Proceedings of the 1995 Winter Simulation Conference
ed. C'. Alexopoulos, K. Kang, W. R. Lilegdon, and D. Goldsman

PROCESSOR SELF-SCHEDULING IN PARALLEL DISCRETE EVENT SIMULATION

Pavlos Konas

Silicon Graphics Inc.
Mountain View, CA 94043, US.A.

ABSTRACT

This paper describes a novel data structure and an al-
gorithm for processor self-scheduling in parallel discrete
event simulation. The presented data structure allows the
efficient scheduling of future computations, it facilitates
the inexpensive use of processor affinity information, it re-
duces the contention on the scheduling queue, and it in-
tegrates load balancing and locality management methods
into a single mechanism. We use the behavioral simulation
of a multiprocessor system to characterize the behavior of
the proposed data structure and the associated scheduling
algorithm. The results of our study show that it is impor-
tant to maintain as detailed affinity information as possible
and exploit this information at run time.

1 INTRODUCTION

In recent years, parallel discrete event simulation (PDES)
has emerged as the principal technology which can sat-
1sfy the ever increasing demands for processing power and
for storage of large simulations of architectural and logic-
level designs. Synchronous PDES methods have shown
significant potential in the parallel execution of such sim-
ulations (Konas 1994). On the other hand, asynchronous
PDES methods (both conservative and optimistic) are less
attractive due to the significant overheads they introduce in
attempting to find parallelism during a simulation (Konas
and Yew 1991).

The performancce of a parallel simulation depends on the
efficient utilization of the processors in a multiprocessor
system. Two significant factors that determine the effec-
tive use of a multiprocessor are load balancing and locality
management (Markatos 1993). Load balancing refers to
the dynamic redistribution of the workload among the par-
ticipating processors so that the load is continuously bal-
anced across the multiprocessor. Locality management, on
the other hand, refers to the execution of a computation on
the processor closer to the storage where the data associ-
ated with this computation has been allocated.

Pen-Chung Yew

Department of Computer Science
University of Minnesota

Minneapolis, MN 55455-0159, U.S.A.

682

Even though both load balancing and locality manage-
ment methods attempt to improve the performance of a
parallel program, their optimization goals are conflicting.
Thus, we need to balance the potential costs and benefits of
both load balancing and locality management approaches
in order to achieve a highly efficient utilization of the par-
allel system. Ignoring either factor may cause significant
performance degradation to the parallel program.

One way to account for these two factors is by parti-
tioning the simulation across the processors of the parallel
machine. Unfortunately, partitioning (also known as static
scheduling) cannot predict the dynamic behavior of a sim-
ulation, and frequently results in ill-suited assignments of
computations to processors and of data to memories. Pro-
cessor self-scheduling can be used to dynamically deter-
mine how to execute most effectively the parallel simula-
tion on a multiprocessor.

In a synchronous PDES simulation processor self-
scheduling is critical to achieving an efficient parallel exe-
cution because of several factors. First, the synchronous
nature of the parallel method makes the performance of
such a simulator very sensitive to load imbalances dur-
ing any of the simulation steps. Second, partitioning is
usually unable to predict and account for the dynamic be-
havior of the parallel execution of a simulation because
of the variability of the components’ simulation execution
times, and the transient nature of the activity in the simu-
lated system. Third, most of the computations in architec-
tural and logic-level simulations are fine- to medium-grain
computations and, therefore, long memory access delays
can introduce significant overheads into the parallel execu-
tion. Finally, in simulations based on the logical processes
(LP) model (Fujimoto 1990) the distribution of the event
queue across the LPs makes the scheduling queue(s) the
only mechanism available for transforming conditionally
activated LPs (scheduled computations) into uncondition-
ally active LPs (ready to execute computations).

In this paper we present a novel data structure and an
algorithm for processor self-scheduling in synchronous
PDES simulation. The presented data structure offers sev-



Self-Scheduling in Parallel Simulation 683

eral advantages. It allows the efficient scheduling of po-
tential future computations. It facilitates the incxpensive
use of processor affinity information in allocating proces-
sors to active LPs. It reduces the probability of contention
on the scheduling queues. It integrates load balancing and
locality management methods into a single mechanism.
Finally, deciding the next simulation step at the end of the
current simulation step can be performed very efficiently.

The main concern in this paper is the presentation of
an approach to processor self-scheduling in synchronous
PDES simulations. In Section 2 we present a data structure
and an algorithm for processor self-scheduling in parallel
simulations. In Section 3 we examine the performance of
our approach compared to a simpler data structure contain-
ing less affinity information. Finally, Section 4 summa-
rizes the work presented in this paper, and proposes inter-
esting extensions to this research.

2 A PROCESSOR SELF-SCHEDULING MECHA-
NISM

Processor self-scheduling is critical to the performance
of synchronous PDES simulations because of the syn-
chronous nature of the parallel method; the small grain
sizes of the computations; the transient nature of the ac-
tivity in the simulated system; and the functionality of the
scheduling queue as the only mechanism for transforming
conditionally activated LPs to unconditionally active LPs.
Thus, we need to carefully design the scheduling queue
data structure as well as the algorithm for allocating idle
processors to the execution of active LPs.

In a synchronous PDES simulator, processor self-
scheduling has two functionalities. First, it assumes the
functionality of the event queue in traditional event driven
simulations: it is a repository for conditionally activated
LPs, and the only mechanism for transforming these con-
ditional activations into unconditionally active LPs. The
two main reasons for the scheduling queue assuming this
functionality in a synchronous PDES simulator are the ab-
sence of a centralized event queue, and the incapability of
an LP to decide on its own whether it is conditionally acti-
vated or it has already become unconditionally active. In
order to reduce the overheads introduced by the parallel
simulation method, a synchronous PDES method strips the
LPs from all the control (decision) sequences. Thus, the
LPs only know how to simulate the corresponding physi-
cal processes when they are scheduled to do so.

Therefore, we need a scheduling queue data structure
that will be efficient in scheduling conditionally activated
LPs for future consideration, as well as assigning uncon-
ditionally active LPs to idle processors, in much the same
way as an event queue handles events in a traditional event
driven simulation. Previous work in the simulation area
has shown that the most efficient data structure for event

scheduling in simulations of detailed logic networks of
large and active digital systems is the time-wheel (Razdan,
Bischoff, and Ulrich 1990, Ulrich 1980, Ulrich 1983).

The time-wheel actually consists of two data structures:
a collection of linked lists containing scheduled future
cvents (potential future activity in the simulated system),
and a small hash table that maps the simulated time of an
cvent occurrence to one of the linked lists. Analysis of this
cvent queue data structure has shown that it can maintain
an O(1) average performance in both its tasks (schedul-
ing future computations, and allocating computations for
execution on idle processors). However, the performance
offered by the time-wheel data structure quickly degrades
when events are scheduled on the overflow list.

In practice, the time wheel is (almost) guaranteed to
have an average performance of O(1) in the simulation of
architectural and logic-level designs. The reason is the be-
havior of these types of simulations. As has been observed
in (Konas 1994, Soulé 1992), the most striking charac-
teristic of architectural and logic-level simulations is the
“clock™ effect: peaks with considerable activity induced
by the arrivals of the clock and of new input signals, fol-
lowed by periods of diminishing activity as the signals
propagate through the combinational elements of the sim-
ulated system. Thus, a scheduling queue implemented as
a time-wheel that covers a simulated time interval equal to
the clock period or to the propagation delay through a com-
binational circuit should be expected to achieve a constant
O(1) access time. Furthermore, the components of ar-
chitectural and logic-level designs usually assume delays
from a small set of values. In this case, a time-wheel that
handles well this small set of values introduces minimum
overhead in scheduling future computations, and thus it is
ideal for the parallel simulation of such designs.

The second functionality of processor self-scheduling
in a synchronous PDES simulation is similar to that of
the scheduling pool in self-scheduled parallel programs: it
18 a pool containing ready-to-execute computations which
need to be assigned to idle processors in such a way that the
total execution time of the parallel program is minimized.
Previous work in the area of self-scheduling of parallel
programs has shown that, in the presence of nonuniform
memory access (NUMA) characteristics in the host mul-
tiprocessor, we need to simultaneously address the issues
of load balancing and of locality management if we are
to achieve the most efficient parallel execution (Markatos
1993). It has also been shown that scheduling decisions
should be fast introducing minimum overhead into the
computation (Anderson 1991). This means that affinity
related decisions should use minimum information, and
should not introduce significant overhead into the schedul-
ing process. Otherwise, the performance of the paral-
lel program would suffer (Anderson 1991). Furthermore,
both analytical and experimental results have shown that a



684 Konas and Yew

single, centralized scheduling queue will quickly become
the system bottleneck as the number of participating pro-
cessors increases (Squillante 1990).

The consensus of the previous work in scheduling
thread-based and loop-parallel programs has been to avoid
single, centralized data structures, and use affinity infor-
mation when available. Most of the studies in this area
propose the use of per-processor scheduling queues to-
gether with scheduling algorithms that deposit ready-to-
execute computations into the other processors’ queues,
or search the other processors’ queues for ready compu-
tations, or do both. A combination of per-processor data
structures with a centralized queue has also been proposed
in order to minimize the overhead associated with search-
ing all the other processors’ scheduling queues for ready-
to-execute computations. According to the above obser-
vations, we need a scheduling queue per processor which
will provide easy to use affinity information.

Since processor self-scheduling in a synchronous PDES
simulation assumes simultaneously the functionalities of
both an event queue and of a scheduling pool, and the
performance of the parallel simulator critically depends
on how well it performs in both these tasks, we should
design a data structure and a scheduling algorithm that
combine data structures and algorithms known to perform
well in each of the two areas. A time-wheel scheduling
queue augmented with affinity information seems to be the
most appropriate approach to processor self-scheduling in
a synchronous PDES simulator.

2.1 The Scheduling Queue Data Structure

Figure 1 shows a two-level data structure that combines
the concepts of the time-wheel and of affinity scheduling.
The first level of the data structure is a variation of the
time-wheel. It consists of a hash table which maps the sim-
ulated time of an LP’s activation to a node of a linear linked
list. Each node of this list contains all LPs activated for a
particular simulated time. Using faster but more compli-
cated data structures than the linear linked list is not nec-
essary, since the structure is updated only twice per simu-
lation step. First, a new node is inserted into the list when
an LP is activated for a simulated time that is not already
present in the linked list. All LPs subsequently sched-
uled for that simulated time will be directly scheduled into
the existing node through the time-wheel entry. Second, a
node is deleted from the list when all LPs scheduled for the
current simulation time have been simulated; that is, upon
completing the execution of a simulation step the node rep-
resenting the step is deleted from the scheduling queue.
The first level of the presented data structure provides us
with the fast access times guaranteed by the time-wheel in
the simulation of architectural and logic-level designs.
The second level of the scheduling queue data structure

—
o
>

2
s~
=
[=]
Q
5]
w2
(5]
Ew
=
g &
g
& ] 1
11
o
=
:
@)
3
-
2
-3 B
3 gz
§ i
(5]
E
[

Figure 1: The Scheduling Queue Data Structure

provides “cheap” affinity information that can be easily ex-
ploited during the execution of a simulation. Each node of
the linked list consists of a P-entry array, where P is the
number of processors participating in the parallel execu-
tion of the simulation. Each entry of this array pointsto a
linked list which contains all the LPs activated for that sim-
ulated time and which (LPs) have been assigned during a
pre-simulation partitioningto the processor corresponding
to that entry (host processor of the LPs). The idea behind
the P-entry array is to allow a processor to simulate first all
active LPs whose corresponding data structures have been
assigned to the local memory of the processor, before it
starts simulating LPs whose corresponding data structures
are located in remote memory modules. In this way pref-
erence is given to locality management but load balancing
is also taken into consideration.

In synchronous PDES simulation, a logical process is
activated when a new value arrives at its inputs and no
event already exists in the input queue of the LP for that
simulated time (Konas 1994). The activation of an LP re-
sults into its insertion in the scheduling queue of the pro-
cessor that activated it. More specifically, when a proces-
sor activates an LP it executes the following steps. First,



Self-Scheduling in Parallel Simulation 685

the processor finds the node in its local queue correspond-
ing to the simulated time of the LP’s activation. If such a
node does not exist in the scheduling queue, the processor
creates a new node, inserts it into the list, and updates the
appropriate slot of the time-wheel. Then, the processor in-
serts the LP activation record into the entry corresponding
to the host processor of that LP. In this way, when a proces-
sor checks the scheduling queue for ready-to-execute LPs,
it simulates first LPs whose associated data is stored lo-
cally, and then, when it can find no such processes, it simu-
lates LPs whose data is stored in remote memory modules.

This scheduling queue organization provides cheap
object-based affinity information: the affinity of an LP to-
ward a processor is represented by the location of its acti-
vation record in the scheduling queue node. It can also be
easily exploited: a processor can use the affinity informa-
tion by just accessing the appropriate entry in the schedul-
ing queue node representing the current simulation time.
Instead of assigning an LP to the entry corresponding to
its host processor, we could assign it to the entry corre-
sponding to the processor on which the LP was last ex-
ecuted. This is a form of thread-based affinity, since the
affinity depends on the last execution location of the LP.
However, experimentation has shown that there is no ad-
vantage in using thread-based affinity over object-based
affinity, since very rarely the footprint of an LP would re-
main on a processor’s cache for long after the simulation
of the LP’s activation has been completed.

An interesting implementation issue associated with a
scheduling queue is the allocation and recycling of nodes
of the scheduling queues, and of LP activation records.
In which memory module does a processor allocate these
objects? Obviously, a centralized memory handler would
soon become a bottleneck in a parallel simulation. In
a NUMA environment which allows the user to control
the module on which memory is allocated, per proces-
sor memory handlers facilitate fast and inexpensive mem-
ory manipulation. However, distributed memory handlers
have an important consequence: it is no longer profitable
to schedule LPs directly onto other processors’ schedul-
ing queues. Thus, a processor schedules LPs only on its
local scheduling queue. Under such conditions and due to
the importance of the affinity concept, a processor needs to
know which of the LPs whose data is stored locally have
been activated remotely for the current simulation step.
Using the data structure shown in Figure 1, a processor can
easily check whether such LPs exist and on which schedul-
ing queues they have been scheduled. Based on this in-
formation, the processor can access the appropriate queues
and acquire its local LPs for simulation.

2.2 The Scheduling Algorithm

So far we have described a data structure to be used as
the scheduling queue in a synchronous PDES simulation.
Now we need to provide a scheduling algorithm which ef-
ficiently utilizes this data structure. A scheduling algo-
rithm has two responsibilities: to schedule a conditionally
activated LP for future execution, and to allocate an avail-
able (idle) processor to an unconditionally active LP. The
first responsibility is incorporated into the LPs. As we de-
scribed earlier, whenever a new value arrives at the inputs
of an LP, the LP is inserted into the scheduling queue for
future consideration.

On the other hand, the allocation of an idle processor to
an unconditionally active LP in such a way that the execu-
tion time of the parallel simulation is minimized is the re-
sponsibility of the scheduler. When a synchronous PDES
simulation starts executing, it forks a scheduler process on
each participating processor in the parallel machine. The
task of the scheduler is to multiplex the execution of active
LPs on the corresponding processor until the simulation is
completed. Then it joins the other schedulers in terminat-
ing the parallel execution of the simulation. This type of
execution is known as the work-pool model.

Each scheduler executes the algorithm shown in Fig-
ure 2. During each simulation step, a scheduler first simu-
lates the local LPs which are scheduled on its local queue.
In this way, we exploit the available affinity information to
achieve the most efficient execution of these LPs. When
no more local LPs remain on the local queue, the sched-
uler searches the other processors’ scheduling queues for
local LPs which have been scheduled remotely. This step
also aims in exploiting object-affinity to produce an effi-
cient execution of active LPs. Finally, the scheduler sim-
ulates any remaining active LPs scheduled for the current
simulation time. The search for such remaining LPs starts
at the processor’s local queue and visits all the schedul-
ing queues in a round robin fashion. This last step pro-
vides load balancing capabilities to the scheduling algo-
rithm. Notice, however, that preference is given to exploit-
ing affinity, and that load balancing becomes an issue only
when there are no more active LPs with affinity toward the
particular processor.

The algorithm, however, contains a significant overhead
hidden in its last step. Since each processor searches all P
entries of a scheduling queue node, and does that for all the
scheduling queues, the potential cost of the load balancing
step of the scheduling algorithm is O(P?).

This effect of this overhead is shown graphically in Fig-
ure 3. These graphs show the execution time of a be-
havioral parallel simulation of a shared-memory multi-
processor (simulated system) as we increase the number
of processors on the host machine. Three different traf-
fic models are used in these simulations, each produc-



686 Konas and Yew

STEP-1:

/l'local LPs, scheduled locally

while there are local active LPs in my queue
acquire and delete the first such LP
simulate the LP for the current time

end while

STEP-2:
/l'local LPs, scheduled remotely
For cach other scheduling queue
find the entry corresponding to my ID
while there are active LPs in the entry
acquire and delete the head of the queue
simulate the LP for the current time
end while
end for

STEP-3:
/l remote LPs, scheduled both locally and remotely
For each scheduling queue starting with my own
For each entry containing activated LPs
while there are active LPs in the entry
acquire and delete the first such LP
simulate the LP for the current time
end while
end for
end for

Figure 2: The Scheduling Algorithm

ing a different amount of activity during the parallel sim-
ulation (low in hot-spot traffic, medium in random traf-
fic, and high in conflict-free traffic). A fourth simula-
tion (nonuniform load) introduces nonuniformity in the
computation requirements of the simulated components.
In all simulations we pre-partition the system using both
random (RND) and string-based (STR) partitioning meth-
ods (Konas 1994), and turn self-scheduling on (DY Namic)
and off (STATic). The overhead introduced into the com-
putation by the load balancing step is (most of) the dif-
ference between the static and dynamic versions of each
simulator. Bit flags could be used to reduce the schedul-
ing overhead to acceptable levels in all practical situations.
However, this hidden overhead could potentially produce
an unstable behavior of the scheduling algorithm.
Fortunately, there is a way to avoid such an overhead.
The solution is based on the concept of combining trees,
on the existence of the barrier synchronization at the end
of each simulation step, and on the shared memory of the
host multiprocessor. In a synchronous PDES simulator,
where a barrier synchronizes the processors at the end of
each simulation step, the quadratic scheduling overhead
problem is solved as follows. As each processor partici-

Time (1n cycles)

Time (in cycles)

Time (in cycles)

Time (in cycles)

N

o

-

~

40407

le+07

20407

B0s07

le+07

Hos06

e 06

40406
0

60407

de+07

20407

2e+07

8e+07

6e+07

4e+07

2e+07

10407

8e+06

6e+06

de+07

1e+07

les07

Be+06

6es06 |

de+06 [

2e+07

Ba+07 |

6e+07

des07

20407 |

Re+06

6e+06

46406
0

Random Traffic

Str-Dyn ——
Str-Stat -+-
Rnd-Dyn O
Rnd-Stat -M—

Number of Processors

Conflict-Free Traffi

c

Str-stat -

T T T

Str-stat -x—

2 4 6 8 10 12 14 16
Humber of Processors
Hot-Spot Traffic
T T r
F Rnd-Dyn -o—
Rnd-Stat —+--
Str-Dyn O
str-stat -x-
e
s n L L L " -
0 4 6 8 10 12 14 16
Number of Processors
NonUniform Load
T T T T T T
r Rnd-Dyn ~+—
Rnd-Stat —+-
Str-Dyn -0

6
Number of Processor

10

s

Figure 3: Overhead of the Scheduling Method



Self-Scheduling in Parallel Simulation 687

o |

Tl
h

Combining

~~

I R -

P

e |

i
Eia

- represents the head of a linked list

Figure 4: Combining of Scheduling Queue Entries

pates in the barrier, it combines the entries of its scheduling
queue node representing the next simulation step with the
nodes of the other processors representing the same sim-
ulation step. When the barrier is completed, the entries
corresponding to a single processor in all the scheduling
queue nodes representing the current simulation step, are
chained together forming a linked list. The head of this list
coincides with the corresponding entry in the local queue
of that processor. Thus, a processor can simulate all the
local LPs which have been scheduled both locally and re-
motely by just following the links in the constructed list.
In addition, a processor only needs to check the entry cor-
responding to another processor on the other processor’s
scheduling queue in order to gain access to all the LPs lo-
cal to that processor which are still waiting to be simu-
lated for the current simulation time. Notice, that with this
optimization, the second step of the scheduling algorithm
no longer exists since it has been integrated into the first
step. The important result of this optimization is that the
scheduling overhead becomes linearly dependent on the
number of processors participating in the parallel execu-
tion of the simulation. Figure 4 shows a simple example
of this combining process. The combining of the nodes of
these four scheduling queues results in the creation of four
linked lists, each of which contains the LPs local to each
of the four processors participating in the simulation.

3 PERFORMANCE STUDY OF THE SCHEDUL-
ING APPROACH

In order to study the performance of the presented data
structure and scheduling algorithm, and evaluate the use-
fulness of the affinity information maintained by this struc-
ture, we performed the experiments described in the previ-
ous section but with the combining optimization in place.
In this study, however, we compare the performance of
the simulator using the presented scheduling queue data
structure to a simulator using a similar but much simpler
scheduling queue data structure. Since the usefulness of
the time-wheel data structure has been previously demon-
strated, we do not examine alternative data structures for
the first level of the scheduling queue. However, the sec-
ond level of the data structure might be too complicated
for the performance it provides. Therefore, we examine a
simpler data structure where the second level of the struc-
ture is a two-entry array (instead of a P-entry array). The
first entry is dedicated to scheduling local LPs, whereas
the second entry is for scheduling remote LPs. As a result
of this organization, a processor cannot easily know about
and access its local LPs scheduled remotely. Thus, the sec-
ond step of the scheduling algorithm shown in Figure 2 is
not needed with this simpler data structure.

The results of our experiments are shown in Figure 5.
We observe that the performances of the two simulators
differ significantly, and this difference widens as the num-
ber of processors executing the simulations increases. In
addition, simulations that contain more activity (e.g., ran-
dom traffic and nonconflicting accesses) result in a large
difference in the respective performances of the simula-
tors. This means that in larger systems the presented data
structure is expected to perform significantly better than
the simpler structure. Furthermore, in simulations where
the simulation method does not perform so well (e.g., hot-
spot traffic), the scheduling method may have an addi-
tional negative impact on the performance of the simulator
if it does not take full advantage of the affinity information.

The results of this brief study show that maintaining as
detailed affinity information as possible, and exploiting it
at run time, improves the performance of the parallel sim-
ulation (compared to simulators utilizing a smaller amount
of affinity information). Thus, the complexity of the pre--
sented data structure is justified by the performance im-
provement it provides over simpler data structures which
maintain a smaller amount of affinity information.

4 CONCLUSIONS

In this paper we presented a data structure and an al-
gorithm for processor self-scheduling in a synchronous
PDES simulation. By viewing a synchronous parallel
simulator as a parallel program, we argued that there are



688 Konas and Yew

Scheduling Queue Data Structure

14 T T T T T T T
Str-rnd —~—
12t Rnd-rnd ——
Str-hst -e—
Rnd-hst »—
10 + Str-nca ~—
& Rnd-nca
o
g 8¢
7]
2
= 61
3
2
o
4 r &
,
0 A 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16
Number of Processos
2-List Data Structure
10 T . T T T T T
9r Str-rnd
Rnd-rnd
8 r Str-hst
Rnd-hst
Y 7t Str-nca
3 Rnd-nca
L 6}
%]
N
E |
& 4}
3 L
2 L
! . A ) . : . )

0 2 4 6 8 10 12 14 16
Number of Processos

Figure 5: Performance of the Scheduling Approach

two significant factors that determine its performance:
load balancing and locality management. Communication
overheads induced by poor placement of data or of compu-
tations, and idle processors resulting from load imbalances
during any simulation step, can cause significant degrada-
tion to the performance of a synchronous PDES simulator.

Processor self-scheduling in a synchronous PDES sim-
ulation assumes both the functionality of an event queuc
of a traditional event driven simulation, and the function-
ality of a work pool in self-scheduled parallel programs.
We presented a two-level data structure that accounts for
both functionalities.

The first level, which is a variation of the time-wheel,
exploits characteristics of the behavior of architectural and
logic-level designs to achieve an almost constant schedul-
ing time of conditionally activated LPs. The second level

provides inexpensive affinity information that can be eas-
ily exploited. In addition, it facilitates the integration of lo-
cality management and load balancing methods into a sin-
gle mechanism aiming at the most efficient execution of a
synchronous PDES simulation.

We also presented a scheduling algorithm which effi-
ciently utilizes the presented data structure. The algorithm
guides the allocation of idle processors to unconditionally
active LPs during the execution of the simulation. During
each simulation step, a processor first executes all local ac-
tive LPs which have been scheduled locally or remotely.
Then it considers for execution any remote LPs which are
still waiting to be simulated. Thus, the algorithm first tries
to exploit the affinity of processes toward processors, and
addresses the load balancing issue only when there is no
more affinity information that can be exploited.

The work presented here can be extended in two ways.
First, it would be interesting to study the behavior and the
performance of the presented data structure using analyti-
cal models, such as the Hold and the p-Hold (Riboe 1990)
models. These models allow us to study a data structure
under different future event scheduling distributions, and
have been extensively used in comparing different event
queue implementations (Chou, Bruell, and Jones 1993).
Such a study will provide us with a more general character-
ization of the suitability of the presented data structure as a
scheduling queue in general-purpose simulations. Second,
we need to study the performance of diverse parallel simu-
lators using this data structure as their scheduling queue. It
would be interesting to exercise the data structure in sim-
ulations with different characteristics such as synchronous
logic-level simulations, combinational circuit simulations,
and architectural design simulations.

Processor self-scheduling is very important to the effi-
cient parallel execution of simulations, especially in syn-
chronous parallel simulations. Data structures and algo-
rithms should be carefully designed so as to not intro-
duce unnecessary overheads. They should also exploit
simulation-specific characteristics in order to improve the
efficiency of the resulting parallel simulator.

ACKNOWLEDGMENTS

This work was supported in part by the National Science
Foundation under Grant Nos. MIP 93-07910 and MIP 94-
96320, NASA NCC 2-559, and a donation from Motorola.

REFERENCES

Anderson, T. 1991. Operating System Support for High
Performance Multiprocessing. PhD thesis, Department
of Computer Science, University of Washington, Seat-
tle, Washington.



