Create!-
Structure environment with the list of the available library

780 Riiger and Behlau

elements on the left and the graphical working area on the
right. The same editor is used in the other tools as well.

e Hodel Fditor “Hoda i1 =0

Create] Ablage | Bosrbeitung [layout | Elementy |
7y ,

Aktor

Dgmontage

Dapalattiorer |1l =]
Kommlssionlar

gearbeltung \ { ' , ' | g

SanksAkt
TransDls

b @lb.: stdbag '

Lu’ i :]

Figure 11: Create!-Structure Model Editor

A somewhat interesting exception is the Create!-Logi-
Chain environment (Figure 12) which makes no use of the
simulation kernel. It was built using the IDE's abilities to
support graphical, element based modelling environ-
ments. Elements (activities) are placed on a regular grid.
Controlled by parameters provided with the element defi-
nitions, elements of the process chain auto-connect to
their next neighbors. After constructing the chain, a gener-
ic computation algorithm, which in turn calls functions
defined within the elements, is run on the model and pro-
vides the results of the analysis.

r
=1 3 gners Toom PAf

Datal Stamessien Elements
¥]
.ETwn G .
sip, ,
) Boatonton ' s
mpu 5K
. - . +
=€ -
Koarehtor E%J ; ¢ ¢ + ﬁ, ’ ‘ ‘a
=5 S hw &= 2|
PuulA L / , , , / , ,
=gy) 7 i
Ll Onhk Eamm A, i e - - ’ Z E—

Figure 12: Create!-LogiChain Designer
REFERENCES

Carrie, A. 1988. Simulation of Manufacturing Systems.
Chichester: John Wiley & Sons Ltd.

Cota, B.A., D.G.Fritz, and R.G. Sargent. 1994. Control
Flow Graphs as a Representation Language. In Pro-
ceedings of the 1994 Winter Simulation Conference,
555 - 559, Lake Buena Vista, FL.

Nyhuis, A. 1994. Ein Trace in ISO-Normformat zur in-
strumentenunabhéngigen Unterstiitzung objektbezoge-

ner Auswertungen. Simulation und Integration, ASIM
Mitteilungen, Vol. 42, 26-34, Magdeburg.

Paul, R.J. 1993. Activity Circle Diagrams and the Three
Phase Method. In Proceedings of the 1993 Winter Sim-
ulation Conference, 123-131, Los Angeles, CA.

Riiger, M., and A. Nyhuis. 1992. Monitoring und Anima-
tion in der Simulatorentwicklungsumgebung Create!.
Visualisierung und Préisentation von Modellen und Re-
sultaten der Simulation, ASIM Mitteilungen, Vol. 31,
132-140, Magdeburg.) .

Riiger, M., U. Hoppe, and H. Kirchner. 1990. Objektori-
entierte Modellierung von Bausteinen innerhalb der
Simulatorentwicklungsumgebung Create!. Fortschritte
in der Simulationstechnik, Vol. 1, 140-144, Vienna.

Schruben, L.W. 1983. Simulation Modelling with Event
Graphs. Communications of the ACM 26: 957-963.

SIMPRO 1984. GBS - Die graphische Basissprache fiir
das SIMPRO-System. Berlin: IMPRO GmbH.

Som, T.K., and R.G. Sargent. 1989. A Formal Develop-
ment of Event Graph as an Aid of Structured and Effi-
cient Simulation Programs. ORSA Journal on
Computing, 1, 2, 107-125.

Zeigler, B.P. 1984. Multifaceted Modelling and Discrete
Event Simulation. New York: Academic Press.

AUTHOR BIOGRAPHIES

MICHAEL RUGER is a research staff member at the
Department of Computer Simulation and Graphics at the
University of Magdeburg, Germany. He received his Di-
ploma in computer science from the University of Dort-
mund in 1988. After that he worked on simulation
development and application at the Fraunhofer Institute
for material flow and logistics in Dortmund and since then
he has been working in the field of human computer inter-
action and visualization techniques at the University of
Magdebilrg.

THOMAS BEHLAU works as a graduate research as-
sistant in the Department of Computer Simulation and
Graphics at the University of Magdeburg, Germany. His
areas of research are the modelling of manufacturing sys-
tems and modelling methodologies. He is a member of the
GPSS-Users'-Group Europe.

World-Wide-Web
The Create! home page can be reached at
http://simsrv.cs.uni-magdeburg.de/~create

