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ABSTRACT

The cancellation of previously scheduled events not only
results in a model running less efficiently, it precludes
the application of some analysis techniques such as
Infinitesimal Perturbation Analysis. While some
simulation languages (SIMSCRIPT, SIGMA) include an
explicit facility for event cancellation, others do not
(SLAM, GPSS, SIMAN). From computation theory, it is
known that event cancellation is never necessary; but it
is sometimes a convenient modeling technique.
Unfortunately, there has been no general methodology
developed for eliminating event cancellation from a
simulation model. In this paper we present a simple
general approach. Applications to two classical models
where event cancellation is typically used serve as
illustrations of the method.

1 INTRODUCTION

In this paper, we present two common systems that are
typically modeled by cancelling events, a preemptive
priority queue and a queue with a state dependent
service rate. We then show how to create models of
these systems without event cancellation. These two
examples illustrate a general approach to simulation
modeling without event cancellation that may be applied
in similar situations.

In real-world models event cancellation is
frequently used. Often it arises directly from the
perceived logic of the system. In these cases, using
event cancellation may be the simplest way to represent
that logic. It is known from computation theory that
event cancellation is never necessary and it should be
thought of as a convenience in creating and
understanding a model. Unfortunately, allowing for
event cancellation invalidates some proofs of certain
analysis techniques such as infinitesimal perturbation
analysis to estimate performance gradients (Glasserman
1991) or structural model equivalence (Yucesan and
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Schruben 1992). Proofs that such methods are valid
often use a Generalized Semi-Markov Process
representation of a simulation where event cancellation
is explicitly excluded (Glasserman) or included by
allowing events to be abandoned (Iglehart and Shedler
1983) or by allowing the rates of event clocks to depend
on the system state (Glynn 1989). Since event
cancellation is not necessary, it can be argued that
variable rate event clocks do not improve the modeling
power of GSMPs. Even when event cancellation does
not invalidate it, simplifying assumptions are often
made to facilitate analysis (e.g., Som and Sargent 1989).

This paper will demonstrate ways in which models
that allow event cancellation can be transformed into
behaviorally equivalent models that do not. For
illustration we use event graph models.

1.1 Event Graph Models

We will illustrate elimination of event cancellation
using event graph models (EGMs) first described by
Schruben (1983) and later enriched by others, including
Som and Sargent. Pictorially the vertices of an EGM
represent the various events in the simulation. The
edges of the graph represent relationships between
events. Basically, the edges define the conditions under
which and the time delay after which one event will
schedule another event to occur. Suppose the following
edge is part of a simulation graph,
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This edge is read as follows:
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"Whenever event A occurs, the system state, S,
changes to fA(S). Then, if condition (i) is true, event B
will be scheduled to occur after a delay of t."

Appropriate labels are omitted if the inter-event
edge delay is zero or if the scheduling is unconditional.

One of the simplest examples of an EGM is a single
server queue. Here the single state variable, Q, is the
number of customers waiting in line (including any
customer that might be in service). The random time
between customer arrivals is denoted as t, and the
random time of customer service is tg. Standard C
notation is used. The EGM for a generic queue is as
follows:

(Q>0)
ls L\
tg (Q==1)
ARRIVE H >
{Q=Q+1} $Q=Q—1}%

The ARRIVE event simply increments the queue and
the LEAVE event decrements the queue.

We formally define an EGM using a directed graph
G = {E,V} with edge set E and vertex set V and an
associated state space, S. Generic vertices are denoted
by v (perhaps with a subscript). Generic edges are
denoted as e = (v,vq), which specifies the origin and
destination of a directed edge. We label the graph with
the following sets:

F = {f,: Vv € V} are the state changes associated with
each event.

P = {pe: Ve = (vo,vg) € E} are execution priority
expressions used to break time ties.

T = {tg: Ve = (vo,vg) € E} are the inter-event delay
times.

C ={ce: S = R, Ve = (vy,vq) € E} when ¢ = 0, the
edge condition is false (as in standard C).

The conditions in C specify whether or not an
edge's destination event will be scheduled after the
edge's origin event occurs. At any given time in the
execution of the simulation, those edges where c(s) # 0
(i.e. the edge conditions are true) are referred to as
active edges. Edges where c(s) = 0 can be thought of as
being temporarily missing from the graph.

The basic notion of an event graph model, M =
(V.E,S,E,P,T,C), is to represent the indices for above

sets with the edges and vertices of a directed graph. It is
this graph of indices that organizes the above sets into a
simulation model.

EGMs have a strong similarity to differential
equation representations of continuous systems. The
fundamental element in both is an expression of the
changes in system state. Both require only the
specification and initial and termination boundary
conditions for execution. This is in contrast to Petri
nets, finite state machines, or queuing rate transition
diagrams where vertices express the values of states
rather than the changes in these values. The basic thesis
of research on EGMs is that directed relationship graphs
are an effective means for modeling these systems and
that graph theory is part of an appropriate mathematical
base for the analysis of these models.

Enrichments of the event graph model include
edges that cancel rather than schedule events, attributes
attached to edges that can store values on the events list
and parameters for each vertex that determine the
assignment of these stored values. These enrichments
are included in event graphs not out of necessity but
rather as a convenience for modeling. That they are not
necessary has been proven by the modeling of a Turing
Machine (Yucesan 1989).

Cancelling edges are the particular concern in this
paper. The other enrichments can all be thought of as
modeling conveniences because they can be expanded in
a relatively straightforward way.  Attributes and
parameters for example, usually represent multiple
copies of the appropriate vertices and edges.

Cancelling edges on the other hand have a
distinctly different function than any of the basic
elements. As different as their function is, it has been
proven that they along with the other enrichments are
not necessary. What this proof does not provide, is a
way (o eliminate cancelling edges from existing models
without changing the behavior of the model. If it is
possible to replace cancelling edges with behaviorally
equivalent structures, then a model that includes them
could be transformed into one more readily analyzed.
Although different in form, the transformed model
would mimic the behavior of the original system.

2 EXAMPLE 1: A PREEMPTIVE SERVICE
QUEUE WITH TWO TYPES OF CUSTOMERS

The system being modeled is a single server queue with
two types of customers. Of the two, type 1 customers
are considered to be high priority. If a type 2 customer
is being served when a type 1 customer arrives, service
of the type 2 customer will be preempted by the start of
service of the type 1 customer. That is, the type 2
customer will have to wait for the rest of its service until
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the server services any type 1 customers in the system.
This is a common system usually modeled with
cancelling edges and, cspecially for distributed
simulation, different modeling techniques have been
developed that avoid event cancellation (Cota and
Sargent, 1989). These new approaches are important
for their contributions to distributed simulation, what
we show is just that it is possible to remove cancelling
edges without appealing to a new representation.

There are two options for the modeling of the
arrival process. In this paper we model two separate
arrival processes, one for each type of customer
(Figure 1). The other possibility is to model one arrival
process and randomly assign a priority level to the
incoming customers. The first approach allows us to
model separate distributions for the inter-arrival time of
each type of customer whereas the second would be
more appropriate if we do not have separate distribution
information for each type but only the ratio of the two
types of customers. Although we use the first approach,
the transformation would be the same for either
approach to the model since the use of cancelling edges
does not affect the arrival process in any way.

State Changes Conditions
Enter(I):  {QM)=Q(I)+1}) (i) S=1
Starnt(ly  (Q(=Q(I)-1, S=S-1, PR=2-1, (i) S=0 and PR=0
TS=tS(I),F1'1ME.—.CLK+TS) (iii) Q(1)>0and S=1

Leave(I): {S=S+1, PR=0}
Preemp:  {Q(1)=Q(1)-1, S=S-1, PR=1,
TS=t (1), RTIME=FTIME-CLK,
E=FTIME+TS)

(iv) Q(1)=0 and Q(2)>0 and S=1
(v) Q(1)>0 and S=0

Figure 1: Preemp.MOD With a Cancelling Edge

The focus here is on the way in which the
preemption is modeled. If a priority customer arrives
(I=1 at the Enterl event), and the server is busy (S = 0)
with a non-priority customer (PR = 0) then service is
preempted. In addition to removing the priority
customer from the queue (Q(1) = Q(1) - 1), the server

status is set to -1 which indicates that preemption has
occurred and PR = 1 indicates that we are now serving a
priority customer. In order to properly finish the non-
priority customer when the priority queue is once again
empty, we need to keep track of the amount of time
remaining for the type 2 service (RTIME). When the
type 2 customer resumes service, the leave event would
be rescheduled in that amount of time.

In this model we can reschedule the leave event
immediately. If the type 1 service time is pre-computed
(not calculated as the edge delay) then we can calculate
the new finish time for the type 2 customer
(FTIME = FTIME + TS). This new time is contingent
on there being no more preemptive service events. If
another type 1 customer does arrive however, the
Preemp event will be executed and the finish time for
the type 2 customer will again be recalculated.

When a preemptive service occurs, according to the
conditions given above, the old Leave2 event is
canceled, A Leavel event is scheduled to occur after the
service time TS and a new Leave2 event is scheduled to
occur after TS + RTIME.

(m)

E Leavel B
il

()
N

"‘2’

— State Changes
Enter(l): (QI)=Q)+1}) (i) S=1
Start():  {Q(N=Q(I)-1, S=S-1, PR=2-1, (i) S=0 and PR=0
TS=t (1), FTIME=CLK+TS) (iii) Q(1)>0 and S=1
Leave(I): (S$+l PR=0) (iv) Q(1)=0 and Q(2)>0 and S=1
Preemp: {Q(1)=Q(1)-1, $=S-1, PR=1, (v) Q(1)>0 and S=0
TS=t s(l). FTIME=FTIME+TS)
Check:  (RTIME=FTIME-CLK)

Figure 2: Preemp.MOD Without Cancelling Edges

To model this system without cancelling edges
(Figure 2), it is necessary to avoid putting a Leave2
event on the list when it may have to be canceled later.
Instead of scheduling the Leave2 event directly, the
arrival of a type 2 customer schedules a Check event.
This event will then schedule the Leave2 event only if
no preemption has occurred. If preemption has
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occurred, the Check event must schedule another Check
when the type 2 service is now rescheduled to be
finished.

The Preemp event state changes no longer need to
include the calculation of remaining time because this
event no longer schedules the new Leave2 event. As
before, it does recalculate the scheduled finish time so
that this will be done for each preemptive service.

It is the Check event that calculates the remaining
service time. If the remaining service time is 0, then
either the type 2 customer was not preempted or the
preemptive services are done and the leftover service
time has elapsed; Leave2 can be scheduled. If the
remaining time is positive then another check is
required when this time runs out.

3 THE BASIC METHOD

The model transformation in Section 2 is a special
example of a more general approach. If an event V
might be canceled in the course of the simulation, it
should not be scheduled until it is clear that it will not
be canceled, e.g. immediately before its execution. To
accomplish this we create a dummy event called
CheckV. Any event that, in the original model, would
schedule V schedules CheckV instead. Any event that
would cancel V instead increments a variable VCancel.
When CheckV executes, it simply decrements VCancel
unless VCancel = 0, in which case it schedules V to
occur immediately.

More formally, let v be the event that may be
canceled, v.p, be the added check event and vy represent
an event that might cancel event v.

The following steps replace the cancelling edge:

1) Remove the cancelling edge (vy, v).

2) Create new state variables VC (to count the
cancellations of v) and SV (= 1 if v has not been
canceled, 0 otherwise).

3) Add {VC =VC + 1} to the state changes at v,.

4) Add the vertex v, with state change:

{SV =1iff (VC=0), VC=max(VC-1, 0)}.

5) Add the edge (v¢p,v) with edge condition ¢, = SV

6) Replace all scheduling edges (v',v) with
scheduling edges (v',v¢p) with the same time
delay and edge conditions.

This approach assumes a cancelling edge with zero
time delay and works best in cases where an event is
canceled and rescheduled due to some kind of
interruption. It would also work in any case where the
successively scheduled copies of the event have a non-
decreasing scheduled time. If a canceled event is
rescheduled at an earlier time, the method described

=~
=~y
=1

here cancels the earliest scheduled event when it next
attempts to execute. Suppose at time t, we want to
cancel an event V scheduled to happen at time t + x but
event V is later scheduled (by some other event) to occur
attime t +y, 0 <y < x. In the original model the event
V scheduled at t + x will be canceled but in our
translation the event V at t + y will be canceled instead.

This simple check event approach is similar to that
proposed by Narain and has similar problems. In his
DMOD formulation the check event examines the
history of the simulation to see if a cancelling event has
occurred since the event that scheduled it (Narain
1991). (Instead of examining the history, the event
graph simulation records the occurrence of the
cancelling event by means of the new state variable
VCancel.) He does not explicitly provide for the case
where two or more copies of the event have been
scheduled and not executed. In the absence of this
possibility, VCancel would be a simple binary variable.
It would have to be assumed that an event will not be
scheduled again until after the previous copy has tried to
execute. If this is not the case and the algorithm merely
checks to see if the cancelling event has been executed
(VCancel = 1 in the analogous event graph). A second
scheduling of event V, which will have to set VCancel
equal to zero, will re-enable the canceled event.
Alternately, VCancel could be reset by the attempt to
execute but then the above problem is encountered, i.e.
if the new scheduled time is earlier than the old one, the
wrong event is canceled.

One solution to the problem is to assign a
scheduling number to each occurrence of the event that
represents the order in which it was scheduled. Another
state variable would be added to keep track of the
scheduling number of the earliest event on the events
list. The cancel variable would now be an array of
binary variables (one for each instance of the event
being scheduled). When an event is to be canceled, the
entry corresponding to the scheduling number of the
earliest event is set to 1 and the earliest event
scheduling number updated.

It is possible that these scheduling numbers could
be stored in a separate array that would be searched or
updated when the event is scheduled or canceled. To do
it properly, it would be necessary to keep a separate list
of the scheduling numbers ranked by time of scheduled
execution. The scheduling number would be put on the
list when the event is scheduled and taken off when the
simulation attempts to execute the scheduled event. In
all, three arrays would be created. Let SN be the
scheduling number of an occurrence of event V.
VSTime(SN) would be the scheduled time of execution
of that occurrence of event V, VCancel(SN) would be a
binary variable indicating whether that occurrence had
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been canceled and VOrder() would be the list of
scheduling numbers ranked by the values stored in
VSTime().

The following modifications would be made to the
simple check algorithm:

1) For each vertex v' that may schedule v, create a
new event V', that increments the scheduling
number SN, assigns the value of VSTime(SN) and
updates VOrder() accordingly.

2) Add edges (v',v'y) with the same edge condition as
(v',v¢p) but with no time delay.

3) Any cancelling event v, finds the first SN in
VOrder() such that VCancel(SN) = 0 and sets
VCancel(SN) = 1.

4) The event v, checks VCancel(VOrder(0)) instead
of VC and updates VOrder() by removing the first
element and updating the array.

4 EXAMPLE 2: A SINGLE SERVER QUEUE
WITH STATE-DEPENDENT SERVICE RATE

Another system that is often modeled with cancelling
edges is a single server queue with state-dependent
service time. Specifically, the system being modeled is
a single server queue where the service rate depends on
the number of customers waiting in the queue. The base
rate of service is the rate at which the server works if the
only customer in the system is the one being served, i.e.
there is no one waiting in line. The rate function is r(Q)
where Q is the length of the queue. As stated above,
r(0) =1.

The usual strategy in modeling this situation is
similar to that in the previous example. When a
customer starts service, the end of service is scheduled
according to the present service rate. When a new
customer arrives, increasing the number in the queue,
the now incorrect end of service is canceled and a new
one is scheduled (Figure 3).

Specifically, when a customer starts service, a
number of required service units SU is generated
according to a distribution that represents the service
time required at the base rate. The present rate r(Q) is
calculated, the Leave event is scheduled to occur
SU / r(Q) time units later and the scheduled finish time
is recorded. If an arrival occurs while the server is busy,
the queue length is increased, the remaining service
units are calculated (SU = (FTIME - CLK) * r(Q - 1)),
the Leave event is canceled and a new Leave event is
scheduled to occur after SU / r(Q) time units. In the
model, these two calculations are combined
(TF = (FTIME - CLK) * r(Q - 1) / r(Q)).

a

__ State Changes Conditions
Run:  (S=1) @) S=0
Enter:  (Q=Q+1, TRF=(FTIME-CLK)*r(Q-1)/r(Q), FTIME=CLK+TF} (ii) S=1
Start:  {S=S-1,Q=Q1,SU=t,, TF=SUA(Q), FTIME=CLK+TF) (iif) Q>0
Leave:  (S=S+1}

Figure 3: Statedep.MOD With a Cancelling Edge

The simple check event approach works here if the
rescheduled event occurrence is guaranteed to happen
after the old one was scheduled. If the rate of service
increases with Q, the new occurrence will always be
earlier than the old one and we cannot simply add a
Check event as we did in the previous example. In this
case, the new Leave event is scheduled at an earlier
time. The Check event would fire at the time of the
original Leave; but by then the new Leave should have
happened.

It would be possible to use the array approach
described in Section 3, but this seems too cumbersome
for this model. Fortunately, we can exploit certain
features of this system to eliminate the need for
cancelling edges without resorting to this solution
(Figure 4). Again the fundamental approach is the
same: prevent the Leave event from being scheduled
until we know it will not be subsequently canceled. It
would be canceled by the arrival of another customer, so
we need to figure out whether service can be completed
before the next arrival. This means comparing the time
left to finish at the present rate TF with the time to the
next arrival TNA - CLK (or TA at the Enter event). If
TF is smaller, then the Leave event will not be canceled
by an arrival so it can be scheduled to occur after TF
time units. If TF is larger, the next arrival will occur
before service is finished so the Leave is not scheduled.
The scheduled finish time is updated, however, so that
the remaining service requirement can be properly
calculated at the next occurrence of the Enter event.
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)

a B iii)
(i) o)

TF iv
Enter (iv) »{Lecave]
TA

State Changes Conditions

Run: {S=1) (i) S=1

Enter: {Q=Q+l, TA=t_, TNA=CLK+TA, (i) Q>0
TF=(FTIME-CLK)*1(Q-1)4(Q), (iv) S=0and TF<=TA
FTIME=CLK+TF) (v) TF<=TNA-CLK

Start:  {S=S-1, Q=Q-1, SU=xs, TF=SUr(Q).
FTIME=CLK+TF)

Leave: {S=S+1}

Figure 4: Statedep.MOD Without Cancelling Edges

As in the previous example, we see here a specific
example of a more general approach. The strategy here
is to determine which events may cancel an event V and
to find a way to determine whether one of these events
will happen before the time at which V would be
scheduled. If this can be done, in this case by
comparing the remaining service and inter-arrival
times, then V is not scheduled until it will not be
preceded by any of the possibly cancelling events.
These cancelling events are given the ability to schedule
V if the criterion is met. If another such event will
happen, then any information needed to keep track of
the scheduled occurrence of V, the remaining service
time in this example, is updated but the event V is not
scheduled.

Unlike the simple check event approach in Section
3, it is not clear that a perfectly general transformation
of the type used in this section exists. It may not always
be possible to determine whether an event will occur
before event V, especially if there are two or more
random time intervals on the scheduling path between
events that schedule or cancel event V. In this example
there is only one random time interval, indeed only one
edge, so we can make the determination by pre-
computing the random variates.

5 CONCLUDING REMARKS
Where previous work has shown, in theory, that is

possible to eliminate cancelling edges from event graph
models, in this paper we have demonstrated this fact in

a practical way by presenting a method by which
cancelling edges can be eliminated from an existing
model. The intent is to provide a way to simplify
models for analysis.

Unfortunately, the most general algorithm involves
the use of arrays and a ranked list which may
complicate analysis in different ways. In many models,
of which we have shown two examples, it is possible to
apply simpler translations. These translations are
adaptations of the general algorithm that make use of
properties and assumptions that may be shared by a
wide variety of models.

One concern in the simpler translations is what
effect the pre-generation of edge delay times will have
on analysis. The time delays on event graph edges are
usually intended to be sampled from a probability
distribution. In order to remove the cancelling edges,
the distribution is sampled as part of the state change so
that the value can be stored as a state variable. It is
unclear what effect, if any, this will have on the
analysis. It is noteworthy that the general algorithm for
translation does not incur this particular complication.
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