Proceedings of the 1995 Winter Simulation Conference
ed. (. Alexopoulos, K. Kang, W. R. Lilegdon, and D. Goldsman

ADAPTIVE ALGORITHMS VS. TIME WARP: AN ANALYTICAL COMPARISON

Sudhir Srinivasan
Paul F. Reynolds, Jr.

Department of Computer Science
University of Virginia
Charlottesville, VA 22903, U.S.A.

ABSTRACT

Adaptive synchronization algorithms have been
proposed to improve upon conservative and optimistic
algorithms. We present the first known analytical
comparison of adaptive, optimistic algorithms and Time
Warp. We define a class of adaptive protocols, the
asynchronous adaptive waiting protocols (AAWP’s) and
identify several practical protocols that belong to this
class. We show that Time Warp can outperform an
AAWP arbitrarily. We describe the Elastic Time
Algorithm (ETA), a particular AAWP and show that
ETA can outperform Time Warp arbitrarily.

1 INTRODUCTION

Historically, research in synchronization algorithms
(protocols) for parallel discrete event simulation
(PDES) has followed two tracks: conservative and
optimistic (Fujimoto 1990). A significant result of this
research is that neither approach is universally efficient.
As defined in Reynolds (1988), adaptive protocols are
those that modify their behavior dynamically in
response to changes in the state of the simulation.
Several adaptive protocols have been proposed recently,
with encouraging results. However, there are no
analytical studies comparing the performance of
adaptive protocols with that of traditional protocols.
While experiments have shown that adaptively
optimistic protocols improve on the performance of the
purely optimistic Time Warp protocol (Jefferson 1985)
in general, it is interesting and important to question
whether they can perform worse than Time Warp. We
present a comparison of a general class of adaptive
protocols called the asynchronous adaptive waiting
protocols (AAWP’s) with Time Warp in the vein of the
worst-case comparison between the Chandy-Misra
protocol (Chandy and Misra 1979) and Time Warp in
Lipton and Mizell (1990). We show that it is possible for
Time Warp and AAWP’s to outperform each other
arbitrarily. Thus, while intuition suggests that adaptive
protocols should enhance performance in general, our
analysis indicates that they must be designed carefully.

666

We assume familiarity with PDES (Fujimoto 1990),
in particular, the partitioning of a discrete event simulation
into components called logical processes (LP’s). Each LP
is itself a sequential discrete event simulator. The LP’s
must execute events (both local and external) without
violating causality constraints (effectively). Typically, this
is the responsibility of a protocol.

A conservative protocol is one in which an LP
executes an event only after determining that it is safe to
do so (i.e. no other event with a smaller timestamp will be
scheduled later). Thus, it is possible for an LP to remain
blocked for some period of time while there is insufficient
information to proceed with the next scheduled event.
Optimistic protocols take the opposite approach in that
LP’s execute events without the guarantee of safety and
typically repair their execution if and when an error is
detected, using a checkpoint and rollback approach.

Adaptive protocols are those that change the bindings
of one or more of their design variables dynamically
(Reynolds 1988). In this paper, we consider protocols that
modify their degree of aggressiveness and risk,
(collectively called optimism). Typically, adaptive
protocols bridge the gap between conservative and
optimistic protocols. Therefore, they must be capable of
approaching either approach as required. For instance, if
Time Warp performs well for a particular application, an
adaptive protocol must behave like Time Warp for that
application. Similarly, if an application is well suited for a
conservative approach, an adaptive protocol must
approach conservative behavior for that application. Thus
the design goal for adaptive protocols is to be efficient
over a wide range of applications that includes those for
which the traditional approaches perform well, as well as
those for which the traditional approaches do not perform
well.

Several adaptive protocols have been proposed
(Srinivasan and Reynolds 1995a). Most of these have been
shown to improve the performance of the protocols from
which they are derived. Since all of these results are
experimental, it is important to question whether adaptive
protocols can perform worse than traditional protocols.
Our analysis shows they can.

Adaptive Algorithms vs. Time Warp 667

2 ASSUMPTIONS

We assume the following for all protocols in this paper:
* EachLP is located on its own processor.
* The protocols employ aggressive cancellation
and aggressive rollback.

We define asynchronous adaptive waiting protocols
(AAWP?’s), the class of adaptive protocols to which our
analysis applies. These protocols control optimism by
introducing delays between event executions.

i) The simulation loop of an LP is as follows:
While not done
Process event
Wait for time 3 >= 0
Rollback if necessary
Process received messages
Save state
Collect fossils
endwhile

Note, we make no assumptions about particulars of

an AAWP, such as criteria for whether an LP should

wait on a given iteration or how long it should wait.

An LP aborts its waiting if it receives a message

that will cause it to roll back.

i1) The waiting at each LP is asynchronous with
respect to the waiting at other LP’s.

iii) Actions of an LP relevant to our analysis are: event
execution, rollback and adaptive waiting. We
ignore overheads such as state saving, receiving
messages, global virtual time (GVT) computation
and fossil collection for simplicity; the analysis can
be extended to include these as well.

iv) An AAWP does not increase the capability of LP’s
to guess computation. An increase in the guessing
power of an LP could compensate for any
damaging effects of adaptive control. Since
guessing depends entirely on the application being
simulated, it is reasonable to assume an AAWP
cannot increase this capability.

v) Since adaptive waiting is expected to reduce
rollback costs, the depth (and therefore cost) of
each rollback i1s assumed to be bounded by a
constant for an AAWP. If the rollback costs are not
bounded for AAWP’s, our claim that an AAWP can
perform arbitrarily worse than Time Warp can be
shown trivially.

vi) Since the delay time & can be controlled directly by
an AAWP, it is assumed to be bounded by a
constant. Once again, if this were not true, our
claim that an AAWP can perform arbitrarily worse
than Time Warp can be shown trivially.

Several existing protocols belong to the class of
AAWP’s. In the penalty based throttling scheme of
Reiher and Jefferson (1989), an LP that has been rolling
back excessively blocks for some period of time.

Similarly, in Adaptive Time Warp (Ball and Hoyt 1990),
an LP may block after executing an event based on local
history and statistical estimation. In Madisetti (1993), LP’s
estimate each others’ logical clock values and block if
their clock value differs largely from that of another LP. In
Hamnes and Tripathi (1994), a real-time blocking window
is computed each time an LP executes an event and the LP
blocks for an amount of time equal to this window.
Similarly, in Ferscha and Tripathi (1994), an LP blocks
probabilistically for some amount of time after each event
execution. The new class of adaptive protocols we have
described in Srinivasan and Reynolds (1995a), which we
call NPSI adaptive protocols, also satisfy the AAWP
assumptions. Windowing algorithms in which the
windows are computed individually for different LP’s
(McAffer 1990 and Steinman 1993) are AAWP’s as well
since the LP’s wait when they reach the ceilings of their
independent windows. Note, global windowing algorithms
do not fit the AAWP model since the global window forces
all LP’s to synchronize before any of them can proceed.

3 TIME WARP OUTPERFORMS AAWP’S

We demonstrate that an AAWP can take arbitrarily longer
than Time Warp to complete a simulation. The intuition
behind the example is this: on the one hand, it is possible
for Time Warp simulations to execute very efficiently,
with few rollbacks; on the other hand, it is also possible
for a Time Warp simulation to generate many false events
and consequent rollbacks which can degrade its
performance severely. Errors in adaptive decisions
regarding when and how long to wait can cause a Time
Warp execution to move from the former category to the
latter. We show a situation where the AAWP induces a
false rollback chain that delays the committing of an event
(relative to the Time Warp execution) by at least an
amount of time proportional to the length of the rollback
chain. By arguing that this rollback chain can be arbitrarily
long, we show that the committing of an event can be
delayed arbitrarily.

Consider the Time Warp execution shown in Figure 1.
The x-axis denotes advance of wall-clock time while the
y-axis denotes the different LP’s. The numbers below the
events are their respective timestamps. A dashed arrow
indicates the causal dependence of an event on a message
(i.e. the event at the head of the arrow was scheduled by
the arrival of the message at the tail of the arrow). The two
important events to note in this execution are: (i) the event
with timestamp 140 at LP,, which is causally dependent
on a message from LP that arrives just in time to be
executed by LP), and (ii) the event with timestamp 165 at
LPs, which is the one whose committing execution will be
delayed due to an erroneous waiting decision.

668

LPs
LP,

LP3

LP,

LP,

LPg

135 “Wallclocktme
Figure 1: Time Warp Execution

>= O(length of false rollback chain)

Srinivasan and Reynolds

Event execution - committed
Event execution - uncommitted
Rollback

Adaptive waiting

Positive message transmission”
Causality
Antimessage

2!

BD .
L, .

Mg 165

[EXX]

Wall clock time

Figure 2: False Rollback Chain with Cycle due to Incorrect Waiting

Figure 2 shows an execution of the same simulation
as in Figure 1 using an AAWP. For simplicity, we assume
the initial conditions for the two executions are the same
except for one difference: both LPy and LP; wait for some
time at the beginning of the portion of the execution
depicted. Due to what will turn out to be an error in the
decision process, LPj delays longer than LP;. As a result,
LP; is ready to execute an event before the message from
LPy arrives and schedules the event with timestamp 140.
LP; executes its next scheduled event (with timestamp
150) and sends a message to LP,. Since we assume
aggressive rollback, this event is a false one as it is
executed out of order. When the message from LPj arrives
later, this false event is rolled back and an antimessage is
sent to LP,. However, the message sent to LP, by the false
event has already initiated a chain of false events. The
antimessage starts a chain of rollbacks and antimessages
that follows close behind the chain of false events.
Regarding these two chains, we note the following:

1) The rollback chain could catch up with the false
event chain immediately and thus terminate both.
However, the case relevant to this discussion is the
one shown in Figure 2 where the rollback chain
does not catch up with the event chain until the
latter reaches LPs and initiates an unnecessary

ii)

iii)

iv)

rollback. This scenario is feasible (Lubachevsky,
Weiss, and Shwartz 1991).

The chains by themselves may be harmless — the
problem arises from the fact that the final false
message that arrives at LP5 (marked Mg in Figure 2)
has timestamp 160, which is smaller than 165, the
timestamp of the second event at LP5 (marked Ep, in
Figure 2). Thus, M rolls back the first execution of
Ep, even though that execution was correct and could
have been committed. Ep, is re-executed after the false
rollback completes. Therefore, the committing
execution of Epy is delayed by at least an amount of
time proportional to the length of the rollback chain.
Each of the two chains has a cycle in it, involving
LP,, LP; and LP,. While we have shown only one
iteration of this cycle, an arbitrary number of
iterations is possible before LPs is reached.

For the false event chain to delay the committing
execution of Ep, the timestamp of Mg must be
smaller than that of Ep. Since we assume a correct
implementation of the underlying Time Warp
protocol and the application, it follows that logical
time must advance eventually as we traverse the false
event chain. Therefore, an arbitrarily long chain
would require that the timestamp of Ep, also be

Adaptive Algorithms vs. Time Warp 669

arbitrarily large. The larger the timestamp of Ep,
the less likely that its first execution is on the
critical path of the simulation, since other LP’s are
farther behind in logical time. Thus, while it is
possible for the false chains to be arbitrarily long,
the probability that these chains are damaging to the
simulation decreases with the length of the chain.
However, the probability is not zero - we can
imagine a simulation where Ep marks the transition
to a new phase of simulated time, i.e., the entire
simulation makes a “jump” in logical time to the
next phase of activity. If so, the delaying of Ep
could cause the entire phase transition to be
delayed.

v) It is possible to have very long false chains that do
not span much logical time, as shown in Figure 2.
Here, logical time does not increase in an iteration
of the cycle in the false chain; it increases only
across iterations. Thus, the timestamp of Mg is
small but the chains are long.

vi) Finally, even if the lengths of the chains are
bounded (by some means), it is possible to have an
arbitrary number of instances of such chains in the
course of a single simulation run.

In summary, we have shown by example that the
committing execution of an event may be delayed
(relative to the Time Warp execution) by an arbitrary
amount of time due to false events and rollbacks created
by errors in the waiting decision. Elsewhere (Srinivasan
and Reynolds 1995b) we have shown that this example
holds for lazy cancellation and lazy rollback as well.

It is possible to modify protocols so as to avoid the
scenario described earlier. However, since there may be
other scenarios similar to the one we have described,
establishing a property of AAWP’s that avoids this
scenario does not guarantee that Time Warp will not
outperform AAWP’s by more than a constant factor.

4 NPSI ADAPTIVE PROTOCOLS

We describe a design framework for a new class of
adaptive protocols. This framework will be used in §5.3
to define a specific adaptive protocol that outperforms
Time Warp by a factor proportional to the length of the
simulation run. We call this new class near-perfect state
information (NPSI) adaptive protocols because these
protocols assume the availability of near-perfect
information at each LP about the state of the system, at
little or no cost to the simulation. The adaptive waiting
decisions of LP’s are based on this NPSI. In practice,
such information can be disseminated using a high-
speed reduction network (Pancerella and Reynolds
1993) at almost no cost to the simulation. Our studies
(Srinivasan and Reynolds 1993) have shown that such a

network can disseminate critical information to the LP’s at
latencies that are two or three orders of magnitude smaller
than typical event execution times (i.e microseconds
versus milliseconds). We have designed and implemented
NPSI protocols over a prototype reduction network with
very encouraging results. A more detailed discussion on
the rationale behind NPSI protocols, their design and
performance can be found in Srinivasan and Reynolds
(1995a).

There are two phases in the design of NPSI adaptive
protocols:

* identifying the information that must be collected
dynamically and on which the decision to limit
optimism is to be based

* designing the mechanism that translates the
collected information into control over an LP’s
aggressiveness and risk

The framework depicted in Figure 3 separates these
phases by introducing a quantity we call error
potential (EP;), associated with each LP;. EP; is an
estimate of the need for LP; to decrease its optimism. The
mapping M, translates the relevant NPSI to a value of EP;.
The NPSI adaptive protocol keeps EP; up-to-date for each
LP; as the simulation progresses, by evaluating M, at high
frequency using state information it receives from the
feedback system. M, dynamically reflects new values of
EP; in the event execution and communication rates.
Different NPSI adaptive protocols may be constructed by
designing the mappings M; and M,. Note, these mappings
only specify if an LP should wait and how long it should
wait; the general structure of NPSI protocols conforms to

the AAWP model in §2.

Event
M1 M2 processing

Error Potential and

message
sending

N

Figure 3: Framework for NPSI Adaptive Protocols

5 AAWP’S OUTPERFORM TIME WARP

We show by example that Time Warp can take arbitrarily
longer than an AAWP to complete a simulation. Our
approach is to describe the execution of a simulation using
both Time Warp and a specific AAWP. We show that Time
Warp takes an amount of time that is quadratic in the
amount of logical time simulated while the AAWP takes
linear time. Since the difference in completion times is not
bounded by a constant for a given simulation, the AAWP
outperforms Time Warp arbitrarily.

670 Srinivasan and Reynolds

5.1 Physical System

The system we consider for simulation was described
previously in Lubachevsky, Weiss, and Shwartz (1989)
as an example of “echoing” in Time Warp. We refer to it
as EchoSystem. It consists of three physical processes
(PP’s), A, B and C with the communication topology
shown in Figure 4. Upon receiving a message from PPy,
PPy processes it and sends a message to PP, and vice-
versa. If no message is received from the other, both of
them prepare a message to send to PPc. If a message
arrives when one is being created or sent to PP, that
sending is aborted and the new message is processed.
Sending and receiving of messages takes no time.
Processing a message from PP, (PPg) takes u real time
units on PP (PP,). Preparation of a message to PP¢
takes 2u real time units. Suppose at time 0 PP, receives
the first message from PPg. Then it may be verified that
the only message traffic that occurs in this system is
between PP, and PPg at intervals of u real time units.
The idle periods between intervals are insufficient to
build a message to PP.. Note, real time in the physical
system corresponds to logical time in the simulator.

©
| =

PPy
Figure 4: Physical System for Echoing

We assume the following: processing a message
between PP, and PPy takes one unit of wall-clock time
(including sending the follow-on message), preparing a
message to PP takes one time unit and sending of an
antimessage also takes one time unit. LP’s advance their
simulation clocks to the timestamp of the next event
after executing that event. We assume this to simplify
the proofs - the theorems can be proven even if it is
assumed that logical clocks are advanced before
commencing event execution. LPs is assumed to
perform its work fast enough so that its actions are
irrelevant to the discussions and proofs. Gy denotes the
logical clock value of LPy.

5.2 Time Warp Execution

The Time Warp execution of this simulation is shown in
Figure 5. The x-axis represents wall-clock time. The
numbers (in multiples of u) at the junctions of the LP
time lines and the unit time intervals indicate the logical

time to which the LP’s have simulated (i.e. the logical
clock value of the LP). A solid arrow indicates a message
transmission while a dashed arrow indicates an
antimessage transmission. The bold lines at various points
on the time lines of LP, and LPg indicate rollback. From
the picture, the echoing is evident immediately in the fact
that the two LP’s roll back alternately, with increasing
amplitudes.

Theorem 1: A Time Warp execution of EchoSystem takes
n(n+1)/2 wall-clock time units to simulate nu units of
logical time.

Proof: The theorem is proved by induction on the amount
of wall-clock time required for GVT to advance from
logical time (n-1)u to nu.

Induction hypothesis: It takes n units of wall-clock time
for GVT to advance from logical time (n-1)u to nu.

Base case: n = 1: From Figure 5 we see that in the first
wall-clock time interval (i.e. wall-clock time [0:1)) LP,
advances G to u and LPg advances og to 2u. Thus, GVT
has advanced from O to « in one wall-clock time unit and
the hypothesis holds.

Induction step: Assume the hypothesis holds for the
logical time window [(n-1)u:nu). Recall that the message
traffic in the physical system consists only of the single
message being exchanged by LP, and LPg. Thus, in any
correct simulation of this system, GVT advances by u
logical time units each time an LP receives this message,
processes it and sends it back. During this process, the
actions of other LP’s cannot affect GVT. Without loss of
generality, assume LP, takes n wall-clock time units to
advance GVT from (n-1)u to nu (by induction hypothesis).
In these n wall-clock time units, LPg will send n messages
to LPc. Thus, at the end of [(n-1)u:nu), LP, has just sent a
message to LPg with timestamp nu and LPg has sent n
false messages to LPc. Therefore, LPg takes n wall-clock
time units to send the n antimessages to LP and one wall-
clock time unit to process the message, advance Og to
(n+1)u and send the message back to LP, with timestamp
(n+1)u. At this point, GVT will have advanced to logical
time (n+/)u, requiring n+/ wall-clock time units to do so.
Thus the total wall-clock time required to simulate up to

n
. . . . n-(n+1)
logical time nu is 2 i=—=. n
i=1

We have thus shown that Time Warp takes O(n?) wall-
clock time to simulate the specified physical system,
where n is a measure of the logical time span of the
simulation run.

Adaptive Algorithms vs. Time Warp

671

LP, Ju_| | | Zul 9yl Jiy | | | | w! Zul 9ul 114
A 2 £ U S U e A w m m m H ((
Wall-clock time I I II |I I I I I I II |I |I]I I I I I
N WA 0 A\ O R N B G R
. | \ NN Y N

ek A A R 7
[N O e I N R A N B R R O A A N A AT A P B

! I} (VU O T T T I O R Y I U U R R Y R P

we LN NN e NN
B 2uly T 2ul qu' 6ul SulT3u | T qu b 6wl Sut oo, U 1200 1qu TSu T ! !

Figure 5: Echoing in Time Warp

5.3 AAWP Execution

We describe a specific NPSI adaptive protocol based on

the design framework described in §4. The error

potential (EP;) of each LP; is given by the following M:
M, : EP, = 0,-GVT,

where GVT; is the value of GVT made available to LP;

by the feedback system. M, is a function that maps EP;
into a wall-clock time delay, 9;, given by:

EP, .
M,:s < | MaxEP, “Ti
1
0 EP, =0

where MaxEP; is the maximum value of EP; observed
thus far. After executing an event, LP; re-computes o;
and waits for &; units of wall-clock time before
proceeding to the next event. If a message is received
during a wait period that will cause a rollback, the LP
aborts the waiting and proceeds to roll back. Since this
algorithm is a variant of the elastic time algorithm
(ETA) described in Srinivasan and Reynolds (1995a),
we will refer to it by the same name.

Figure 6 shows the execution of the simulation using
the protocol described above. The shaded lines represent
waiting due to the adaptive protocol. It is evident from the
diagram that the echoing observed under Time Warp
(Figure 5) has been avoided since each rollback is of only
unit length.

The discussion
assumption:

in §4 justifies the following

NPSI Assumption: A change in an LP’s logical clock
value is reflected in the values of GVT visible to the
different LP’s in a fraction of the time it takes for an LP to
execute an event.

For example, we may assume this latency is equal to 0.1
wall-clock time units since an LP takes one wall-clock
time unit to execute an event.

Theorem 2: An execution of EchoSystem using ETA
takes 2n-1 wall-clock time units to simulate nu units of
logical time.

Ba Y M I Q __A__ ... O - 1. L0
MuxEP, - - - 0- - 2U- - - - - - - - - - 2u0 2u. - 20 0 2u_ - - ... 2u _2u o ..
EP, o TR YT D 0. .2u ________._ 0. _2u_.________. 0. _2u _ ...
Y 3u 3w 2w\ 3y Suy Suidu o Swy Tuy o Jwbu o Tup 9uy Guy8u 9uy Hu
A 7
I | I N I | N | | Nl I I | | I |
Wall-clock time I | I | I I I I I I I | I I I I I I I
0 1. 2 3 4 5 6 7 8 9 1011 12 13 1415 16 17 18]
tre
r 7 7 r r
I [l 1 I I [] I | [] -1 I [[] I I [l
B R U AT U N N A B NS N N
1Py I o | | AN I | AN | | AN I | VN
' 2u 'ty ! 2u' 4ul qu T3 " oau ' 6w 6u TSu V6wl 8" 8u 7 Vosu ! 10u V10w Tou I
?
EPp - ooe oo - 0. _2u_________. 0. _2u_________ . 0 __2u_ ________.0 _2v ______ .
MaxEPg - - - = - = = - - - O _2u_________. 2u _2u . v 2w ___2u_ 20 .
8y - O __1_________. o 1. T o PR [

Figure 6: Avoiding Echoing with Adaptive Aggressiveness

672 Srinivasan and Reynolds

Proof: The proof consists of induction on the amount of
wall-clock time required for GVT to advance from logical
time (n-1)u to nu.

Induction hypothesis: For n = 2, 3, ... (i) it takes 2 units
of wall-clock time for GVT to advance from logical time
(n-1)u to nu, (ii) MaxEP4 < 2u, and (ii1) MaxEPg < 2u.

Base case: n = 2: Referring to Figure 6, at wall-clock time
I LP, is at logical time u and has sent a message to LPg
while LPg is at logical time 2u and has sent a false
message to LP-. Thus GVT = u at wall-clock time . The
message from LP, causes LPg to roll back to logical time
1 and send an antimessage to LPc, requiring one wall-
clock time unit. In the wall-clock time interval [2:3), LPg
processes the message, advances Og to 2u and sends a
message with timestamp 2u back to LP,. In the wall-clock
time period [1:2), LP, advances G, to 3u, builds a
message and sends it to LP¢. Since LPg rolls og back to u
just after wall-clock time 1, by the NPSI assumption, at
wall-clock time 2 we have 65 =3u, GVTp,=u and
therefore EP, =2u. Since MaxEP, was O initially,
MaxEP, = 2u, giving 85 = 1. Thus LP, waits during the
wall-clock time period [2:3). Consequently, at wall-clock
time 3, GVT = 2u, MaxEP, = 2u and MaxEPg = 0.

Induction step: Assume the hypothesis holds for the
logical time window [(n-I)u:nu). As in the proof of
Theorem 1, the argument is made that in any correct
simulation of the specified physical system, (i) GVT
advances by u logical time units each time an LP receives
a message, processes it and sends it back and (ii) the
actions of other LP’s during this period cannot influence
this GVT advance. Without loss of generality, assume LP,

takes 2 wall-clock time units (by hypothesis), say [i-1:1)
and [i:i+]1), to advance GVT from (n-/)u to nu and send a
message with timestamp nu to LPg. In [i-1:i), LPy

advances og from (n-1)u to (n+1)u and sends a message
to LPc. Since LP, sent a message with timestamp nu to
LPg at the end of [i:i+1]), Go must be (n-1)u at the end of
[i-1:i). Further, LP, received a message from LPg at the
beginning of [i-/:i) (because LP, advances GVT). This
implies LP, could not have built and sent a message to
LP¢ during [i-]:i). Therefore, LP5 must have rolled back
during [i-7:i). This means 64 must have been rolled back
to (n-1)u at the beginning of [i-/:i). By the NPSI
assumption, at the end of [i-1:i)) GVTg = (n-/)u. Thus,
og = (n+1)u, EPg=2u, MaxEPg =2u (by hypothesis)
and &g = 1. Consequently, LPg waits during [i:i+]). At
the end of [i:i+1), GVT = nu, LP, has sent a message with
timestamp nu to LPg and LPg has sent one false message
to LP-. The message from LP at the end of [i:i+1) causes
LPg to roll back and send one antimessage to LPq

(requiring one wall-clock time unit). LPg uses another
wall-clock time unit to process the message, advance Op

to (n+/)u and send a message with timestamp (n+1)u to
LP,. Thus, after two wall-clock time units, GVT is

advanced from nu to (n+/)u. Since LPg controls the
advance of GVT in these two wall-clock time units, EPg =
0 and consequently, MaxEPg = 2u. The actions of LP, in
this period are exactly the same as those of LPg in the

interval [(i-1)u:(i+1)u) described earlier. It follows that
MaxEP, also equals 2u.

The total wall-clock time required to simulate nu
units of logical time is therefore given by the sum of the
wall-clock times required to simulate the windows [0:u)
and [u:nu):

n
I+ 2=2n-1 |
i=2

We have thus shown that ETA takes O(n) wall-clock
time to simulate EchoSystem, where n is a measure of the
logical time span of the simulation run. The corresponding
completion time with Time Warp is O(n?). Since the
difference in completion times is not bounded by a
constant for a given simulation, the adaptive protocol
outperforms Time Warp arbitrarily.

While EchoSystem is somewhat contrived, ETA is
not. In Srinivasan and Reynolds (1995a) we describe an
experiment on a four-processor Time Warp
implementation using a workload very similar to
EchoSystem. The experimental set-up included a
prototype high-speed reduction network which was used
to provide near-perfect state information to implement
ETA. In conformance with our analysis here, we observed
that the speedup of ETA over Time Warp increased with
the logical time span of the simulation, i.e., the larger the
maximum simulated time, the larger the speedup.

6 SUMMARY

The lack of consistent performance with the two
traditional approaches to synchronization in parallel
discrete event simulations (conservative and optimistic)
has led to a number of hybrid approaches. Many of these
have indeed demonstrated better performance under test
cases. An adaptive protocol, one that modifies itself in
response to changes in the simulation, appears to be the

 most likely to perform well with a wide range of

simulations. However, there have been no analytical
studies comparing the performance of adaptive protocols
with that of traditional protocols. We present the first
known analytical comparison of adaptive protocols with
Time Warp. We demonstrate that it is possible for Time
Warp to arbitrarily outperform a class of adaptive
protocols we call asynchronous adaptive wait protocols

Adaptive Algorithms vs. Time Warp 673

(AAWP’s). Protocols in this class control
aggressiveness and risk by introducing independently
controlled delays at the LP’s. This class is general
enough to include many practical protocols. Conversely,
we describe a member of a new class of adaptive
protocols called NPSI adaptive protocols (which are a
subset of AAWP’s), and present an example in which
this protocol outperforms Time Warp arbitrarily. Thus,
while adaptive limiting of optimism appears to enhance
performance in practice, our study shows that care must
be taken in the design of AAWP’s since incorrect
adaptive decisions can lead to arbitrarily worse
performance than Time Warp.

ACKNOWLEDGMENTS

We are grateful to Bronis de Supinski and Craig
Williams for proofreading and insightful comments.
This work was supported by Mystech Associates, Inc.

REFERENCES

Ball, D. and S. Hoyt. 1990. The adaptive Time Warp
concurrency control algorithm. Proceedings of the
SCS Multiconference on Distributed Simulation, 174-
177.

Chandy, M. and J. Misra. 1979. Distributed Simulation:
A case study in the design and verification of
distributed programs. /IEEE Transactions on Software
Engineering, Vol. SE-5, No. 5, 440-452.

Ferscha, A. and S.K. Tripathi. 1994. Parallel and
distributed simulation of discrete event systems.
Report number CS-TR-3336, Computer Science
Department, University of Maryland College Park.

Fujimoto, R.M. 1990. Parallel discrete event simulation.
CACM, Vol. 33, No. 10, 30-53.

Hamnes, D.O. and A. Tripathi. 1994. Evaluation of a
local adaptive protocol for distributed discrete event
simulation. Proceedings of the 1994 International
Conference on Parallel Processing, Vol. 111, 127-134.

Jefferson, D.R. 1985. Virtual time. ACM TOPLAS,
Vol. 7, No. 3, 404-425.

Lipton, R.J. and D.W. Mizell. 1990. Time Warp vs.
Chandy-Misra: A worst-case comparison.
Proceedings of the 1990 SCS Multiconference on
Distributed Simulation, 137-143.

Lubachevsky, B., A. Weiss, and A. Shwartz. 1989.
Rollback sometimes works . . . if filtered. Proceedings
of the 1989 Winter Simulation Conference, 630-639.

Lubachevsky, B., A. Weiss, and A. Shwartz. 1991. An
analysis of rollback-based simulation. ACM
TOMACS, Vol. 1, No. 2, 154-193.

Madisetti, V.K., 1993. Randomized algorithms for self-
synchronization. Private communication.

McAffer, J. 1990. A unified distributed simulation system.
Proceedings of the 1990 Winter Simulation Conference,
415-422.

Pancerella, CM. and PF. Reynolds, JIr. 1993.
Disseminating critical target-specific synchronization
information in parallel discrete event simulations.
Proceedings of the 7th Workshop on Parallel and
Distributed Simulation, 52-59.

Reiher, PL. and D. Jefferson. 1989. Limitation of
optimism in the Time Warp operating system.
Proceedings of the 1989 Winter Simulation Conference,
765-770.

Reynolds, P.F,, Jr. 1988. A spectrum of options for parallel
simulation. Proceedings of the 1988 Winter Simulation
Conference, 325-332.

Srinivasan, S. and P.F. Reynolds, Jr. 1993. Non-
interfering GVT computation via asynchronous global
reductions. Proceedings of the 1993 Winter Simulation
Conference, 740-749.

Srinivasan, S. and P.F. Reynolds, Jr. 1995a. NPSI adaptive
synchronization algorithms for PDES. Proceedings of
the 1995 Winter Simulation Conference.

Srinivasan, S. and P.F. Reynolds, Jr. 1995b. Adaptive
algorithms vs. Time Warp: An analytical comparison.
Report number CS-95-20, Computer Science
Department, University of Virginia.

Steinman, J.S. 1993. Breathing Time Warp. Proceedings
of the 7th Workshop on Parallel and Distributed
Simulation, 109-118.

AUTHOR BIOGRAPHIES

SUDHIR SRINIVASAN has completed his Ph.D. at the
University of Virginia and will soon be a research scientist
at Mystech Associates in Washington DC. He received an
M.S. in Computer Science from the University of Virginia
in 1992 and a B.E. in Computer Science from Bangalore
University, Bangalore, India, in 1990. His research
interests include parallel and distributed simulation,
parallel algorithms, distributed systems and computer
networking. He is a student member of the ACM.

PAUL F. REYNOLDS, JR., Ph.D., University of Texas at
Austin, 79, is "an Associate Professor of Computer
Science at the University of Virginia. He has published
widely in the area of parallel computation, specifically in
parallel simulation, and parallel language and algorithm
design. He has served on a number of national committees
and advisory groups as an expert on parallel computation,
and more specifically as an expert on parallel and
distributed simulation. He has been a consultant to
numerous corporations and government agencies in the
systems and simulation areas.

