Proceedings of the 1995 Winter Simulation Conference
ed. (. Alexopoulos, K. Kang, W. R. Lilegdon, and D. Goldsman

DISplay: A SYSTEM FOR VISUAL-INTERACTION IN DISTRIBUTED SIMULATIONS

Edward Mascarenhas
Vernon Rego

Department of CComputer Sciences
Purdue University
West Lafayette, Indiana 47907, U.S.A.

ABSTRACT

We propose an application-independent Visual Inter-
action Library (VIL) well suited to distributed simu-
lation. Advantages of this system include ease of use,
flexibility, code reuse, and modularity. Our design
ideas are manifest in the DISplay system, a graphi-
cal user-interaction and display library which binds
to any parallel software system. We provide exam-
ples of its interactive use in the the dynamic display
of results from sequential queueing simulations, and
distributed particle-physics simulations. These exam-
ples illustrate synchronization of multiple remote dis-
play requests and potential for enhanced parallel sim-
ulation. Also presented are provisions for customized
user-interaction dialogs — for application-related in-
put, and bi-directional interaction — between user and
application.

1 INTRODUCTION

Graphical visualization is a useful simulation aid.
Several commercial software packages provide run-
time animation and graphical views of simulation
output. Visualization is undoubtedly useful, and
sometimes crucial in difficult modeling problems and
performance-related simulation experimentation. Ex-
amples of 1ts use arise in decision making, model val-
idation, result-display, model illustration/animation,
performance monitoring, simulation education, etc.
In this paper we present the DISplay Unix-based sys-
tem based on X11 and PEX (Gaskins 1992). Display
is a Visual Interaction Library (VIL) enabling Visual
Interactive Simulation (VIS) in sequential and dis-
tributed environments.

For the graphics novice, access to interactive visu-
alization is usually possible only through specific sim-
ulation software systems. When available, visualiza-
tion functionality is often tightly bound to application
domains (e.g., queueing, manufacturing systems).
As an aid to simulationists who require graphics-

Janche Sang

Department of Computer and Information Science

698

Cleveland State University
Cleveland, Ohio 44115, U.S.A.

interaction functionality without being tied to partic-
ular software systems, simulation domains, or steep
system-learning curves, we designed and built an
easy-to-use and application-independent VIL. Advan-
tages of this approach include ease of use — special-
ized display knowledge is encapsulated in the sys-
tem so that graphics novices can produce application-
specific displays, flexibility — the system can be used
for a variety of applications, including parallel and
distributed simulations, code reuse — graphical inter-
action code need not be reconstructed for different
applications, and modularity - visualization and in-
teraction portions of the application can be layered
on top of the application, facilitating design changes
and code modification.

1.1 Visual Interactive Systems

The subject of user-interaction in the simulation con-
text is not new. How can a simulationist interact
with an executing simulation and view results in real
time ? More importantly, how can this be done in
an application-independent manner ? O Keefe (1987)
discusses the basic ideas underlying potentially re-
sponsive systems, and proposes a methodology for Vi-
sual Interactive Simulation. Rooks (1991) also gives
a proposal for Visual Interactive Simulation, outlin-
ing general requirements and a potentially unifying
framework. Requirements delineated in the Rooks
proposal include

Intervention: allowing the initiation of interac-
tion with the simulation model. Modes of interaction
are inspection, specification and visualization.

Inspection: allowing access to all simulation data
for reading and/or writing.

Specification: allowing specification of model pa-
rameters.

Visualization: allowing diverse visualizations of
model data, so that model dynamics and relationships
of interest can be illustrated.

In early literature on this subject, the term
VIS (O’Keefe 1987) was used to include activities

DISplay

which are now generally regarded as components
of Visual Interactive Modelling (VIM) (Bell and
O’Keefe 1987, Rooks 1991), where a computer model
of a given system is created. More recently, re-
searchers have attempted to separate and refine func-
tions associated with VIS and VIM. In the rest of this
paper, we focus our attention on VIS, with special
emphasis on parallel and distributed simulation.

Early software systems supporting VIS were gen-
erally restricted to animations of application com-
ponents of simulation models. Later, these systems
added user-interaction capabilities in various forms.
More recent systems supporting VIS include WIT-
NESS (Thompson 1993) — which also allows interac-
tive model building, Cinema (Glavach and Sturrock
1993) — which are used with the SIMAN simula-
tion language, providing real-time or post-processed
animation and building of a model, SIMSCRIPT
I1.5 (Russel 1989) — a language which provides
an integrated graphical interface called SIMGRAPH-
ICS, and TESS — a system associated with the
SLAM (Pritsker 1986) simulation language.

2 The DISplay ARCHITECTURE

The DISplay software architecture is based on the
client-server paradigm. Here, the simulation applica-
tion, which is created by an analyst or programmer, is
treated as a client. Client calls are made by invoking
functions resident in the DISplay client library. The
server portion of the architecture consists of a con-
nection server (CS) to which clients connect, and
a DISplay server (DS) which handles all graphics
and user interaction requests from a distributed appl-
cation (see Figure 1). Typically, the client connects
to the CS during application initialization; the CS
delivers a handle (i.e., socket) to the application for
communication with the DS. The DS is created by
the CS using a unix fork operation, and reads incom-
ing messages from the application, creating the neces-
sary display tasks and interaction dialogs, as specified
by the application. Continuing display and user in-
teraction is based on application specifics and objec-
tives. Messages between the application and the DS
form a well-defined set of primitives, part of the DIS-
play protocol. The DS connects to an X workstation
to execute specified display and user interaction com-
mands. The analyst can interact with an executing
application from the workstation where the display is
done, thus enabling a requisite interaction capability
between analyst and model.

The CS performs an important function in the
mechanism described above. It must be located on
a well known machine and port, so that applications
can readily connect to it. The connection is made
using a unique Name, which identifies the application.

699

Muntel Develuper
Simualtion Analywt
o Programmer

ot User

X prtoxol

DISplay Protiscnl

Figure 1: The Client Server Architecture

The CS maintains a list containing each active DS,
along with its associated Name. In a multiprocessor
application, say using PVM, Conch, or some other
system, several processes, possibly residing on dis-
tinct (distributed) processors, may request a single,
cooperative graphical display and user interaction. In
this case, the CS delivers the same DS handle to
each of these processes (from the same application),
so that they may all connect to the same DS.

2.1 Use of DISplay in Parallel Simulation En-
vironments

There are several approaches to developing parallel
discrete event simulations. Of these, the primary ap-
proaches are conservative, optimistic, and adaptive.
In the conservative approach events are processed
strictly in order of occurrence, maintaining causal-
ity at all times. The approach is prone to deadlock,
something that can be avoided via recourse to so-
called null messages (Chandy and Misra 1979). In
the oplimistic approach, events are processed as they
become available; potential causality conflicts are dis-
regarded until a causality error is detected. Upon de-
tection of such an error, invalidated simulation work
1s undone, the causality error corrected and the sim-
ulation re-executed from the point at which the er-
ror occurred. This approach requires some form of
state-saving, so that simulation re-execution from a
given point is possible. The adaptive approach is a
mixture of the optimistic and the conservative ap-
proaches. Fujimoto (1990) provides a survey of these
approaches.

Without loss of generality, we assume that the sim-
ulation environment is made up of a cluster of work-
stations which cooperate to execute a given model.
Each workstation may host a variable number of pro-
cesses. During a parallel simulation, distinct proces-
sors may be involved in computations associated with
different virtual simulation times. Messages sent to
the DS by different processors arrive at the DS with
distinct virtual-time stamps. To provide the user
with a consistent view of the simulated system, the
DS buffers, sequences and processes messages only
when it is certain that subsequent messages cannot

700 Mascarenhas, Rego, and Sang

induce causality violations. One way of achieving this
1s by adopting a conservative parallel simulation pro-
tocol in DISplay. Each channel (source destination
link between processes, as viewed {rom the destina-
tion end) is associated with a channel time. This time
1s equal to the time-stamp of the first message queucd
on the channel buffer, if one exists, or the tinme-stamp
of the last message retrieved from the channel buffer
if the channel buffer 1s empty. At any given time, the
first message from the buffer of the channel with the
smallest channel time is selected for processing.

If a process has no messages to send, 1t avoids an
indefinite delay of message selection at the DS by for-
warding a Time Update message, which is basically
the equivalent of a null message in the conservative
approach. Observe that the DS may also be used
In an optimistic parallel simulation, in which case
messages will not be sent to the DS until they are
committed and cannot be rolled back. This occurs
when the time-stamp of a message is smaller than a
parallel simulation’s global virtual time. In this case
however, Time Update messages are not required but
synchronization is necessary so that a consistent view
of the simulation is provided to the user. An exam-
ple of the use of interactive graphics in the optimistic
simulation system SPEEDES is given by Tung and
Steinman (1992). For applications that have no no-
tion of time, it is feasible to send all messages with
the same time-stamp of 0.

3 THE DISplay SERVER

The power of the display server (DS) lies in its gener-
ality — it does not store application-specific state. It
1s application-independent. The DS accepts informa-
tion from an application for the purpose of display,
and 1t is up to the user to make decisions on types
of displays and types of interactions desired with an
application. The DS presents information to the user
in a well-defined manner, accepts input which it for-
wards to the application - if the application requires
this input, and displays results — if the application
requests such a display. All interpretations of presen-
tation are left to the user. Functions that the DS pro-
vides execute independently of the application. For
example, clicking on a button to display a graph will
not affect the executing application. This function is
handled at the DS itself.

The DISplay system provides tasks and dialogs
as basic mechanisms for implementing graphical dis-
plays and user interactions, respectively. Tasks are of
two types: Single message tasks require a single
message to be delivered, and their action is taken
based on that message alone. Multiple message
tasks require a setup phase, where the task is created
locally and then executed at the server. The creation

Task ShellTask

X TTask PlotPoints
Histogram
DisplayLevel
PexTask Plot3DPoints
‘— SurfaceMesh*

GraphTask

MultiColumnTask*

Figure 2: The C++ Task Hierarchy

mechanism returns a task identifier which is used as
a handle in all subsequent messages related to the
task. After task creation, multiple task-related mes-
sages may be sent to the DS to invoke the intended
function. These messages are interpreted in the con-
text of the task identifier. Tasks are deleted using
an EndTask message. In a parallel execution environ-
ment, it is necessary for several processes to share a
single resource at the server. DISplay permits task
sharing between processes.

User interactions are also handled in a similar man-
ner. Each possible user-model interaction is assigned
a unique dialog identifier, with a form based dialog
created. A dialog setup phase creates the dialog lo-
cally and then sets it up at the DS. Queries and an-
swers using these dialogs are interpreted based on the
dialog identifier and the position of the data within a
dialog. It is possible to link dialogs to specific tasks,
and to have tasks linked to specific dialogs. For exam-
ple, the node or arc of a graph task can be associated
with dialogs. Also, when a dialog is activated it may
simply display an active task like a plot of points.

3.1 DISplay Classes

A central class, called the controller class, keeps
track of all connected processes and their associated
channels. It has a predefined maximum number of
channels which are setup as each process connects
to the DS. Each channel class records the socket
over which its communication takes place, channel
virtual-time, and a list of tasks and dialogs indexed
by identifiers. Messages received on the channel are
queued in FIFO mode. Other important classes in
the system include the task and dialog classes.

3.1.1 Tasks

DISplay Tasks are used for any output requiring mul-
tiple messages. Tasks form an extensible set of tex-
tual, graphical and representational schemes for dis-
playing the dynamics of a simulation and its end re-
sults. The C++ class hierarchy shown in Figure 2

DISplay

describes the arrangement of tasks. The Task class
provides control functions for maintaining the status
of a task. When new task classes are added, these
may utilize the functionality provided by the base
task classes, such as the Task class. This facilitates
extension of the interface with newer displays.

3.1.2 Dialogs

DISplay dialogs are basic mechanisms for user inter-
action. A dialog is defined as a form consisting of a
set of values. Associated with each value is a set of
items which describe that value. In the current im-
plementation, this set of items is limited to a textual
description of the item and a specification describing
the type of the value. The textual description can
also be used as a query to the user to input a value
of the required type. Since all messages are logged, it
1s possible to do a post-run determination of times of
interaction between user and application. This may
be important in performance-tuning and analysis of
simulations. Dialogs are of four types,

User Query Dialog: The request for value in-
formation is sent from the DS to the application.
The application handles the query and returns the
required values. Invocation is done by the user, who
may fill in some of the values in the dialog. The
application may use these in computation, returning
computed values.

User Command Dialog: The user sends infor-
mation to the application asynchronously. The appli-
cation must be willing to handle these dialog messages
through appropriate user written handlers which are
registered with the dialog on creation.

Model Query Dialog: This functionality is sim-
ilar to remote calls. The application pops up the
dialog at the DS at predefined points in its execu-
tion, and waits for the user to reply. The application
remains blocked until the user reply is received.

Model Display Dialog: Information is passed to
the DS at predefined points in the application execu-
tion. The DS collects the information and displays it
only when the user invokes the dialog (by clicking on
the associated button). The information is received
only when the application chooses to send.

4 VISUAL INTERACTION LIBRARY

Client functions are of two types: functions which
send messages to the DS and functions which perform
local processing prior to sending a message. Func-
tions of the former type begin with an s prefix, while
functions of the latter type begin with an sd prefix.
At present the VIL contains 34 basic functions, and
several convenience functions that invoke basic func-
tions. In Figure 3 is shown an example with typical

701

main(int argc, char **argv)

{

char *simname; /* simulation name */

char *host; /* server location */

char *service; /* server port */

int sock; /* handle to the DS */

int ret; /* return code */

int window=TRUE, log=TRUE;

int num_of_procs;

/* make the connection */

sock = sGetServer(simname, host, service);

if (sock == SDERROR) {

/* handle the error here */

}

/% register process */

ret = sNewProcessMsg(sock, window,

log, num_of_procs);

/* rest of processing and messages to DS */

ret = sEndServer(sock); /* close conn. */
}

Figure 3: Example of Connecting to the Display
Server

use of functions to connect to the DS. In setting up
the connection, it is possible to specify whether log-
ging is required, and whether a new main window is
required. By specifying the number of processes in
the simulation, all processes are guaranteed connec-
tion before the DS begins to act on messages from the
simulation. For more details on the use of the client
library functions see the User’s Manual (Mascarenhas
and Rego 1994).

Important functions for drawing in a window
include sColPoint(), sPltPoint(), sP1ltPoly(),
sP1tArc(), sPltSurface(), sHistPoint(), and
sDisplayLevel() — capable of 2D and 3D draw-
mgs. Function sColPoint() colors a point in the
window with a specified color. The developer pro-
grams with world coordinates and color names. The
DS converts world coordinates into corresponding
window coordinates, and maps colors to pixel val-
ues that can be displayed on the specified X work-
station. Function sP1tPoint() plots a line between
two points. The corresponding convenience function
for performing 2D plots 1s sP1tPoint2D(). Func-
tion sP1tPoly() draws a polygon and sPltArc()
displays an arc, optionally filling with some color.
The function sPltSurface() displays a surface in
3D when provided with an array of points. Function
sHistPoint () places a histogram line on the task
window, and function sDisplayLevel() displays the
specified level of a meter or variable. With the aid of
such functions, diverse abstract displays like scatter
plots, line plots, pie charts, histograms, x-y-z plots,
and level indicators may be shown.

DISplay allows representational displays to be cre-
ated using networks. Networks can be used to rep-
resent displays for a variety of physical systems. In

702 Mascarenhas, Rego, and Sang

queueing systems graph nodes may represent servers,
with arcs representing possible customer routing be-
tween servers. In most cases some form of visual rep-
resentation of the physical object is used for a graph
node. The default is to use a rectangular box with
a label. It is possible to associate dialogs with nodes
and arcs. Clicking on a node or arc with which a
dialog is associated will cause the associated dialog
to execute at the DS. Moreover, the graph can be
modified dynamically. Nodes and arcs may be added
or deleted. The colors of the nodes and arcs may be
changed to signify a change in the value associated
with the node or arc.

5 EXAMPLES OF DISplay USE

The DISplay system software is useful in a variety of
situations including product demonstration, gaming,
learning, modeling, performance monitoring, paral-
lel debugging, etc. The use of the DS for monitor-
ing of parallel applications in EcliPSe is described by
Knop el al. (1995). Here we focus on simple examples
demonstrating the use of DISplay in general simula-
tions. The first example is that of an M/M/n queue-
ing simulation executing sequentially. This example
shows how user interaction facilities and basic dis-
plays are used. Results are displayed using line plots
and histograms. It is instructive to note that the
user can dynamically alter simulation variables such
as customer arrival rate and/or number of servers, to
examine system behavior under such changes.

The second example involves a simple parallel
simulation in particle physics, where particles move
about randomly within a 2D grid. What is of inter-
est to the analyst is the dynamics of particle move-
ment and final particle positions. We run this model
using the Ariadne light-weight process library (Mas-
carenhas and Rego 1995), layered upon the Conch
distributed computing environment (Topol 1992).

5.1 M/M/n Queueing System Simulation

An M/M/n queue is an n-server queue with Marko-
vian arrivals and services. Customers queue in FIFO
mode in a single queue, awaiting service. We fix the
mean service time g and examine the effect of vary-
ing arrival rate A and number of servers n on the
measured responses of mean queue size, actual queue
size and server utilization. The M/M/n application
was developed using the process-oriented simulation
language CSIM (Schwetman 1992).

In this example application, a user interface was
rapidly generated using three dialogs. One was a
synchronous, model-prompted dialog, where the ap-
plication blocks and queries the user to enter input
parameters (i.e., A, g, n and total number of cus-

Numbor 0f Servers

Change Meber of Servers tor |

HW/n Parametera 01 Msber of Servers vas: |

Hean Inter-Arrivel Timo 4 Closo Sond
Haan Service Time 4 (b)
Nember of Servers § Hean Arrival
Nunber of Cunn-en' 8000 l Change Inter-frrival to: |

- |
This (a s query from en application - yov wust roply 014 Arrtual Rate uas: |

I Close Il Send I
fessa——— eSS Closs Send

(a)

(@

int sock; /* socket for communication */
int iatm; /* the mean inter-arrival time */

static SdQtnAns dialog_parm[] = {
{"Mean Inter-Arrival Time', SDFLOAT},
{"Mean Service Time", SDFLOAT},
{"Bumber of Servers', SDIET},
{"Bumber of Customers', SDINT},

}; /* parameters of the simulation */

/* dialog identifiers */
static int parm_dialog_id, arr_dialog_id;
int ds_setup() /# demonstrates setup */

ce
parm_dialog_id = sdCreateDialogNotask
("M/M/n Parameters', SDMODEL_QUERY,

Humber(dialog_parm), dialog_parm, BULL);

sBeginDialog(sock, clock, parm_dialog_id,
arr_dialog_id, "Change Parameters");
return(sock);

}

get_parameters(int sock) /* Synch. dialog */

{
char *reply[4]; /* replies placed here */
double dbl, timereply;
int ivl;

timereply = clock;
sQueryReply(sock, &timereply,
parm_dialog_id, reply); /* query user */
if ((dbl = atof(reply[0])) > 0.0)
iatm = dbl; /* Inter-arrival Time */
if ((dbl = atof(reply[1])) > 0.0)
svtm = dbl; /#* service time */

sStrPrintMsg(sock, clock, "M/M/n parameters");
sStrPrintMsg(sock, clock, "Y%f%d%d",svtm,iatm,ns);
}

/* handle mean inter-arrival */
int handle_arrival_change(char *reply([])
{ /* reply contains user input */
float new_iatm;
char **send_reply;

if (((new_iatm = (float)atof(reply[0])) == 0)
Il (new_iatm == iatm)) return(0);

vait(event_list_empty);

send_reply = sdCreateReply(arr_dialog_id);

sdAddToReply(arr_dialog_id, O, new_iatm);

sdAddToReply(arr_dialog_id, 1, iatm);

iatm = new_iatm;

sReplyDispMsg(sock, clock, arr_dialog_id,

send_reply);/* update screen */
return(1);

Figure 4: Dialogs and Code for the M/M/n System

e e P o mw wa N e

-] O | e) e |

(a) Main Interface Window

(c)Queue Size and Mean Queue Sze(MQS) (d) Queue Size Histogram

Figure 5: User Interface Window and Results

tomers to be simulated). Once these parameters are
initialized, the application continues to execute. The
other two dialogs are asynchronous, user-command
dialogs. These allow the user to dynamically alter
A and n. New values for these parameters are sent
to the application, which echoes back both new and
old values to the user interface. Appropriate han-
dlers were provided in the application to act on these
parameter changes.

The different dialogs are shown in Figure 4, with
the synchronous dialog displayed in Figure 4(a). The
code segment shown in Figure 4 shows how this dia-
log is set up and used. Each entry in the dialog form
has a corresponding entry in the SAQtnAns structure.
The dialog is set up locally using sdCreateDialog(),
with SdQtnAns passed to the latter as a parame-
ter. Dialog initiation at the DS is accomplished
with sBeginDialog(), and invocation via the func-
tion sQueryReply ().

To display the state of the system three displays are
used. The first display depicts the utilization level of
the multi-server facility. The second display shows
both the mean queue size and the actual queue size
on a single graph. The third display shows a queue
size histogram, made by updating samples on each
customer departure from the facility. Figure 5 con-
tains a user interface window for the queueing ap-
plication, and also windows which display simulation
results dynamically during model execution.

703

5.2 Particle Dynamics on a 2D Lattice

Particle dynamics studies are of considerable interest
in the fields of physics and materials science. Exam-
ples where their study is useful to name just a couple,
are fluid flows in porous media and electrical conduc-
tion. These phenomena are often modeled as random
walks on disordered clusters. The model described
below is in essence the one known as the ant in the
labyrinth and is due to deGennes (Nakanishi 1993).
The random walker (ant) moves at random only on
certain accessible sites of a lattice, where the fraction
of accessible sites on the lattice is ¢, 0 < ¢ < 1. We
simulate the movement of the ant for 7' time-steps
and then compute the mean square displacement of
the ant. The goal is to find the relation between this
displacement and the values of ¢ and T.

This example shows how the DISplay system can be
used with distributed or parallel applications. Here,
DISplay was valuable in verifying program correct-
ness through visual examination of program results,
and also in monitoring the performance of different al-
gorithms. Initially, a small percentage ((1—q) = 2%)
of all grid points are labeled as inaccessible. Parti-
cles are then assigned to a maximum of 10% of the
remaining lattice, with positions assigned randomly.
The application proceeds in a sequence of time-steps.
All particles are visited in some sequence, and given a
chance to move to a randomly chosen neighboring lat-
tice point 1n a single time-step. For such a move to be
successful, two conditions must hold. First, the desti-
nation point should be accessible to the particle (i.e.,
it should not be labeled inaccessible). Second, the
point should not already be host to another particle.
If either condition is false, the particle remains where
1t 1s until it can make another attempt to move in the
next phase. Wrap-around is used to handle particles
that move across the outer boundary.

As described above, the application is simple to
code on a uniprocessor. After creating a grid to rep-
resent the lattice and marking sites as inaccessible,
a sequence of time-steps ensues. All necessary infor-
mation is available to the single host processor lo-
cally. Porting the application to a multiprocessor or
distributed system is not difficult, but requires some
care. A good way to parallelize the application is to
place portions of the lattice on distinct processors,
so that work can be shared. The lattice is divided
into slices, with each slice (and thus all particles on
the slice) assigned to a distinct processor. Processors
work on their slices independently, marking sites as
mnaccessible and generating particles. Each proces-
sor need only be aware of the status of the slice that
1t has been assigned. Because each processor does
not have all the information it needs for independent
simulation (since events in a time-step may involve
particles at other processors, and particle movement

704 Mascarenhas, Rego, and Sang

(1)

™ (2)

@

(b) Pedformance Comparison

(a) Final Particlo Position on 512x512 Grid

Figure 6: Particle Simulation Grid and Performance

between slices or across boundaries requires between-
processor information), some form of processor syn-
chronization is required. This synchronization must
occur after every time-step so that particles that mi-
grate from one processor to another (across slices or
across the lattice boundary) do not arrive at a des-
tination processor late in simulation time. Note that
particles which migrate only to find destination sites
already occupied must migrate back to their original
positions on source processors. In this application,
we test three different synchronization mechanisms,
obtaining performance displays for each on a single
graph.

5.2.1 Methods of Synchronization

The first two methods of synchronization involve sim-
ple centralized mechanisms. A master process syn-
chronizes computing done by slave processes. The
master process also sends timing information to the
DS at each time-step. In the first method, each parti-
cle (on a slave) sends a message to the master process
after it has been considered for movement. Particles
that must migrate send a message only after they
have arrived at a final destination location. When
all particles have been considered, each slave awaits
a signal from the master. The master sends each
slave a signal only when it has received completion
messages from all particles. If the number of slave
processes is p and the total number of particles is n,
a total of (n + p) synchronization messages are sent
at the end of each time-step. For a simulation with
T time-steps, the total cost in terms of messages is
M =T(n+p).

The second synchronization mechanism is a small
variant of the first. Instead of forcing each particle to
send a message to the master process after the parti-
cle has been considered for movement, a single mes-
sage is sent by each slave process after it has finished
processing all its particles in a time-step. Migrating
particles send messages to the master process inde-
pendently. When all particles have been accounted

for, the master sends each slave a message initiating
the next time-step. If we denote the number of mi-
grations at time step ¢ by m;, the total number of
synchronization messages required in this scheme is
M= T(2n) + Z(m,)

The third synchronization mechanism is decentral-
ized, based on a conservative parallel simulation pro-
tocol (Chandy and Misra 1979). The master process
does not play any role in synchronization; instead,
time-stamps on migrating particles are used for syn-
chronization. If no particles migrate from a processor,
the processor sends null-messages to other processors,
thus giving them the necessary time-stamp informa-
tion. In this application, a process interacts with
only two other processors— those assigned to neigh-
boring slices of the lattice. Processors in receipt of
migrating particles must send acknowledgements to
source processors because the underlying communi-
cation software does not guarantee delivery within a
fixed time. A source process can continue execution
only after such an acknowledgement is received. The
total number of synchronization messages required in
this case is Mpmae = T'(2n) + D (m;). The maz sub-
script denotes the fact that an explicit synchroniza-
tion message may not be sent if the last particle at
any time-step in a processor migrates.

The distributed application was implemented in C
using the Ariadne lightweight process library and the
Conch communications library. In this example we
use a network of five Sun-4 workstations. One of the
workstation was made to host a master process (with
id 0) which controlled the execution of four slave
processes on distinct workstations: each workstation
hosted a single process. Lattice dimensions were set
at 512 x 512, and a total of p = 256 particles were
used. Fach particle was implemented as a lightweight
process in Ariadne. When particles migrate from one
processor to another, the thread representing the par-
ticle migrates. The simulation was run for a total of
100 time-steps, with particle-movement graphed dy-
namically by DISplay. In Figure 6(a) is shown such a
DISplay plot of particles, with the dark streaks repre-
senting particle paths. The display was implemented
using a Global Plot Points task. By declaring the
task as global when initiated, all processes are able to
share this task at the server. At the end of the sim-
ulation the starting and the ending positions of each
particle, the root mean square displacement and the
number of wrap-arounds performed by each particle
is printed in the user interface window.

From our simple message-cost analysis, it would ap-
pear that synchronization mechanisms two and three
are superior to the first mechanism. The graphical re-
sults obtained via DISplay indeed show this to be the
case. In Figure 6(b) is shown a performance graph for
each of the three synchronization mechanisms. Meth-

DISplay

ods two and three have performed equally well, as
predicted by our simple analysis. But since method 3
requires only local synchronization (though with al-
most as many messages as method 2), it has a slight
performance advantage.

6 CONCLUSION

The DISplay system is an application-independent
tool for effecting Visual-Interaction in sequential or
parallel simulation. It provides the model developer
with tools for parametric description of a large set
of graphical outputs and capabilities for data visual-
ization, inspection and specification. The basic types
of simulation output described here are common to
most simulations. This realization motivated us to
develop a generalized and extensible display capa-
bility. We have used DISplay to visualize parallel
simulated annealing, numerical analysis algorithms,
particle-physics, and computer network simulations.

ACKNOWLEDGMENTS

This research was supported in part by NATO-
CRG900108, ONR-9310233, and ARO-93G0045.

REFERENCES

Bell P. C. and R. M. O’Keefe. 1987. Visual Interac-
tive Simulation — History, Recent Develeopments,
and Major Issues. Simulation, 49(3):109-116.

Chandy K. and J. Misra. 1979. Distributed Simu-
lation: A Case Study in Design and Verification
of Distributed Programs. IEEE Trans. on Softw.
Fng., SE-5(5):440-452.

Fujimoto R. 1990. Parallel Discrete Event Simula-
tion. CACM, 33(10):30-53.

Glavach M. and D. Sturrock. 1993. Introduction to
SIMAN/Cinema. In Proceedings of the 1993 Win-
ter Stmulation Conference, 190-192.

Knop F., et al. 1995. Fail-Safe Concurrent Simula-
tion with EcliPSe: An Introduction. Simulation
Practice & Theory (1o appear).

Mascarenhas E. and V. Rego. 1994. DISplay: User’s
Manual. Technical Report 94-082, Purdue Univer-
sity, Department of Computer Sciences, 1994.

Mascarenhas E. and V. Rego. 1995. Ariadne: Archi-
tecture of a Portable Threads System Supporting
Thread Migration. Software-Practice and Ezperi-
ence (1o appear).

Nakanishi H. 1993. Anomalous Diffusion in Disor-
dered Clusters. In On Clusters and Clustering,
From Atoms to Fractals, ed. P. J. Reynolds, 373-
382. Elsevier Science Publishers B.V.

O’Keefe R. M. 1987. What is Visual Interactive
Simualtion? (And is There a Methodology for Do-

705

ing it Right?). In Proceedings of the 1987 Winter
Stmulation Conference, 461-464.

Pritsker, A. A. B. 1986. Iniroduction to Simulation
and SLAM II. 3rd ed. New York: Halstead Press.

Rooks M. 1991. A Unified Framework for Visual In-
teractive Simulation. In Proceedings of the 1991
Wanter Simulation Conference, 1146-1154.

Russell E. C. 1989. Building Simulation Models with
SIMSCRIPT II.5. CACI Products Company.

Schwetman H. 1992. C'SIM Users’ Guide. Microelec-
tronics and Computer Technology Corporation.

Thompson W. 1993. A Tutorial for Modelling with
the WITNESS Visual Interactive Simulator. In
Proceedings of the 1993 Winter Simulation Con-
ference, 228-232.

Topol B. 1992. Conch: Second Generation Heteroge-
neous Computing. Master’s thesis, Department of
Mathematics and Computer Science, Emory Uni-
versity.

Tung Y.-W. and J. Steinman. 1992. Interactive
Graphics for the Parallel and Distributed Comput-
ing Simulation. In Proceedings of the 1992 Wainter
Simulation Conference, 695-700.

AUTHOR BIOGRAPHIES

EDWARD MASCARENHAS is a Ph.D. student
in Computer Sciences at Purdue University. He re-
ceived a Masters degree in Industrial Engineering
from NITIE (Bombay, India), and a Masters degree
in Computer Sciences from Purdue University (West
Lafayette) in 1993. His research interests include par-
allel computation, distributed simulation, and multi-
threaded programming environments.

VERNON REGO is a Professor of Computer
Sciences at Purdue University. He received his
M.Sc.(Hons) in Mathematics from B.I.T.S (Pilani, In-
dia), and an M.S. and Ph.D. in Computer Science
from Michigan State University (East Lansing) in
1985. He was awarded the 1992 IEEE/Gordon Bell
Prize in parallel processing research, and is an Editor
of IEEFE Transactions on Computers. His research in-
terests include parallel simulation, parallel processing
and software engineering.

JANCHE SANG is an Assistant Professor in Com-
puter and Information Sciences at Cleveland State
University. He received the B.S. degree in Computer
Science from National Taiwan University (Taipel,
Taiwan) in 1984, the M.S. degree in Computer Sci-
ence from Michigan State University (East Lansing)
in 1987, and the Ph.D. degree in Computer Sci-
ences from Purdue University (West Lafayette) in
1994. His research interests include parallel and dis-
tributed computing, computer networks, and soft-
ware engineering. He was awarded the Maurice Hal-
stead Award for software systems research in 1994.

