Proceedings of the 1995 Winter Simulation Conference
ed. C. Alexopoulos, K. Kang, W. R. Lilegdon, and D. Goldsman

TOWARDS ADAPTIVE SCHEDULING OF TASKS IN
TRANSACTIONAL WORKFLOWS

Manolis Marazakis
Christos Nikolaou

Department of Computer Science, University of Crete and
Institute of Computer Science, FORTH
P.O. Box 1385, GR 71110 Heraklion, GREECE

ABSTRACT

This paper discusses dynamic workload management
in transaction processing systems where the workload
consists of multiple classes of units of work, including
workflows comprised of interdependent tasks. Busi-
ness requirements specify that differing levels of ser-
vice must be provided to different classes of work,
thus it is natural to specify performance goals per
work class, that reflect the business requirements for
the work class as well as the inherent resource de-
mands of the units of work. Adaptive algorithms
have been proposed for the satisfaction of perfor-
mance goals of transaction classes. Scheduling the
execution of complete workflows, which are multi-
transaction units of work, is complicated by the need
for task coordination, due to both control and data
flow dependencies among tasks. Current transaction
processing monitors provide infrastructure for the co-
ordination of tasks by means of queueing facilities.
We draw on previous work on goal-oriented resource
management to design adaptive task scheduling algo-
rithms. A detailed simulator of transaction process-
ing systems with a queueing facility has been devel-
oped, with the specific aim to study the performance
for workloads that include multi-transaction units of
work.

1 INTRODUCTION

This paper discusses dynamic workload management
in transaction processing systems where the workload
consists of multiple classes of units of work, includ-
ing workflows comprised of interdependent tasks. It
is necessary to satisfy concurrency atomicity, failure
atomicity, and permanence guarantees for complex
business activities. These properties can be guaran-
teed by executing activities as transactional units of
work, which guarantee the ACID properties (Breit-
bart et al. 1993). Scheduling the execution of com-

604

plete workflows which are multi-transaction units of
work is complicated by the need for task coordina-
tion, due to both control and data flow dependencies
among tasks. Business requirements specify that dif-
fering levels of service must be provided to different
classes of work, thus it is natural to specify perfor-
mance goals per work class, that reflect the business
requirements for the work class as well as the inherent
resource demands of the units of work.

Transaction processing (TP) monitors (Gray 1978,
Gray and Reuter 1993, Bernstein 1990) provide in-
frastructure for the development of data-intensive ap-
plications. They provide support for running tasks,
for handling persistent communication among tasks,
for communication with users, and for access to mul-
tiple database systems. Current-generation TP mon-
itors (Kageyama 1989, Speer and Storm 1991, Sher-
man 1993) provide only basic primitives that can
be used for workflow management, however next-
generation TP monitors (Dayal et al. 1993) will be
required to include facilities for modeling and manag-
ing the execution of complex business activities. Such
activities (Dayal et al. 1990, Dayal et al. 1993) typi-
cally consist of many steps, are of long duration, may
require access to multiple, possibly heterogeneous,
shared databases, and may involve interaction with
multiple individuals in an enterprise. A business ac-
tivity may start with a step, which in turn may trigger
asynchronous and deferred steps (Dayal et al. 1990).
Each step may invoke applications that execute trans-
actions over one or more databases. Support for ex-
tended transaction models (Elmagarmid 1992, Biliris
et al. 1994) will be required to capture application-
specific semantics.

It is therefore important to study how the currently
available infrastructure can be used to support work-
flows, and how to manage classes of workflows from
a performance point of view. We focus on “system-
oriented” workflows, according to the classification in
Georgakopoulos et al. (1995), as they constitute the

Adaptive Scheduling for Transactional Workflows 605

basis on which workflow management services have
to be built.

We draw on previous work (Ferguson et al. 1993)
on goal-oriented transaction scheduling and routing
to design adaptive task and queue management al-
gorithms. A detailed simulator of multiple processor
transaction processing systems with a queueing facil-
ity has been developed, with the specific aim to study
the performance of algorithms for workloads that in-
clude multi-transaction units of work. The focus of
this paper is on task scheduling policies, however we
also outline our work-in-progress in the area of rout-
ing policies that take into consideration queue place-
ment.

The rest of the paper is organized as follows: Sec-
tion 2 presents our model of execution for transac-
tional workflows, and introduces the concept of per-
formance goals for workflow classes. Section 3 dis-
cusses alternative scheduling policies that attempt to
satisfy performance goals over classes of units of work,
while Section 4 discusses issues arising in a multi-
system environment where routing of individual steps
of units of work has to be performed. Section 5 briefly
describes the simulator that we designed and imple-
mented in order to evaluate the performance impact
of transaction scheduling and routing policies when
transactions are steps of multi-transaction units of
work, and presents a preliminary evaluation of the
scheduling policies of Section 3. Section 6 concludes
the paper, outlining directions for further research.

2 MODEL OF WORKFLOW EXECUTION

Units of work of class WCp, p = 1,..., P, are as-
sumed to consist of a sequence of component trans-
actions (“steps”) Tp1, - . -, Tpn,- Each such step Tp is
classified, by a workload characterization module, as
an instance of some transactionclassC;, 1 =1,..., K.
For each class of multi-transaction units of work,
there is a performance goal which is stated as the re-
quirement that the average response time of instances
of that class does not exceed a certain limit G. This
notion is based on the concept of “service-level agree-
ments” (Noonan 1989), and describes a requirement
for explicit “quality-of-service” guarantees. This type
of performance goals is statistical in nature, as they
do not require that specific deadlines are met by indi-
vidual units of work, which is the case with real-time
systems (Abbot and Garcia-Molina 1988).

The transaction processing system is assumed to
incorporate N nodes, Si,...,Sny. There are front-
end nodes where user requests for the execution of
multi-transaction units of work arrive, coupled in a
Shared-Nothing architecture. Each transaction in the

sequence of steps that makes up a multi-transaction
unit of work is routed to a node for service.

For each transaction class, a workload characteri-
zation module provides a profile of average resource
consumption. This profile characterizes the expected
behavior of transactions in each transaction class in
the N-node transaction processing system, and in-
cludes the average CPU work generated on system
Sk by a class C; transaction routed to system Sj,
the average number of times a class C; transaction
routed to system S; “visits” the CPU at system S,
the expected I/O delay of a class C; transaction, the
expected communication delay of a class C; transac-
tion routed to system S;, and the expected I/O delay
due to writing log records at all sites for a class C;
transaction routed to system S;. This profile can be
used to compute an estimate of the service time (ig-
noring queueing delays) of a transaction of class C;,
which is a measure of the intrinsic cost of processing
a transaction of class C;.

The work in Ferguson et al. (1993) assumes that
each transaction class has been statically assigned an
average response time goal, which reflects business
requirements for the transaction class while taking
into account resource demands. Since in this pa-
per we are interested in multi-transaction units of
work, we consider a dynamic assignment of perfor-
mance goals for transactions that appear as steps in
workflows. Specifically, we use the service time es-
timate RTervice(Tpt) for steps Ty to allocate “por-
tions” g(Tp¢) of the predefined goal G, for class WC,
workflows to individual steps, as follows:

RTservz’ce (Tpt)

g(T t) = Gp- Tp)
? P t=1 RTserUice(Tpt)

where Ty, t = 1,...,n, are the steps of a class WC,
workflow. Assigning such subgoals to steps allows us
to set up feedback mechanisms in our effort to satisfy
performance goals for workflow classes.

The execution model for transactions that need to
access data on multiple nodes is similar to that sup-
ported in the IBM’s CICS TP monitor (Kageyama
1989). A “primary” transaction is initiated at a node
selected by the front-end to execute the application
program that issues database calls, and “secondary”
transactions are started on other nodes to process the
requests forwarded (“function-shipped”) to them by
the primary transaction.

Although this is a restricted model of workflow, it
often arises in practice when a long-duration activity
is executed as a chain of several transactions, rather
than as a single long-duration transaction (Garcia-
Molina and Salem 1987). Long-duration transactions
can seriously affect overall system performance (Gray

606 Marazakis and Nikolaou

1981). In a distributed environment, chaining of
transactions may be required if not all the nodes that
process the request are available at the same time.
Moreover, from our performance point of view, this
class of workflows is particularly important as it fre-
quently appears as a building block for more complex
workflows.

It is assumed, as in Bernstein et al. (1990), that a
sequence of “server tasks” executes the sequence of
transactions for the completion of the request, and
each task registers with a request and a reply queue,
managed by the queue manager of the underlying TP
monitor. The application cannot rely on local vari-
ables and (non-persistent) data structures to record
the state of the request across transaction boundaries,
due to the possibility of failures. Therefore, when in-
formation, such as a request for transaction initiation,
or data items produced by a transaction, is to cross
transaction boundaries, a server task must store it in
the request queue for the recipient. Queue managers
store records submitted by transactions as uninter-
preted byte strings in volatile or persistent storage,
and allow retrieval in FIFO or priority order, or even
by content. In the event of a failure, which causes a
transaction to be aborted, the initiation request for
that transaction is returned to its (persistent) input
queue, thus the sequence of transactions that service
the original request is not broken.

A disadvantage of this model is that the execu-
tion of requests is not serializable (although the exe-
cution of component steps is serializable). However,
for many important applications (Garcia-Molina and
Salem 1987, Gray 1981) it is possible to relax strict
serializability requirements. If this is not acceptable,
then some mechanism is required for controlling in-
terference between concurrently executing workflows.
This paper ignores this issue, focusing on perfor-
mance management aspects of the model.

FEach transaction initiation request is kept in a
queue until the transaction monitor at the service
node can allocate a task to service the request. The
time that the transaction initiation request for T},
spends waiting until it is bound to a task directly af-
fects the response time of 17, and therefore the over-
all response time for the whole WC, request. For
this reason, a priority index is assigned to each trans-
action initiation request. The service node allocates
tasks to service transaction requests in increasing pri-
ority index order.

3 TASK SCHEDULING POLICIES

We focus on preemptive, priority-driven CPU
scheduling policies, and consider their performance

potential in environments where the objective is to
fullfil service-level agreements, expressed as the re-
quirement that average response time per workload
class does not exceed a class-specific upper bound.
We consider a number of alternative schemes for the
assignment of priorities to workflow steps (assuming
that the CPU scheduler selects tasks for service in
increasing priority index order, and does round-robin
scheduling for tasks with the same priority index).
The priority assignment for each transactional step in
general has to consider the goal specification for the
workflow class, the current status of the class regard-
ing goal satisfaction, and some form of feedback on
the response time of previous steps, together with the
inherent resource requirements of the step. The al-
ternative policies that we consider differ in the choice
of factors to consider for scheduling decisions.

RR: Round-robin scheduling of transactions (all
transactions have equal priority). We expect this pol-
icy to provide an upper bound for the evaluation of
more elaborate scheduling policies, as it does not con-
sider any knowledge about the workflow or the indi-
vidual transactions.

Static: The priority of a transactional step Tp: of
a class WC), workflow is set to the goal G, for the
class. This policy requires no knowledge of the re-
source requirements of steps, taking into account only
the goal for the workflow. This static assignement fa-
vors units of work with short response time goals,
similarly to the earliest-deadline-first policy for real-
time tasks (Abbot and Garcia-Molina 1988).

PI: The priority of a transactional step of class WC,
is set to P—II;’ where PI,, is the current value of the
performance index for the class. The performance
index PI, of class WC, is defined as

PI, = —&
p Gp ’
where R, is the current estimate of average response
time for units of work of class WC,. R, is updated
upon termination of a unit of work T of this class as
follows:

R, «+ (1-a)-R, + a-R(T),

where R(T) is the response time of T and « is a
constant (0 < a < 1) that weighs the relative im-
portance of recent measurements of response time
against measurements of response time for units of
work that completed farther back in time. PI is
therefore an adaptive policy, as it considers satisfac-
tion of class performance goals, favoring transactions
of classes that at this particular decision instant are
more probable to exceed their specified response time

Adaptive Scheduling for Transactional Workflows 607

goal. This policy was proposed in Ferguson et al.
(1993) for single-transaction units of work.
Weighted-PI (W-PI): The priority of a step ¢ of
workflow class W, is set to Pﬂf;, where w; is a weight
coefficient computed as in the pseudo-code shown in
Figure 1, and PI, is the current value of the per-
formance index for WC,. The coefficient w; allows
for priority adjustment as the workflow proceeds with
the execution of its component steps, and each step
completion provides more insight as to whether the
workflow will meet its performance goal. The perfor-
mance index is included in the priority calculation so
as to incorporate some knowledge about the average
response time of class WC,. End-users are primar-
ily interested in the response time of workflows rather
than individual steps, therefore it is necessary to con-
sider the current status of workflow classes regarding
their performance goals as well as the response time
of previously completed transactional steps, so as to
maintain some control over CPU contention among
concurrent workflows. The w; coefficients depend on
the response time of previously completed steps of a
workflow, as well as on the inherent resource require-
ments of remaining steps.

Weighted-Task-Goal (W-T): This is a simplifica-
tion of W-PI. The priority of a step t of class W}, is
set to wy - g(t). This policy is expected to be less re-
sponsive to workload dynamics than W-PI, as it does
not explicitly consider the current status of workflow
classes regarding goal satisfaction.

Let us denote prio,,; the priority assigned to trans-
actional step Tp. The pseudo-code in Figure 1 defines
how the w; coefficients are adjusted after each trans-
actional step completion in the workflow, based on
feedback from previous steps.

The function F(wm,7pt,9(Tpt)) referenced in Fig-
ure 1 determines the amount by which the w,, weight
coefficients are adjusted when a transactional step
misses its response time goal:

ot — 9(Tpt)
Q(Tpt) .

The intuition behind this definition of function
F(wm,7pt,9(Tpt)) is that when a step in a workflow
misses its goal, thus making the performance goal for
the workflow class harder to achieve, the next step
should be “expedited” so as to cover for the previous
step’s delay.

F(wm)"'ptag(Tpt)) = Wm

4 ROUTING POLICIES

In general, minimizing average response time will not
satisfy performance goals. Rather, the objective of

t:=1;

9(Tpm)

W, = = ,
" " 9(Tpm)

while (t < n,) {

form=1,...,np;

Initiate-Transaction(Ty:, service-node, priop:);
/* Assign priority index priop to the transaction
initiation request for Tp¢. Use priop: as the priority
for task Ty, relay request to service-node */
Wait-for-Transaction-Completion(T}y.) ;

/* Wait for service-node to send notification of the
completion of Tp. Service-node also sends the
actual response time, rp, of Tpe. */

— 9(Tpm) _ .
Wm = m, form——t+l,...,np)
if(rpe > g(Tpe)) {
/* Tyt missed its response time goal */

Wil = Wil — Z:’=t+2 F(wm,7pt, 9(Tpe)) 5
Wm = Wm +F(wmyrpt)g(TPt))’

form=t+2,...,np;

N

=t+1;

Figure 1: Priority Assignment Based on Feedback

workload management should be to maximize the sys-
tem throughput at which class goals are still met.

In Ferguson et al. (1993) a set of goal-oriented
routing algorithms for multiple systems coupled in a
Shared-Nothing architecture are presented. For each
incoming transaction, the effect of assigning it to each
available node is evaluated by computing an estimate
of the response time of the transaction (if it is routed
to that node), and using it to compute the effect of
this routing decision to the goal satisfaction of all
transaction classes.

These algorithms can be extended to take advan-
tage of information about how a workflow is doing
with respect to its goal that becomes available as suc-
cessive steps complete. We are currently working on
modifications of the response time estimate used by
these algorithms so as to take into consideration the
fact that a transaction may have to access interme-
diate results produced by a previous transaction in
the workflow that has been placed in a recoverable
queue at some node, so as to enable the routing algo-
rithms to take into account the affinity to queued data
that a workflow begins to exhibit as its steps com-
plete their execution one after the other. This type
of affinity is quite different from affinity to database
partitions that is determined primarily by the design
of the database, as affinity to queued data evolves
with time. We plan to evaluate by simulation combi-

608 Marazakis and Nikolaou

nations of these modified routing algorithms with the
scheduling policics discussed in Section 3.

An important issue is queue placement, i.e. the sc-
lection of the node at which the records produced by
a workflow step are to be stored so that a subsequent
transactional step can access them. As a first ap-
proximation, we arc considering a static assignment
of queues to nodes. This seems to be a natural choice,
especially for business environments where workflows
have to access several database servers, as in the case
of workflows that require access to data from different
departments of an enterprise.

5 EXPERIMENTAL EVALUATION

In this section we present a number of simulation ex-
periments for the evaluation of the scheduling algo-
rithms of Section 3, for a workload consisting of two
workload classes WC1, W(C2. For this evaluation, we
consider a single-node system.

5.1 Simulation Model

Our evaluation is based on a detailed simulation
model of a transaction processing facility that sup-
ports a queueing facility. The simulator is built in
C on top of a threads-based simulation support li-
brary, PARASOL (Neilson 1991), and a parser that
processes a high-level description of the system con-
figuration and workload in order to configure the sim-
ulated run-time environment according to user spec-
ifications.

The simulator fully emulates concurrency control
(two-phase locking with deadlock detection), buffer
management (global LRU), logging (including group
commit), CPU scheduling, I/O scheduling, queue
management, and distributed two-phase commit. It
implements the transaction and workflow execution
model described in previous sections, and collects
performance-related statistics per workload (transac-
tion and workflow) class. For multi-transaction units
of work, we provide an explicit specification of control
and data flow using a C-function that implements this
flow as a series of transactions submitted in a chain
fashion.

The main metrics that we consider in our evalua-
tion of scheduling policies for multi-transaction units
of work are the maximum performance index over all
workflow classes, and the violation distance metric,
which is a convenient single-figure performance char-
acterization defined as

R,-G
VD = p__ P
WXC:maI{ e ,0},

where R, is the average response time, as measured
during system operation, for workflow class W C), that
has a response time goal Gp.

We model a system with a 50 MIPS CPU, and a
scheduling quantum of 10 msec. I/O access delay
is modeled in detail by the simulator, taking into ac-
count device-specific cost parameters (like the average
seek delay). In our experiments, the average I/O ac-
cess delay was approximately 20 msec. The database
pages are allocated to 2 disks, in a round-robin man-
ner, and there is a seperate log disk. We consider a
skewed access pattern for the database: 80% of the
accesses refer to 20% of the data pages. The size of
the database is taken to be 50,000 pages, while the
database buffer can hold up to 20% of the database
pages, and uses the LRU replacement policy. We as-
sume that 80% of all accesses are updates. We are
interested in studying the performance impact of the
scheduling policies of Section 3 under high load con-
ditions.

There are two workflow classes, with equal arrival
frequency, and 4 different transaction classes. Work-
flow class W1 consists of a chain of 3 transactions,
of classes A, B, D respectively, whereas workflow class
W2 consists of a chain of 5 transactions, of classes
C, A, B, D, C respectively. We model transactions
as a sequence of database accesses, interleaved with
bursts of CPU processing. Table 1 defines the (syn-
thetic) transaction classes A, B, C, D by giving their
average application pathlength, and the minimum
and maximum number of database accesses that they
perform. Table 2 shows the cost for several system
functions that affect the response time of transac-
tions, measured as instruction counts (pathlengths).

Table 1: Transaction Class Profiles

avg application | min/max

transaction class pathlength | DB calls
TX-CLASS-A 40,000 1-4
TX-CLASS-B 60,000 1-8
TX-CLASS-C 80,000 1-12
TX-CLASS-D 100,000 1-16

5.2 Simulation Results

Several simulation experiments were carried out in or-
der to investigate the impact of the scheduling policies
presented in Section 3, for a number of users that si-
multaneously submit multi-transaction units of work
for service. We assume a closed queueing model, i.e.

Adaptive Scheduling for Transactional Workflows 609

Table 2: Pathlengths for System Functions

system function | # instructions

task initiation/termination 15,100
data manager interface 2,000
DB call processing 4,000

data I/O processing 10,000
logging I/O processing 5,000
commit 12,000

each user is modeled as a source that submits a re-
quest, waits until the system services the request, and
then waits for a period of time (“think time”) before
submitting the next request. Think time is assumed
to be exponentially distributed, with a mean of 5 sec-
onds, and the number of users is set to 50. The objec-
tive is to get a “snapshot” of the simulated system’s
performance under high load conditions. For each re-
ported data point we performed § simulation runs for
an interval of 3600 seconds of simulated time. We set
the response time goal Gw 2 for class WC2 to 5 sec-
onds, and vary the goal Gw¢; for class WC'1. Table
3 summarizes the measurements of the performance
indices for WC1, W2, for the simulated system con-
figuration. Figure 2 presents the measurements of

VD vs goal for WC1

—e—nAn
| —m- 8 TATIO
e PY

e W-PI
——wW-T

Figure 2: Violation Distance for Workflow Classes

max Pl vs goal for WC1

1.5 2 25 3 a5 4 4.5 5
goal for WC1

Figure 3: Maximum Performance Index

the violation distance metric. Figure 3 summarizes
the measurements of the maximum performance in-
dex, thus allowing us to visualize the impact of the
proposed scheduling policies on performance goal sat-
isfaction.

Depending on system load, the system configura-
tion, and the resource allocation policies adopted, a
performance goal specification may not be achievable.
The scheduling policy has to balance the allocation
of CPU cycles to transactions executing on behalf of
the competing workflow classes.

The W-PI policy is the only one that achieves to
keep class average response times within 10% of the
specified performance goals, when the goal for WC1
is set to 3.5 sec, or higher. W-PI considers the goal
specification for the workflow class, the current sta-
tus of the class regarding goal satisfaction, and some
form of feedback on the response time of previous
steps, which makes it more responsive to workload
dynamics than the other policies that we studied.
The RR policy provides a baseline for comparison,
while the rest of the policies consider only subsets of
the factors that W-PI considers, therefore they can-
not fully support goal-oriented scheduling. W-T does
not consider goal satisfaction of workload classes, re-

610 Marazakis and Nikolaou

lying mainly on feedback about each individual step,
given the subgoal assigned to each step. For unachiev-
able goal specifications, this policy fails, as subgoals
are computed as portions of the specified class goal.
This failure is aggravated by the fact that at high
load the simulated system exhibits a high lock con-
flict rate. CLASS-PI appears to be quite stable, as
it tracks the performance index and adapts accord-
ingly. W-PI, which also tracks the response time
of individual steps, achieves better performance for
achievable goal specifications ; however, for “unreal-
istic” goal specifications its dependence on feedback
about subgoals makes it lose its edge over CLASS-PIL
On the other hand, STATIC achieves better perfor-
mance than the adaptive policies for short response
time goals for W1, which cannot be satisfied by the
system. The problem with STATIC is that it is bi-
ased against classes with higher response time goals.
When the goal for W' is set to 3 seconds, or higher,
Table 3 shows that STATIC keeps the performance
index for WC1 below 1.0, while W2 misses its goal.

Table 3: Measured Class Performance Indices

Gwel Performance Indices
Class | RR | sTATIC| PI| W-PI| w-T
1.5 wct || 2.378 1.548 | 1.963 | 2.053 | 2.652
wcz || 1.136 1.241 | 1.046 | 1.243 | 1.166
2.0 wct || 1.781 1.459 | 1216 | 1.372 | 1.779
wcz | 1.113 1.319 | 1.256 | 1.358 | 1.149
25 wct || 1.363 1.430 | 1.403 | 1.311 | 1.359
wc2 || 1.311 1.509 | 1.133 | 1.210 | 1.293
3.0 wct || 1101 0.745 | 1.032 | 1.454 | 1.065
wcz || 1.397 1.197 | 1.346 | 1.366 | 1.255
35 wct || 1.007 0.945 | 1.131 | 0.843 | 0.828
wec2 || 1.426 1.509 | 1.194 | 1.095 | 1.420
4.0 wct || o.884 0.755 | 0.808 | 0.868 | 0.802
wcz || 1.274 1.283 | 1.296 | 0.939 | 1.283
45 wct [0931 0.599 | 0.970 | 0.768 | 0.570
wce || 1.697 1.344 | 1.165 | 1.100 | 1.283
5.0 wct || 0.754 0.566 | 0.649 | 0.586 | 0.610
wee || 1157 1.236 | 1.216 | 0.957 | 1.311

6 CONCLUDING REMARKS AND DI-
RECTIONS FOR FUTURE WORK

It is our view that goal-oriented resource management
policies can offer considerable benefits in workflow
processing environments. Our work or: extensions of

techniques previously studied for single-transaction
units of work to a restricted but nevertheless impor-
tant class of workflow models provides motivation for
further work in this area. It is clear however that a
more formal treatment of the scheduling problem for
workflows is required. To this end, an important re-
sult is presented in Bhattacharya et al. (1991), which
presents a stochastic optimization formulation for the
scheduling problem for units of work that have to visit
a number of queueing nodes, assuming a single server
that has to be allocated to one of the nodes at a time,
in a non-preemptive manner. An instance of this ab-
stract system model could be a single CPU and a
number of software servers, such as database man-
agers. A disadvantage is that the solution technique
is very complex, making practical implementation a
challenge. Furthermore, it is not clear how to extend
this result to the case of multiple resources, as in a
distributed transaction/workflow processing system.

As pointed out in Denning (1994), the process of
estimating performance metrics for complex units of
work is complicated by the need to correlate the in-
dividual steps of a unit of work. The design and
implementation of low overhead, scalable monitoring
schemes is therefore particularly important, as an es-
sential aid to adaptive workload management. For
distributed systems, state propagation algorithms, as
well as sampling techniques to control monitoring
overhead, must be studied. Another important prob-
lem is the interaction between various adaptive re-
source managers. As a specific example, we are study-
ing the combined use of an adaptive task scheduler
with an adaptive transaction router, in an environ-
ment where queues managed by the TP monitor pro-
vide inter-transaction communication. As different
resource managers have control over different control
parameters, which may adversely affect one another,
it is important to study stability issues. Interacting
resource managers are essential for integrated perfor-
mance management within a framework that enables
the specification of performance goals per workload
class.

ACKNOWLEDGMENTS

The work reported in this paper was funded by the
LYDIA (ESPRIT III BRA 8144) research project.

REFERENCES

Abbot, R., and H. Garcia-Molina. 1988. Scheduling
real-time transactions: a performance evaluation.
In Proceedings of the 14th VLDB Conference, pp-
1-12.

Adaptive Scheduling for Transactional Workflows 611

Bernstein, P. 1990. Transaction processing monitors.
Communications of the ACM, vol. 33, no. 11, pp.
75-86.

Bernstein, P., M. Hsu, and B. Mann. 1990. Imple-
menting recoverable requests using queues. In Pro-
ceedings of the 1990 ACM SIGMOD Conference on
Management of Data, pp. 112-122.

Bhattacharya, P., L. Georgiadis, and P. Tsoucas.
1991. Optimal adaptive scheduling in multi-class
M/GI/1 queues with feedback. In Proceedings of
the 29th Allerton Conference on Communication,
Control and Computing, pp. 312-321.

Biliris, A., S. Dar, N. Gehani, H. V. Jagadish, and
K. Ramamritham. 1994. ASSET: a system for
supporting extended transactions. In Proceedings
of the ACM SIGMOD Conference on Management
of Data, pp. 44-54.

Breitbart, Y., A. Deacon, H. J. Schek, A. Sheth, and
G. Weikum. 1993. Merging application-centric and
data-centric approaches to support transaction-
oriented multi-system workflows. ACM SIGMOD
Record, vol. 22, no. 3, pp. 23-30.

Dayal, U., M. Hsu, and R. Ladin. 1990. Organizing
long-running activities with triggers and transac-
tions. In Proceedings of the 1990 ACM SIGMOD
Conference on Management of Data, pp. 204-214.

Dayal, U., H. Garcia-Molina, M. Hsu, B. Kao, and
M. C. Shan. 1993. Third generation TP moni-
tors: a database challenge. In Proceedings of the
1993 ACM SIGMOD Conference on Management
of Data, pp. 393-397.

Denning, P. 1994. The fifteenth level. In Proceedings
of the 1993 ACM SIGMETRICS Conference, pp.
14.

Elmagarmid, A.K. (editor). 1992. Database transac-
tion models for advanced applications. San Fran-
sisco: Morgan Kaufmann.

Ferguson, D., C. Nikolaou, L. Georgiadis, and K.
Davies. 1993. Satisfying response time goals in
transaction processing systems. In Proceedings of
the 2nd International Conference on Parallel and
Distributed Information Systems, pp. 138-147.

Garcia-Molina, H., K. Salem. 1987. Sagas. In Pro-
ceedings of the 1987 ACM SIGMOD Conference on
Management of Data, pp. 245-259.

Georgakopoulos, D., M. Hornick, and A. Sheth. 1995.
An overview of workflow management: from pro-
cess modeling to workflow automation infrastruc-
ture. Distributed and Parallel Databases, vol. 3,
no. 2, pp. 119-153.

Gray, J. 1978. Notes on database operating systems.
In Operating Systems: An Advanced Course,
ed. R.Bayer, R.M. Graham and G. Seegmuller.
Springer-Verlag Lecture Notes in Computer Sci-

ence, vol. 60, pp. 393-481. New York: Springer-
Verlag.

Gray, J. 1981. The transaction concept: virtues and
limitations. In Proceedings of 7th International
VLDB Conference, pp. 144-154.

Gray, J., and A. Reuter. 1993. Transaction process-
ing: concepts and techniques. San Fransisco: Mor-
gan Kaufmann.

Kageyama, Y. 1989. CICS Handbook. New York:
Intertext Publications/McGraw-Hill.

Neilson, J. E. 1991. PARASOL: a simulator for dis-
tributed and/or parallel systems. Technical Report
SCS-TR-192, Carleton University, Canada.

Noonan, J. 1989. Automated service level manage-
ment and its supporting technologies. Mainframe
Journal, October 1989, pp. 102-103.

Sherman, M. 1993. Architecture of the Encina dis-
tributed transaction processing family. In Proceed-
ings of the 1993 ACM SIGMOD Conference on
Management of Data, pp. 460-463.

Speer, T. and M. Storm. 1991. Digital’s TP moni-
tors. Digital Technical Journal, vol. 3, no. 1, pp.
18-32.

AUTHOR BIOGRAPHIES

MANOLIS MARAZAKIS is a graduate student
at the Computer Science Department of the Univer-
sity of Crete, Greece and a research assistant at ICS-
FORTH, Heraklion, Crete. His research interests in-
clude transaction management, and workload man-
agement of parallel and distributed systems.

CHRISTOS NIKOLAOU is an Associate Profes-
sor at the Computer Science Department of the Uni-
versity of Crete, Greece and a Researcher at ICS-
FORTH, Heraklion, Crete, where he is the head of
the Parallel and Distributed Systems Group. Coor-
dinator of LYDIA, ESPRIT III BRA 8144 on load
balancing for distributed systems. From 1981 un-
til 1992 he was a Research Staff member and then
a Research Staff Manager at the IBM T.J. Watson
Research Center in Yorktown Heights New York. He
was awarded the IBM Outstanding Innovation Award
for his scientific contributions on goal-oriented work-
load management. He holds an M.Sc. and a Ph.D.
from Harvard University. He is an IEEE Senior Mem-
ber and Chairman of the Executive Committee of
ERCIM (European Consortium on Informatics and
Mathematics). His research interests include parallel
and distributed systems and databases, and economic
models for resource allocation.

