Proceedings of the 1995 Winter Simulation Conference

ed. C. Alexopoulos, K. Kang, W. R. Lilegdon, and D. Goldsman

NPSI ADAPTIVE SYNCHRONIZATION ALGORITHMS FOR PDES

Sudhir Srinivasan
Paul F. Reynolds, Jr.

Department of Computer Science
University of Virginia
Charlottesville, VA 22903, U.S.A.

ABSTRACT

Adaptive approaches to synchronization in parallel
discrete event simulations hold significant potential for
performance improvement. We contend that an adaptive
approach based on low cost near-perfect system state
information is the most likely to yield a consistently
efficient synchronization algorithm. We suggest a
framework by which NPSI (near-perfect state
information) adaptive protocols could be designed and
describe the first such protocol - Elastic Time
Algorithm. We present performance results which show
that NPSI protocols are very promising. In particular,
they have the capacity to outperform Time Warp
consistently in both time and space.

1 INTRODUCTION

The synchronization problem remains the central
challenge in PDES (Fujimoto 1990, Fujimoto and Nicol
1992). We present initial results of research into a novel
class of protocols which adapt dynamically to changes
in the simulation using low-cost near-perfect system
state information. We refer to these protocols as NPSI
(Near-Perfect State Information) adaptive protocols.
Given the inherently dynamic nature of simulations
(Nicol and Reynolds 1990), we believe NPSI adaptive
protocols offer the best hope of finding a consistently
efficient, general protocol.

We assume familiarity with the common approach
to PDES (Fujimoto 1990), namely the partitioning of a
simulation into logical processes (LP’s). Each LP is
itself a sequential discrete event simulator which can
schedule events at other LP’s using timestamped
messages. LP’s must execute events without violating
causality constraints (effectively). Typically, this is the
responsibility of a protocol. The nine design variables in
Reynolds (1988) define the design space for protocols.
An aggressive protocol is one which executes events
without the guarantee of freedom from causality errors.
A protocol has risk if it propagates messages based on
aggressive or inaccurate computation. Based on these
two variables, a conservative protocol is non-aggressive
and without risk, while an optimistic protocol is

aggressive and with risk. These two categories form the
end points of a spectrum of protocols with limited
optimism.

Adaptiveness for PDES protocols is defined in
Reynolds (1988) as the capability of a protocol to modify
the bindings of one or more of its design variables during
the simulation. Several protocols have been proposed that
limit optimism, but most of them are not adaptive by this
definition. In order to make dynamic decisions based on
system state, processes must be provided with near-perfect
state information at low cost. Gathering such information
using typical communication networks is infeasible due to
the high cost of such communication. This has been the
major obstacle in the study of NPSI adaptive protocols.

We assume an asynchronous dynamic feedback
system which provides each LP with a near-perfect
snapshot of the system state (in a reduced form) at very
low cost. This is done for three reasons: (i) we believe
NPSI adaptive protocols have significant potential, (ii) a
feasible implementation for the feedback system is a high-
speed reduction network, and (iii) an implementation
exists for such a network (Reynolds, Pancerella, and
Srinivasan 1992). As we shall see, our first NPSI adaptive
protocol shows significant improvements over pure Time
Warp (Jefferson 1985), in both time and space.

2 PREVIOUS WORK

We categorize protocols that limit optimism based on the

criterion for limiting optimism:

1) Window based: Only those events within a (common
or independent) window are executed aggressively.
Similarly only those messages within a (possibly
different) window are sent out. This ensures that all of
the LP’s remain close to each other in logical time.
Uncontrolled echoing and cascading rollbacks cannot
occur. Examples are described in Sokol, Briscoe, and
Wieland (1988), Lubachevsky, Weiss, and Shwartz
(1989), Reiher and Jefferson (1989), McAffer (1990),
Turner and Xu (1992), Dickens (1993), and Steinman
(1993).

i) Space based: The boundaries for limiting optimism
are spatial rather than temporal. In general, the

658

NPSI

processors are divided into clusters which use Time

Warp internally. Interaction among clusters is

without risk. Examples are described in Gimarc

(1989) and Rajaei, Ayani, and Thorelli (1993).

An interesting special case is when each cluster

contains exactly one LP, resulting in a risk-free

system (Dickens and Reynolds 1990, Mehl 1991,

Steinman 1991 and Bellenot 1993).

iii) Penalty based: It is assumed that the recent past is a
good predictor of the near future. Based on their
recent behavior, some LP’s are penalized (and
consequently block) while others are favored (and
consequently continue). Examples are described in
Reiher and Jefferson (1989) and Ball and Hoyt
(1990). In Madisetti (1993), the penalty is based on
the difference between an LP’s logical clock and
estimates of the logical clocks of other LP’s.

iv) Knowledge based: Rollback information is used to
restrict the propagation of potentially incorrect
computation. Examples are described in Madisetti,
Walrand, and Messerschmitt (1988) and Prakash
and Subramanian (1991).

v) Probabilisticc A special process decides to
synchronize all LP’s periodically, by sending
synchronization messages (Madisetti, Hardaker,
and Fujimoto 1992).

These protocols perform better than Time Warp
under specific tests. However, they will have limited
performance in general due to one or more of the
following: (i) the criterion for limiting optimism
(window size, cluster size, penalty thresholds,
probabilities, etc.) is predetermined (ii) the decision to
limit optimism is based solely on local history (iii) the
LP’s are loosely synchronous (i.e. not asynchronous).

Recently, three protocols have been proposed which
we categorize as state based protocols. They differ from
those above in two significant ways: they are adaptive in
that the LP’s continually adjust their optimism, and
optimism is limited based on non-local state
information. These protocols are similar to NPSI
protocols. The first two (Hamnes and Tripathi 1994,
Ferscha and Tripathi 1994) are similar in that they both
utilize channel information to decide when LP’s should
wait and for how long. The NPSI approach has an
advantage because LP’s can receive information from
all of their predecessors whereas channel-based
protocols provide information only about immediate
predecessors. The third protocol (Das and Fujimoto
1994) adaptively limits the memory consumption of
LP’s and, consequently, limits their optimism. NPSI
adaptive protocols limit the optimism of LP’s and
consequently limit memory consumption. The NPSI
approach has the potential for eliminating the need for
costly memory management schemes completely.

659

3 EFFECT OF LIMITING OPTIMISM

Aggressive protocols incur three direct costs: state saving,
rollback and memory management. Limiting
aggressiveness and risk introduces a fourth cost: lost
opportunity, characterized by the potential loss in
performance when an LP stops executing events or
sending messages even though it is safe to do so. To obtain
good performance, protocols must attempt to minimize:
state saving cost + rollback cost +
memory management cost + lost opportunity cost

While limiting optimism tends to decrease the first three of
these, it also tends to increase the fourth; see Figure 1.
This trade-off must be balanced properly in order to obtain
the best possible performance. To do so, protocols must
distinguish incorrect computations from correct ones and
limit the propagation of the former while allowing the
latter to progress.

state saving + rollback +
+ memory management costs

lost opportunity cost

overall cost

Cost

|
|
{
)
|
|

|
Balance

Restriction on optimism

Figure 1: Trade-off Introduced by Limiting Optimism

PDES’s are very dynamic in nature, i.e. locality of
events changes as the simulation progresses. Typically,
this is due to an information flow which is translated into a
causal chain of events among LP’s. Since the propagation
of such chains is based on probabilistic decisions and
input parameters of the simulation, it is impossible to
determine the flows a priori (except in special cases). This
suggests that in order to balance the trade-off above, a
protocol must also be dynamic, adapting its behavior in
response to observed changes in the system.

4 NEAR-PERFECT STATE INFORMATION

Two key requirements for a protocol to be consistently
efficient are that it is dynamic and that it uses feedback
from the simulation to adapt. Ideally, these requirements
are met by providing LP’s with perfect state information.
However, this is impossible to achieve due to various
latencies in computing distributed snapshots. Therefore,
we consider an approximation of perfect state information.

We assume the existence of a dynamic feedback
system that operates asynchronously with respect to the

660 Srinivasan and Reynolds

LP’s and provides them with low-cost, near-perfect
information. One solution is to use a high-speed
reduction network. A global reduction network is one in
which binary, associative operations (minimum,
summation, etc.) are used to reduce state information so
that, say, the minimum simulation clock value can be
computed across all LP’s. Our experience with the
design, construction and testing of a global reduction
network (Reynolds, Pancerella, and Srinivasan 1992)
suggests that a network can operate at very high speeds
(less than 20 nanoseconds per stage in the tree). We
have used this network for the performance analysis
described later.

5 NPSI ADAPTIVE PROTOCOLS

NPSI adaptive protocols are optimistic protocols in
which the aggressiveness and risk are controlled
dynamically using near-perfect state information. There
are two phases in the design of NPSI adaptive protocols:
« identifying the information on which the decision
to limit optimism is to be based;

* designing the mechanism that translates this
information into control over an LP’s optimism;
There are many choices for each of these. To facilitate
independent study of each, we uncouple them by
introducing a quantity called error potential (EP;). The
value of EP; is used to control LP;’s optimism. The
framework we propose is shown in Figure 2. The NPSI
adaptive protocol keeps each EP; up-to-date as the
simulation progresses, by evaluating M; at high
frequency using state information it receives from the
feedback system. Similarly, M, reflects new values of
EP; in the event execution and communication rates
dynamically. The goal of our research is to design
mappings M; and M, such that their combination forms

an adaptive protocol that performs well consistently.

)

Event
M1 IV|2 processing
System Error Potential and
State
message
sending

N

Figure 2: General Framework for NPSI Protocols

To achieve optimal performance, LP’s must identify
computations that will be rendered incorrect in the
future and limit their propagation. This requires the
ability to predict the future which is difficult at best. In
the framework described above, error potential is a way
of labeling computation as potentially incorrect. EP;

indicates the likelihood of LP;’s computation becoming
incorrect in the near future: the higher the value of EP;, the
higher this likelihood. The key to consistently good
performance is to devise an M; which will predict the
nature of the LP’s computation (i.e. whether that
computation will be rolled back or not) accurately most of
the time. An inaccurate M can produce a low value of EP
when the computation is erroneous, resulting in higher
rollback costs, or a high value of EP when the computation
is correct, resulting in higher lost opportunity cost.

M, must be such that higher values of EP; result in
less aggressiveness and risk at LP;. A simple scheme is to
establish a threshold such that if the value of EP exceeds
this threshold, event execution and communications are
suspended until EP falls below the threshold again. A
more sophisticated scheme would reduce event execution
and communication rates gradually as EP increases. This
deceleration can be achieved by inserting delays at
appropriate points.

6 ELASTIC TIME ALGORITHM

We describe the elastic time algorithm (ETA), the first
NPSI adaptive protocol. ETA has been implemented;
preliminary performance analysis results are presented
here. The protocol can be specified completely by
describing the two mappings M; and M,.

6.1 M;: Computing EP;
M, is the following function:

M, : EP; = logical clock; - GVT
where GVT (global virtual time — Jefferson 1985) is
defined as the minimum of the logical clocks of all LP’s
and the timestamps of any messages in transit. Thus, ETA
is based on near-perfect values of GVT being available to
the LP’s. See Srinivasan and Reynolds (1993).

The rationale behind this M is that if an LP is far
ahead of others, it is likely to be rolled back soon and
should be slowed down. One can imagine an LP and its
predecessors as pins moving along a logical time line with
an elastic band around them. The farther an LP moves
away from the rest, the slower its progress due to the
restraining pull of the elastic band. When the LP farthest
behind moves forward, the restraint on the LP farthest
ahead is reduced so that it may quicken its pace again. As
load locality changes among LP’s, this scheme adapts by
restraining those LP’s far ahead in logical time.

6.2 M,: Controlling Optimism
Given a value of EP; computed by M,, we use the
following function to scale it to a delay value, o

EP,

§ =5 — i
i = °" MaxEP,

NPSI

where MaxEP; is the maximum value of EP; observed

thus far and s is a scaling factor (we defer discussion on

s to Section 7). The event processing loop of a Time

Warp LP is modified as shown in Figure 3 to incorporate

adaptive delaying. Some interesting features of this M,

must be noted:

i) The blocked state of the LP is not “opaque” in that
while in this blocked state, the LP observes its input
channels for messages that may cause it to rollback.
If such a message arrives, the waiting is aborted and
rollback 1is initiated. Also, the LP may perform
useful work in the blocked state such as converting
messages that it receives (that do not cause a
rollback) into future events.

i) EP; and §; are updated in each iteration of the loop
in the blocked state.

iii) The waiting scheme is not memoryless. The wait
timer is started only once at the beginning of the
wait period. As LP; goes through successive
iterations of the wait-loop, its wait time increases
whereas &; decreases (because its logical clock is
constant and GVT is monotonically increasing).
Thus, LP; interprets each new value of &; as an
estimate of the amount of time it should have
waited since the start of the waiting period. When
this value becomes smaller than the time it has
actually waited, LP; exits the wait-loop.

iv) This M, provides direct control over an LP’s
aggressiveness only. The LP’s risk is controlled
only to the extent that while in a blocked state, the
LP does not send out messages. Clearly, it is
possible (and perhaps desirable) to have a separate
mechanism to limit risk.

While there are events to be processed
Update logical clock and process event
Start wait timer
do

Receive messages and exit from loop if
there is a message that will cause
rollback or if the message has
timestamp = GVT

Update GVT, EP; and §

Read wait timer

while wait timer value < §
Rollback if necessary
Process messages
Save state
Collect fossils

endwhile

Figure 3: Event Processing Loop with Adaptive Waiting

Putting ETA in perspective with previous protocols,
we observe that it is a state based protocol that is similar
to window based protocols with two significant
differences:

661

e It is completely asynchronous — there are no
barrier synchronizations to negotiate windows.

* Each LP’s logical time window may be considered
infinite but the event execution rate drops rapidly as
the LP moves away from the base of the window.

6.3 Performance Analysis

We present the results of performance tests on ETA. We
describe the testing environment, followed by test cases,
metrics used and results.

Hardware: The hardware consists of a cluster of four
Sparc 2 workstations connected by Ethernet and a parallel
reduction network (PRN) that we have designed and built
(Reynolds, Pancerella, and Srinivasan 1992). Each
workstation communicates with its own auxiliary
processor (AP) through dual-ported memory (DPRAM).
The four AP’s are connected to the PRN which computes
and disseminates globally reduced values at very high
speeds.

Software: The two primary software components are the
Time Warp LP’s executing on the workstations and the
AP’s respectively. The LP’s use aggressive cancellation
and do not support event pre-emption; they include the M,
and M, for ETA. The GVT computation algorithm for the
AP’s is described in Srinivasan and Reynolds (1993).

Test cases: We employ a parameterized synthetic
workload generator to create our test cases with the
important parameters being event execution time, average
timestamp increment, state saving cost, communication
topology and distributions, number of local events per
message, and state saving and fossil collection
frequencies. Time consuming actions such as event
executions and state saving are simulated by busy loops;
all other mechanisms such as rollback, restoring state,
sending antimessages and fossil collection and data
structures such as saved state list and antimessage list are
implemented in detail. A synthetic workload generator is
used instead of actual applications because it allows us to
mimic those applications without the excessive time and
effort required to implement each of them. Our workload
generator is very similar to the PHOLD model (Das and
Fujimoto 1994).

We tested ETA on several workloads and observed
that it outperformed Time Warp on all of them. We present
results for the following:

a) Workload 1 consists of four LP’s with the T,
communication topology shown in Figure 4 (a torus).
The number on an arc is the probability that a
generated message is sent along that arc. The
workload is self-initiating (each event schedules the
next local event — Nicol 1991) and the probability of
an LP sending a message after an event is 0.2.

662 Srinivasan and Reynolds

Messages may cause rollbacks, but do not schedule
events.

b) Workload 2 also uses topology T, but is message
initiating (messages cause events to be scheduled).
Each message schedules a job event. Execution of a
Jjob event creates an output event, which generates a
message. Every LP has 25 events initially. Thus,
this workload resembles a closed queueing network
with density 25.

c) Workload 3 is an implementation of the echoing
example described in Lubachevsky, Weiss, and
Shwartz (1989). LP, and LP; execute in self-
initiating mode, sending messages to LP, after each
event. In addition, they exchange a single message
that schedules a message-initiating event. This
message causes rollbacks of increasing amplitudes

atLPjand LP,.
0.75

Figure 4: Communication Topologies for Test Workloads

For all three workloads, the mean event execution
time is 100 ps, the mean state saving time is 25 ps and
state saving and fossil collection are performed after
each event.

Metrics: The most important metric is completion time.
Yet another metric is rollback time, which is the time an
LP spends rolling back (including state restoration and
sending of antimessages). Since limiting of optimism is
expected to reduce rollback time, ideally to zero, this
metric is a good indicator of how close the actual
performance is to the goal.

An important aspect of ETA is the scaling factor, s
in M. s translates the value of EP; from logical time to a
delay in real time. The range of EP; is dependent on the
logical time increments and the rate at which LP’s
execute events, send messages, etc. Since these factors
differ considerably across applications, the value of s
that maximizes performance will be different for each
application. Thus, s is a good choice for the independent
variable in the performance tests. The problem of
determining s dynamically is discussed in §6.3.3

6.3.1 Results

Figures 5, 6 and 7 show the variation of completion time
and rollback time with the scaling factor s for the three

workloads respectively. When s=0, =0 and ETA is
essentially identical to Time Warp. As s increases, the
aggressiveness and risk of the LP’s decrease. The
completion time in Figure 5 has the expected parabolic
shape based on the trade-off shown in Figure 1. The
absence of such a parabolic shape in Figures 6 and 7 is due
to the nature of the workloads. There is very little
concurrency in workload 2 owing to the small event
execution times, the high latency of Ethernet and high
connectivity of topology T;. A simple critical path
analysis of workload 3 shows that it is also inherently
sequential. Generally, the waiting period at each LP
increases with s, approaching sequential execution.
However, a threshold is reached such that further increase
in s does not increase waiting due to the following:
consider LP; waiting to execute an event. When the last
event with timestamp less than LP;’s logical clock has
been executed and all messages with timestamps less than
LP;’s logical clock have been received, GVT will equal
LP;’s logical clock causing EP; (and &;) to drop to zero and
LP; to come out of waiting in the next iteration. This
analysis demonstrates that ETA has the capability to
approach sequential execution but not become arbitrarily
slower than it during phases in a simulation where there is
so little concurrency that parallel execution is detrimental.

The significant reduction in completion time in Figure
7 demonstrates that ETA can avoid unstable situations
such as echoing. The instability is manifest in the large
variations in both curves in Figure 7 for small values of s.
It is important to note that in all three graphs, the rollback
time is close to zero when completion time is minimized.
This suggests the reduction achieved by ETA is close to
the maximum possible.

6.3.2 Memory Considerations

In the general case, memory consumption appears to be a
serious problem with Time Warp. Excessive memory
consumption is usually due to so-called runaway
processes - LP’s that execute events faster than other LP’s
so that (i) they have a large number of processed events as
yet uncommitted, and (ii) they schedule a large number of
unprocessed events at other LP’s. Several memory
management schemes have been proposed (Lin 1992) to
reclaim memory from future events (since this memory
cannot be reclaimed by fossil collection). We expect that
NPSI adaptive protocols will eliminate the need for these
schemes for two reasons. First, any approach that limits
the aggressiveness of LP’s inherently reduces memory
requirements by not permitting runaway processes to
move too far ahead. Second, an adaptive, memory-based
flow control scheme (Das and Fujimoto 1994) can be
integrated naturally with NPSI protocols by including
information about the memory availability of successor
LP’s (perhaps immediate successors only) in the mapping

NPSI

80 T T T T

70 4]
60 1
50 .
40 Completion time -o—

Rollback time -+--
30 | 4

Wall-clock time (seconds)

20 4

10 . 4

1 10 100 1000 10000 100000 1e+06
Scaling factor s

Figure 5: Performance for Workload 1

70 T T T

Completion time -e—
Rollback time -+-]

60

50 [

40

30 R

20 | . 4

Wall-clock time (seconds)

10 “w .

0 | I 1 1

100 1000 10000 100000 1e+06
Scaling factor s

Figure 6: Performance for Workload 2

70 T T v

Completion time —-o—
60 Rollback time -+-- |

50
40
30

20 F

Wall-clock time (seconds)

10

0 . " [
100 1000 10000 100000
Scaling factor s

Figure 7: Performance for Workload 3

M;. In this way, an LP could slow down when any of its
successors is at risk of running out of memory.

ETA does not include information about
successors’ memory usage in its M;. Despite this, we
observed significant savings in memory requirements
due to limited aggressiveness. We measured the average
and maximum size of the saved-state list (in terms of the

663

number of entries in the state list) as an indicator of the
LP’s processed but uncommitted memory requirements.
The maximum size is important because the workstation
must have sufficient memory to store that much state even
if it is a rare occurrence.

Figures 8, 9 and 10 illustrate the substantial savings in
memory consumption (despite the fact that only state-
saving space is being considered here). In the two stable
workloads (Figures 8 and 9), the savings in maximum
state list size is noteworthy. In the echoing workload
(Figure 10), it is interesting to observe that the average
state list size is very high. This is because for small values
of s, the state lists grow unboundedly due to instability.

6.3.3 Further Issues

Cascading of rollbacks tends to occur when the event
grain is comparable with the cost of a single rollback,
which is proportional to the cost of sending antimessages.
Thus, the communication cost of the architecture
determines the granularity of events at which Time Warp
performance degrades due to high rollback costs. Provided
the NPSI assumption is satisfied at this granularity, we
expect ETA to produce reductions in rollback (and
completion) time similar to those presented here on any
architecture.

Memory consumption becomes a problem in Time
Warp when LP’s simulate at different speeds. Since this
occurs primarily due to load imbalance (dissimilar
timestamp increments and event execution times) rather
than any architectural feature, the memory performance of
ETA is expected to be architecture independent.

One of the conclusions drawn from the results above
is that the scaling factor (s) must be chosen properly to
ensure good performance. A scheme to automatically tune
the value of s is being developed. In Srinivasan and
Reynolds (1994), we have proposed two metrics to aid
this task. Extensive testing of ETA on larger systems
using simulations is underway.

7 SUMMARY

We have introduced a new class of synchronization
protocols called NPSI (near-perfect state information)
adaptive protocols. These differ from previous approaches
to adaptiveness in that they base their adaptive decisions
on near-perfect information about the state of relevant
parts of the entire system. In Ramamritham, Stankovic,
and Zhao (1989), it has been shown that a load sharing
policy that assumes perfect state information at zero cost
offers the best solution. Correspondingly, we believe that
NPSI adaptive protocols will provide a general, efficient
solution to the synchronization problem of PDES.

A framework has been suggested for the design of
NPSI adaptive protocols. Based on this framework, the

664 Srinivasan and Reynolds

140 - T T T T
Maximum -o—
120 - Average -+-- |
]
[0
s 100 .
(%]
£
0 80]
20
€
o 60 - 4
k)
g 40 4
E
=
z
20 —
T et e
0 L 1 1 .*x*ﬂ—-’--—h.-&
1 10 100 1000 10000 100000 1e+06
Scaling factor s
Figure 8: Memory Consumption for Workload 1
35 — — ey
Maximum -o—
30 b Average -+--
B
[o)
I 25
w
£
0 20
2
IS
@ 15
k)
3 1
E
3
z
5
0 .
100 1000 10000 100000 1e+06

Scaling factor s

Figure 9: Memory Consumption for Workload 2

250 T T

Maximum -o—
Average -+-
200

150

100 b

Number of entries in state list

O e o A
100 1000 10000 100000
Scaling factor s

Figure 10: Memory Consumption for Workload 3

Elastic Time Algorithm has been designed and
implemented. For this implementation, near-perfect
state information is computed and disseminated through
a high-speed reduction network. The protocol has been
tested with several workloads, the results from three of
which have been presented here. From these results, it is

evident that NPSI adaptive protocols can outperform pure
Time Warp in both time and space. Some issues must be
resolved before any conclusive statements can be made
about the relative performance and usability of NPSI
adaptive protocols. These include: designing a scheme for
the LP's to tune any parameters of the protocol
automatically; testing on larger systems; designing more
NPSI protocols and comparison with other adaptive
protocols. Ongoing research into some of these issues has
been described.

ACKNOWLEDGMENTS

We are grateful to Bronis de Supinski for proof- reading
the paper and for his insightful suggestions. We thank the
members of the Smart Interconnection Networks group at
the University of Virginia for their suggestions. This work
was supported by Mystech Associates, Inc. (Academic
Affiliates Program).

REFERENCES

Ball, D. and S. Hoyt. 1990. The adaptive Time-Warp
concurrency control algorithm. Proceedings of the SCS
Multiconference on Distributed Simulation, 174-1717.

Bellenot, S. 1993. Performance of a riskfree Time Warp
operating system. Proceedings of the 7th Workshop on
Parallel and Distributed Simulation, 155-158.

Das, S. and R.M. Fujimoto. 1994. An adaptive memory
management protocol for Time Warp parallel
simulation, SIGMETRICS ‘94, 201-210.

Dickens, PM. 1993. Analysis of an aggressive global
windowing algorithm. Ph.D. thesis, Computer Science
Department, University of Virginia, Charlottesville,
Virginia.

Dickens, PM. and P.F. Reynolds, Jr. 1990. SRADS with
local rollback. Proceedings of the 1990 SCS
Multiconference on Distributed Simulation, 161-164.

Ferrari, D. and S. Zhou. 1987. An empirical investigation
of load indices for load balancing applications. Report
number CSD-87-353, Computer Science Division,
University of California at Berkeley.

Ferscha, A. and S.K. Tripathi. 1994. Parallel and
distributed simulation of discrete event systems. Report
number CS-TR-3336, Computer Science Department,
University of Maryland at College Park.

Fujimoto, R.M. 1990. Parallel discrete event simulation.
CACM, Vol. 33, No. 10, 30-53.

Fujimoto, R.M. and D.M. Nicol. 1992. State of the art in
parallel simulation. Proceedings of the 1992 Winter
Simulation Conference, 246-254.

Gimarc, R.L. 1989. Distributed simulation using
hierarchical rollback. Proceedings of the 1989 Winter
Simulation Conference, 621-629.

