Proceedings of the 1995 Winter Simulation Conference
ed. C. Alexopoulos, K. Kang, W. R. Lilegdon, and D. Goldsman

GENETIC ALGORITHMS IN OPTIMIZING SIMULATED SYSTEMS

George Tompkins
Farhad Azadivar

Department of Industrial and Manufacturing Systems Engineering
Kansas State University
Manhattan, Kansas 66506, U.S.A.

ABSTRACT

Advances have been made in optimizing quantitative
variables within a simulation model, and many
methodologies now exist for this purpose. However,
many of the design decisions which confront a
system's users involve policy alternatives. Often,
variables used to represent these alternatives are not
only discrete, but qualitative.

This work seeks to develop a simulation-
optimization methodology which can operate on
qualitative variables. The proposed approach is to link
a genetic algorithm with an object-oriented simulation
model generator. The system designs recommended
by the genetic algorithm are converted to simulation
models and executed. The results then guide the
genetic algorithm in its selection of future designs.

A simulation model generator for a class of
manufacturing systems, and a genetic algorithm which
can interface with the generator have been developed.
The methodology has shown positive results.

1 INTRODUCTION

In general, simulation-optimization procedures require
the variables in question to be quantitative; the number
of machines of a certain type to employ, or the number
of operators assigned to a machine cell. The values of
the decision variables must be fully ordered. This
must be true if there is to be any concept of direction-
of-improvement. If the MACHINE_RESOURCE
decision variable has a value of 3 and the response is
better than when the value was 2, it appears that
increasing this variable is good. There is no question
of what values of the variable are larger than 3;
direction is defined. In other words, the decision
space can be defined by means of an n-dimensional

geometric space.

When dealing with qualitative variables,
techniques that require ordered values fail. Assume
there is a decision variable called QUEUEING
DISCIPLINE in the model. This variable determines
how parts waiting for machining will be ordered, and
it may take one of three values; LIFO (last-in-last-
out), FIFO (first-in-first-out), or SPF (shortest-
processing-time-first). If the current value of
QUEUEING DISCIPLINE is FIFO, and it is desired
to change it to a larger value what should the new
value be? This question has no answer because the
values FIFO, LIFO, SPF have no order. Thus
quantitative search methods cannot deal with them.

Finally, when dealing with quantitative variables
the framework of the system is left unchanged, only
the levels of various resources available to the system
are changed. Qualitative variables allow for changes
in the physical and logical structure of the system.

A simulation-optimization technique for
qualitative variables must require only the system
response, must cope with stochastic responses, must
deal with discrete variables, and not assume any
geometric relationship between the discrete points in
the search space. In addition, because of the
structural changes in the system, a unique simulation
model is required for each design to be tested. Thus
a method for automatically creating the simulation
models is required. A simulation-optimization
technique would be of little practical use if the user
had to hand-code a simulation model at each iteration.

1.1 Existing Methods for Optimization of

Qualitative Variables

The current methods available for optimizing
qualitative variables include complete enumeration,
knowledge-based systems, and random search.

758

Tompkins and Azadivar

The simplest of these, complete enumeration, is
also the most limited. As the number of variables and
their levels increases the number of points in the
solution space increases exponentially. This method is
completely unusable for all but the smallest problems.

Knowledge-based systems seek to embody a
modeler's diagnostic abilities in a rule-base (Prakash
1991) (Chong, Sen, and de Souza 1994). Given the
results of a simulation run the expert system can
diagnose the causes of poor performance and
recommend changes in the system to eliminate them.
Prakash (1991) developed a generalized rule base for
diagnosis, and presented an implementation of the
system which can recommend capacity changes for a
system. The simulation models are constructed in
SIMAN, and all changes are made to the experiment
file while the structure of the model is left unchanged.

Random sampling is, perhaps, the most often used
technique for this type of optimization. The procedure
is quite simple, and one can even determine the sample
size required for a fixed degree of certainty in the
result (Wilde 1964). However, while information
about the surface is generated as the sampling
proceeds, the procedure makes no use of this
information.

Genetic algorithms attempt to make use of the
information generated by an initial random sample to
guide the selection of future samples. The procedure's
name stems from the fact the it is a simplified version
of natural evolution. The next section provides an
overview of how genetic algorithms make use of the
information developed in previous samples.

2 GENETIC ALGORITHMS

Genetic algorithms (GA's) are a family of randomized
search procedures developed by John Holland (1975).
There are many variations, but this explanation is
limited to a basic GA. The family takes its name from
its analogy to biological evolution. In biology it is
believed an organism's structure, and thus much of its
ability to survive in its environment, are largely
determined by its DNA. This ability to survive is
termed an organism's "fitness". In sexual
reproduction, offspring are a combination of both
parents' DNA. Thus the offspring inherit traits from
both parents and, because of the recombination
process, may exhibit traits not evidenced by either
parent. These new traits, or the combination of
existing traits, may increase an offspring's fitness.
Such highly fit individuals will survive more frequently
than other individuals in the population, and have the
opportunity to pass the traits which helped them

survive to their offspring. Thus, over time, the
average fitness of the population will improve. Note
that evolution is not concerned with individuals, but
the trend of the population as a whole.

GA's are a computer simulation of a simplified
and idealized evolution. DNA is represented as a
string where each position in the string may take on
one of a finite set of values. In this work each
position in the string represents a variable from the
user's system. The fitness of the organism is
determined by a fitness (or objective) function; the
function decodes the string and returns a real scalar
value greater than 0. The larger the value the more fit
the individual is. A group of strings taken together
forms a population.

2.1 GA Operators

A GA has 3 basic operators; selection, crossover, and
mutation. The selection operator embodies survival of
the fittest. Individuals with higher fitness evaluations
are more likely, but not guaranteed, to survive.
Likewise, some poorly fit individuals survive in spite
of their low fitness value. In short, the selection
operator uses the fitness information to adjust the
survival probability of each member of the population.
These probabilities are then used to randomly select
survivors.

The crossover and mutation operators act on the
"DNA" of the survivors. Crossover models the
combining of parent's DNA to form offspring. The
crossover operator selects 2 survivors to act as
parents. A position in the strings is chosen randomly,
the strings are broken at this position, and the
fragments are recombined to create 2 new offsprings.
The mutation operator simply chooses a random
position in a string, and changes the value to a new
randomly selected value. In general, the selection
operator selects individuals from the current
generation of the population who will survive. These
survivors undergo crossover and mutation and their
offspring form the next generation. As this process
repeats the average fitness of the population increases.
The selection and crossover operators serve to direct
the GA's sampling toward fruitful regions of the
sampling space.

2.2 Motivation for Use of GA
GA's do not attempt to determine a direction of

improving response as do other simulation-
optimization techniques. Because of this the GA is

Genetic Algorithms 759

able to operate on qualitative variables. GA's have
also demonstrated an ability to operate with noisy
observations, such as will be generated by a simulation
(Goldberg 1989).

The GA has been developed and implemented in
the MODSIM II language environment. This afforded
two advantages; all details of the implementation
would be known and open to change as the research
progresses, and it would allow the simulation model
generator and GA to be implemented in the same
language. This ensures easy data transfer between the
two components. The results of all simulation runs are
stored so that once a configuration is evaluated it need
never be evaluated again. The number of simulation
evaluations, the population size. and the selection and
crossover methods to use are controlled by the user
and stored in data files.

3 SIMULATION MODEL GENERATOR

The model generator is made possible because of
object-oriented nature of MODSIM II. The following
sections highlight the assumptions which have guided
the generator's development, and its operation.

3.1 Assumptions

The model generator is able to create models for job
shop systems. It assumes there are a finite number of
unique operations which can be performed. It allows
multiple part types, where each part type may use a
different subset of the available operations. It allows
alternative equipment types for each operation,
alternative routes for each part type, and alternative
layouts for equipment.

Any system designed for an actual user is subject
to the constraints of the user's budget. Therefore, this
generator first extracts from the user what potential
resources are currently available to it, or what the user
is willing to make available.

3.2 Model Components

Each model has 4 components: the part object, the
generator object, the processor objects, and a repeater
object. For each part type produced by the
manufacturing system there is a corresponding part
object. There also exists a generator for each part
type, it creates instances of its part type at random
intervals and sends them to the processors. The
processor objects receive part objects, place them ina

queue, and eventually delay them for a specified time
representing the processing time. After processing, a
part object is sent to the next processor in its route.
The final object, the repeater, handles the
transportation of the part objects and simplifies the
exchange of messages between the generator and
processor objects.

3.3 Operation of Model Generator

The model generator is a set of data bases whose
information is brought together by a central object
called the SystemModelObject (Figure 1). The
SystemModelObject is responsible for coordinating
and constructing a simulation model.

database
systemModelObj
machine machine
object 1 objectn

" Tepeater
object

generator
object 2

Figure 1: Model Generator

Based on the information passed to SystemModelObj
from the GA the number of operations and part types
in the system are determined and the required

760

Tompkins and Azadivar

processor and generator objects are created. Each
object is customized with information from the
appropriate data base. For example, a processor has
3 characteristics which identify it: mean-time-to-
failure, mean-time-to-repair, and queuing discipline.
As the SystemModelObject creates an instance of a
processor object it retrieves the appropriate values for
these characteristics from the database and inserts them
in the instance. This process is repeated for the
generator objects. When the 4 elements (part objects,
generator objects, processor objects, and repeater
objecty of the model are present, the
SystemModelObject schedules the necessary initial
events and starts the simulation. Upon completion of
a run, the statistics in SystemModelObject are
retrieved by the ReportObject, which calculates the
response, and returns it.

4 TESTING OF PROPOSED METHODOLOGY

The preceding sections have presented the proposed
methodology and the components necessary for its
implementation. This section presents testing with 3
problems and compares the results with those
generated by simple random sampling. The test cases
consist of a small problem with 3888 alternatives, a
large problem with 1 billion alternatives, and a very
large problem with 13 billion alternatives.

4.1 Test Problems

The small test problem is comprised of 4 operations
and 4 part types. There are 3 possible types of
equipment which may be used to perform each
operation. In addition, there are 2 alternative process
plans, or routes, for each part type. Finally, the
physical equipment may be arranged in 3 possible
layouts on the shop floor. Figure 2 shows a possible
configuration for the system. The goal is to find the
combination of equipment types, routes, and layouts
which minimize the work-in-process. The other
problems are larger versions of this same structure.

The medium problem also has 4 operation and 4
part types, but there are 10 alternatives for each of
these variables. There are 10 alternative layouts as
well, for a total of 9 variable and 10° system
configurations. In the large problem there are 6
operations and 6 part types with 6 alternatives each
(and 6 layouts). It has a total of 6' possible
configurations.

The data required by the model generator was
selected at random from various probability
distributions. To ensure these randomly generated

problems contained a known solution, the random
routings and process times were modified to create a
unique optimum in each problem.

|

@: Operation Operation
_2)] 2 3
(Qw)_ _| Operation Operation Part Type
—_ 4~ 3 7 4 1

Figure 2: A Possible Configuration for Problem 1

4.2 Empirical Study

The goal of this study is to provide empirical evidence
that the proposed methodology is effective in finding
good solutions for this class of problems. A
comparison of the results with those of random
sampling is also presented. The objective function
used for this study is work-in-process, i.e. the sum of
the average queue lengths across all operations. The
goal of the optimization is minimization.

To obtain a more reliable picture of a method's
performance, seven repetitions (with unique random
variate sequences in each repetition) were made. Thus
the final measure of a method's performance on a
problem is the average of the fitness values reported in
each repetition.

The GA to be tested in the study uses roulette
wheel selection, single point crossover, no mutation,
and population seeding (Davis 1991). To create an
initial population this GA selects a random sample of
size 2N, where N is the population size. The strings
are evaluated and the N best are used as the initial
population.

Before proceeding, the GA was evaluated at
several population sizes on each problem. This
provided information on the trade off between
population size and solution quality and allowed an
effective population size to be selected (Table 1).

Because of the size difference between the smaller
and larger problems (3888 alternatives compared to a
billion or more), the larger populations were only used
on the larger problems. The first number is the
average performance measure and the second is the
average number of alternatives evaluated. Based on

Genetic Algorithms

Table 1

Results for Various Population Sizes

Population

Size Problem 1
120
90
70 9.4 [292]
50 14.4 [211]
30 18.4 [120]
20 25.8 [81]

this information a population of size 70 was used for
each problem. This population size strikes a balance
between performance and cost.

The results of the new methodology are compared
to those of a simple random sample. In random
sampling a fixed number of alternatives, selected at
random, are evaluated and the alternative with the best
response is reported as the solution. The sample size
for the procedure was the same used for the GA. This
is calculated as the average number of evaluations
used by the GA at the selected population sizes.
Seven unique samples were drawn for each problem.

4.3 Results

It is evident from Table 2 that the GA is quite
effective on these test problems. Compared to the
random sampling procedure, the GA produced a 63.7,
a 62.5, and a 19.7 percent improvement in the
solutions for problems 1, 2, and 3 respectively.

Table 2
Comparison of GA and Random Sampling

GA Random Sample

Problem 1 9.4 25.9
Problem 2 20.3 54.2
Problem 3 48.8 60.8

The procedures may also be compared on the
amount of improvement that takes place between an
initial solution and the final solution. For the GA,

the configuration in the initial population with the best
objective function value will be the initial solution. In
the case of random sampling the best objective

Problem 2 Problem 3
36.6 [2083]
20.3 [1193] 48.8 [1030]
22.9 [764] 46.8 [797]
26.6 [504] 51.6 [456]
46.5 [219) 58.1 [206]

function value from the first N values of the sample
will be taken as the initial solution. Recall that N is
the population size. The average percent difference in
the objective function values of these solutions is
shown in Table 3. This data indicates that given the
same average number of evaluations, the GA
consistently produces greater average improvement
than random sampling. It also shows that this average
improvement decreases as the problem size increases.
This is most likely due to the

Table 3
% Change in Objective Function Value

GA Random Sample

Problem1 714 22.9
Problem 2 67.3 15.4
Problem 3 37.7 18.1

fact that the population to problem-size ratio did not
remain constant in this testing.

4.4 Conclusions

This study has shown that the proposed methodology
performed well on each of the 3 test problems, and
outperformed random sampling by a significant
margin. In addition, the data indicated that the GA
was consistently capable of producing much greater
improvements than random sampling could achieve.
Further, experience shows that with a given
budget, in terms of simulation runs, the GA shows
more advantage as the ratio of the number of
affordable runs to the total number of alternative
configurations increases. If only a few simulation
runs can be made, random sampling might be the
preferred method. But, if more runs can be used, the
GA will tend to give better results than those produced
by an equal number of runs using random sampling.

761

S SUMMARY

The goal of this research was to develop a
methodology which would allow qualitative, or policy,
decisions to be optimized in a manufacturing system
using simulation-optimization. Dealing with
qualitative variables means none of the usual
simulation-optimization methodologies based on the
assumption of an n-dimensional geometric solution
space can be used.

The proposed methodology uses a genetic
algorithm coupled with an automatic simulation-model
generator to search through the many alternative
policy combinations. This approach has been
implemented in the language Modsim II. Testing on
3 problems indicated the methodology was effective
and it offered significant gains over random sampling.

This research represents a step toward the
generalization of simulation-optimization. Simulation-
optimization is not limited to quantitative variables or
the optimization of a given system. It can be used to
help determine the design of the system and its
operational policies.

ACKNOWLEDGEMENT

This research was funded by a grant from the
Advanced Manufacturing Institute of Kansas State
University.

REFERENCES

Chong, C., A. Sen, and R. de Souza. 1994. ISE -
An Interactive Knowledge-Based Simulation
Interface for Manufacturing. Proc. of the Conf.
New Directions in Simulation for Manufacturing
and Communications, 287-293.

Davis, L. 1991. Handbook of Genetic Algorithms,
Van Nostrand Reinhold, NY.

Goldberg, D. 1989. Genetic Algorithms in Search,
Optimization, and Machine Learning, Addison-
Wesley, Reading, MA.

Holland, J. 1975. Adaptation in Natural and Artificial
Systems, University of Michigan Press, Ann
Arbor, MI.

Prakash, S. 1991. Goal Directed Simulation
Environment for Discrete Part Manufacturing
Systems. Ph.D. Dissertation, Department of
Industrial Engineering, Texas A&M University,
College Station, TX.

Wilde, D. 1964. Optimum Seeking Methods,
Prentice-Hall, Englewood Cliffs.

Tompkins and Azadivar

AUTHOR BIOGRAPHIES

GEORGE TOMPKINS received his Ph.D. degree
in industrial engineering from Kansas State University
in 1995. He has a B.S. and an M.S. degree in
industrial engineering from Kansas State University
also. His research interests are in computer
simulation, optimization and applications of OR and
statistics to manufacturing systems.

FARHAD AZADIVAR is a professor in the
Department of Industrial and Manufacturing Systems
Engineering at Kansas State University. He is also the
Director of Kansas State University's Advanced
Manufacturing Institute. He received his Ph.D. in
1980 from Purdue University. He has a B.S. degree in
mechanical engineering and an M.S. degree in systems
engineering. His areas of interest are in computer
simulation, simulation optimization, and modeling and
optimization of manufacturing systems.

