Proceedings of the 1995 Winter Simulation Conference
ed. (. Alexopoulos, K. Kang, W. R. Lilegdon, and D. Goldsman

AUTOMATED LOAD BALANCING IN SPEEDES

Linda F. Wilson

Institute for Computer Applications
in Science and Engineering

Mail Stop 132C, NASA Langley Research Center

Hampton, Virginia 23681-0001, U.S.A.

ABSTRACT

Parallel discrete-event simulation offers the poten-
tial for significant speedup over sequential simulation.
Unfortunately, high performance is often achieved
only after rigorous fine-tuning is used to obtain an
efficient mapping of tasks to processors. In practice,
good performance with minimal effort is often prefer-
able to high performance with excessive effort.

In this paper, we discuss our research in adding au-
tomated load balancing to the SPEEDES simulation
framework. Using simulation models of queuing net-
works and the National Airspace System, we demon-
strate that using run-time measurements, our auto-
mated load-balancing scheme can achieve better per-
formance than simple allocation methods that do not
use run-time measurements, particularly when large
numbers of processors are used.

1 INTRODUCTION

Ideally, parallel discrete-event simulation (PDES) is
used to obtain significant speedups over sequential
simulations. In reality, high performance is diffi-
cult to obtain. As noted by Nicol and Heidelberger
(1995), “PDES is an unusually tricky branch of par-
allel processing” because high performance cannot
be achieved unless the system 1s fine-tuned to bal-
ance computation, communication, and synchroniza-
tion requirements. In particular, PDES cannot make
a significant impact on practical discrete-event sim-
ulation unless tools are developed to automate the
tuning process with little or no modification to the
user’s simulation code.

In a typical PDES, components of the system un-
der examination are mapped into logical processes
(LPs) that can execute in parallel. The LPs are
distributed among the physical processors, and com-
munication between LPs 1s accomplished by passing
messages. If LPs are distributed among the proces-

590

David M. Nicol

Department of Computer Science
The College of William and Mary
P. O. Box 8795
Williamsburg, Virginia 23187-8795, U.S.A.

sors such that interprocessor communication is mini-
mized, some processors may sit idly waiting for some-
thing to do while others are overloaded with work. At
the other extreme, a “perfectly-balanced” workload
may yield poor performance due to high communica-
tion costs. Thus, load-balancing strategies must find
a compromise between distributing work evenly and
minimizing communication costs.

In this paper, we describe our early experiences
in developing an automated load-balancing strategy
for the SPEEDES simulation environment. Ulti-
mately our goal is to use run-time measurements of
simulation workload to guide automated remapping
mechanisms. Towards that end we investigate here
the increased performance one might achieve using
a load-balancing algorithm that uses run-time mea-
surements, as opposed to those that do not. Sec-
tion 2 presents background material on SPEEDES
while Section 3 describes the load-balancing method-
ology and the modifications made to SPEEDES t-.
automate the process. Section 4 presents results from
two models simulated on the Intel Paragon and com-
pares the execution times obtained by load balanc-
ing, default partitioning, and card dealing. Section 5
presents our conclusions.

2 SPEEDES

SPEEDES (Synchronous Parallel Environment for
Emulation and Discrete-Event Simulation) is an
object-oriented simulation environment that was de-
veloped at the Jet Propulsion Laboratory (Steinman
1991, 1992). Designed for distributed simulation,
SPEEDES supports multiple synchronization strate-
gies (including Time Warp, Breathing Time Buckets,
and Breathing Time Warp) that can be selected by
the user at runtime. In addition, SPEEDES provides
a sequential simulation mode (with most of the paral-
lel overhead removed) so that a particular simulation
model can be executed serially or in parallel, depend-



SPEEDES 591

ing on a runtime flag.

Developed using C++, SPEEDES uses an object-
oriented computational model. LPs are represented
by simulation objects that are derived from the base
class C_SIMOBJ. Each simulation object contains
state data along with methods to access, modify, and
analyze the data. Events are separate objects that are
derived from the base class C_CEVENT. Each event
is associated with exactly one simulation object. In
addition to exchanging data with that simulation ob-
ject, an event can change its state or schedule other
events.

To build a simulation program in SPEEDES, the
user must define simulation objects, object managers
for those objects, and events. An object manager
class must be defined for each type of corresponding
simulation object. For example, an airport object
class (AIRPORT_OBJ) must have a corresponding
airport manager class (AIRPORT_-MGR). The object
managers are responsible for creating and managing
the set of simulation objects. Thus, the user (through
the object managers) is completely responsible for the
mapping of the simulation objects to the processors.

While SPEEDES gives the user freedom to choose
an appropriate mapping, it is quite likely that the
user does not know a priori how to choose a good
allocation of objects to processors. The general map-
ping problem is NP-complete, so optimal mappings
are extremely difficult to obtain. Furthermore, many
users and potential users of PDES would prefer to let
“the system” make such decisions, especially if the
resulting performance is “good enough”. In the next
section, we describe the steps we took to automate
the load-balancing process within SPEEDES so that
the user can concentrate on the model rather than
the implementation.

3 AUTOMATED LOAD BALANCING

Our work with SPEEDES began with developing
a port for the Intel Paragon. Starting with the
socket-based version for workstations, we rewrote
the SPEEDES communication library to 1) take
advantage of the Paragon’s native communication
and global reduction operations and 2) optimize the
higher-level communication routines for the Paragon.

Once the port was complete, we modified
SPEEDES to collect data on the workload character-
istics of a simulation. Simulation objects determine
the resolution of the partitioning since each event is
connected to exactly one simulation object. To esti-
mate the amount of computation required by a par-
ticular object, we modified the C_SIMOBJ base class
to count the number of events that a simulation ob-

Ject processed and the number of those events that
were committed. Notice that a large discrepancy in
the numbers of the processed and committed events
could indicate a load imbalance on the processor con-
taining that object.

Next, we needed to determine the communication
requirements between simulation objects. SPEEDES
handles all communication (including the creation
of events) through messages. We modified the
C_SIMOBJ base class to keep counts of all messages
sent to each destination object. The message counts
include all messages that were transmitted, including
antimessages.

The event and message counts are collected and
saved in data files during a single run of the simula-
tion. SPEEDES is instructed to collect the data (for
one run) and use the data (in another run) for load
balancing through the use of runtime flags. The data
1s analyzed by the mapping algorithm described be-
low, that determines the load-balancing allocation of
simulation objects to processors.

One may use the enhancements “as is” to gather
information during a training run, and thereafter us~
a mapping based on the once collected run-time in-
formation. We see the ultimate application of the
algorithm as part of a run-time remapping system,
such as that reported in (Nicol and Mao, 1995). That
algorithm first arranges the LPs in a linear chain,
then partitions the chain in as many contiguous sub-
chains as there are processors, mapping one subchain
per processor. The partition chosen minimizes the
amount of work assigned to the most heavily loaded
processor, where the computation weight of a proces-
sor is the sum of measured computation weights of
its LPs, and the computation weight of an LP is the
number of committed events it executed. Given a lin-
ear ordering, this optimization problem can be solved
very quickly, e.g. in O(PM log M) time, where P is
the number of processors and M the number of LPs.

However, choice of an optimal linearization of LPs
is an NP-complete problem; choice of a “good” lin-
earization remains an open research problem. One
idea 1s to linearize so as to keep heavily communi-
cating LPs close to each other in the chain, thereby
increasing the chance that they will be assigned to
the same subchain. This intuition 1s 1s realized by a
recursive heuristic which at the first step “pairs” LPs
using a stable matching algorithm. Here the commu-
nication weight between two LPs is a measure of their
attraction; a stable matching is one where if A and
B are matched, and C' and D are matched, it is not
possible to break the matches and reassemble (e.g. A
and C, B and D) and have higher attraction values
for both matchings. Two LPs that are matched will



592 Wilson and Nicol

be adjacent to each other in the linear ordering. We
then merge matched LPs into super-LPs, and com-
pute the attraction between two super-LPs as the sum
of the attractions between LPs in the two super-LPs.
Matching these, the sets of LPs represented in two
matched super-LPs will be adjacent to each other in
the linear ordering. This process continues until there
is a single super-LP. This process does not uniquely
specify a linearization as it does not assign a left-right
ordering to matched pairs. At present the left-right
ordering is arbitrary.

The experiments reported in (Nicol and Mao 1995)
use measured communication rates between LPs
(messages per unit simulation time) as the base at-
traction function between LPs. This is suitable so
long as there is only weak correlation between the
communication between two LPs, and their computa-
tion weights. However, many simulations have “hot
spot” simulation objects that perform most of the
work. Typically, the hot spots have large amounts
of communication with other hot spots. In our ex-
perience, using communication rates as the attrac-
tion function often clustered the hot spots together
which resulted in poor load balancing. To “spread
out” the hot spots, we adding large negative edge
weights between hot spots to discourage such cluster-
ing. For the simulations we studied (described in the
next section), this modification to the edge weights
improved the balance of work and reduced execution
times. Clearly more work is needed to find attrac-
tion functions that balance linearization’s conflicting
requirements of computational spread and low com-
munication costs.

While the linear ordering determines the load-
balanced mapping of simulation objects to proces-
sors, the SPEEDES user must choose to use that
mapping when objects are created by the object
managers. To assist the user, we added three
functions to SPEEDES: LB_is_avail(), is_local_-
object(objnum), and is_local object(objname).
The LB_is_avail() function is used to determine
if the load-balancing data is available for use dur-
ing this run (i.e. it was collected during a previous
run). Thus, the user can write an object manager
that uses a default mapping if data is not avail-
able and the load-balanced mapping if it is. The
is_local_object(objnum) function is used to deter-
mine if the simulation object with global ID num-
ber objnum should be created on this node while
is_local_object(objname) provides the same infor-
mation based on a user-defined object name. Notice
that the automated mapping will be inappropriate
unless the global ID numbers and object names are
consistent from one run to the next.

4 RESULTS

We applied the automated load balancing in
SPEEDES to two simulation models: a fully-con-
nected queuing network and the DPAT model of the
National Airspace System. In this section, we dis-
cuss the two models and present results from execu-
tion of the simulations on a 72-node Intel Paragon.
Furthermore, we compare the results obtained from
automated load balancing with those obtained from
default partitioning and card dealing.

4.1 Qnet Simulation

Queuing networks are often used as PDES bench-
marks because they can be difficult to simulate (Nicol
1988; Steinman 1991). Thus, we examined a fully-
connected queuing network (Qnet) as the first test of
our automated load-balancing system.

The Qnet simulation contained 1600 fully-
connected servers, where each server was initially as-
signed 50 customers. As Steinman (1991) noted, a
homogeneous network of queues can be quite uninter-
esting from a load-balancing viewpoint because “card
dealing tends to work very well.” Thus, we forced sev-
eral queues to be “hot spots” to make the simulation
more interesting. We examined three different Qnet
scenarios.

1. 10 hot spots uniformly distributed among all
1600 servers, Prob(customer exiting queue needs
service at hot spot)= .125

2. 10 hot spots uniformly distributed among the
middle third of the servers, Prob(customer ex-
iting queue needs service at hot spot)=.125

3. 20 hot spots uniformly distributed among all
1600 servers, Prob(customer exiting queue needs
service at hot spot)=.250

Uniform distributions were used so that the cus-
tomers did not show any preference for a particular
server (hot spot or otherwise). Notice that the inten-
sity of the hot spots (i.e. the amount of work each
hot spot received) depended on the probability that
an exiting customer (from any server) would go next
to one of the hot spots.

For the simulations discussed in this paper, we used
the optimistic Breathing Time Warp (BTW) syn-
chronization protocol. Created by Steinman (1993),
Breathing Time Warp combines the Time Warp and
Breathing Time Buckets protocols. At the beginning
of each global virtual time (GVT) cycle, messages
are sent aggressively using Time Warp. Later in the
cycle, all messages are sent risk-free using Breathing
Time Buckets.



SPEEDES 593

Two runtime parameters in SPEEDES determine
the amount of risk in the BTW protocol: Nrisk and
Nopt. For the first Nrisk events processed after the
last GVT computation, messages are released imme-
diately to the receiver (Time Warp). For the events
from Nrisk to Nopt (where Nrisk < Nopt), event mes-
sages are cached locally and the evert horizon is com-
puted (Breathing Time Buckets).

The Breathing Time Warp parameters used for the
Qnet simulation were Nrisk = 1500 and Nopt = 3000.
These parameters were determined by conducting
various runs of the Qnet simulation (using the de-
fault partitioning) on different numbers of processors.
Overall, these parameters gave the shortest execution
times.

For the Qnet simulation, the default mapping of
simulation objects to processors used block partition-
ing. Specifically, n objects were allocated to p pro-
cessors by placing the first n/p objects on the first
processor, the next n/p objects on the second proces-
sor, and so forth. For comparison, we also examined
the card-dealing approach in which the first object
is placed on the first processor, the second object is
placed on the second processor, etc., until all of the
objects have been dealt to processors.

Figure 1 presents results for Qnet Simulation #1
in which 10 hot spots were uniformly distributed
among the 1600 servers. For automated load bal-
ancing, we obtained the best results using committed
event counts for computation weights and adding neg-
ative edge weights for hot spots to discourage cluster-
ing. For small numbers of processors, the execution
times using default partitioning, card dealing, and au-
tomated load balancing were basically the same. For
large numbers of processors, load balancing was the
fastest while default partitioning was generally bet-
ter than card dealing. Notice that when 64 processors
were used, card dealing found a “lucky” mapping and
thus matched the execution time obtained by load
balancing.

Figure 2 presents results for Qnet Simulation #2 in
which 10 hot spots were uniformly distributed among
the middle third of the 1600 servers. Correspond-
ing to the results from Simulation #1, load balancing
gave the best execution times when the number of
processors was large. Notice that the default (block)
partitioning was the worst method. This poor per-
formance is not surprising since the hot spots were
clustered in the middle third of the objects and hence
the workload was not evenly distributed. In this case,
card dealing gave reasonable performance because it
was able to break up the hot spots.

Figure 3 presents results for Qnet Simulation #3 in
which 20 hot spots were uniformly distributed among

the 1600 servers. In this case, the hot spots were “hot-
ter” than the hot spots in the previous Qnet simula-
tions, so default partitioning and card dealing had
trouble with balancing the workload evenly among
the processors. In this case, automated load balanc-
ing gave execution times that were much better than
those obtained by the other two methods. When 12
or more processors were used, automated load bal-
ancing improved execution times by 22-77%.

It should be noted that when 64 processors were
used, Qnet Simulation #3 using card dealing could
not complete execution until the Nrisk parameter was
reduced from 1500 to 150. In this case, the workload
imbalance led to an avalanche of antimessages that
slowed and eventually stalled the system after a few
hundred seconds. The last data point for card dealing
in Figure 3 was obtained using Nrisk = 150 while all
of the other points were based on Nrisk = 1500.

For each of the Qnet simulations, automated load
balancing made little or no improvement over block
partitioning and card dealing when small numbers of
processors were used. However, it gave good results
when large numbers of processors were used, and th-
results were more consistent than those obtained by
block partitioning or card dealing.

Given the uniformity of the communication pat-
terns (excluding the hot spots), the interobject com-
munication was probably not much of a factor for this
simulation. Instead, the automated load balancing
took advantage of its ability to examine the compu-
tation weights of each object while the other methods
examined only object counts.

4.2 DPAT: A Model of the National Airspace
System

For the last several years, the MITRE Corpora-
tion has been studying the National Airspace System
(NAS), which encompasses all commercial and gen-
eral aviation air traffic in the United States (Wieland,
Blair, and Zukas 1995). On a typical day, the NAS
consists of 45,000 to 50,000 flights from approxi-
mately 16,000 airfields. The commercial air traf-
fic is handled by roughly 1000 airports while 80%
of the general aviation traffic is handled by the top
500 airports. In addition to the airfields, the NAS
contains 701 three-dimensional regions called sectors
that cover the airspace between airports.

MITRE recently developed a PDES model of the
NAS called DPAT (Detailed Policy Assessment Tool)
that 1s used to examine the average delay encountered
by aircraft under various weather and traffic condi-
tions. As discussed by Wieland, Blair, and Zukas
(1995), the physical NAS system is a good candidate



Wilson and Nicol

594
250 T T T T
Default -&--
Card Dealing -8---
200 Load Balancing -

150

100

Execution Time (sec)

50

0
4 8 1216 24 32 48 64

Processors

Figure 1: Results for Qnet Simulation #1 (10 hot spots uniformly distributed)

250 g T T T T T T
Default -&--
Card Dealing 8-
200 R Load Balancing ——
g !
«é 150
[_‘
3
2
5 100
Q
5
S0
0 1 1 1 1 1 1
4 8 12 16 24 32 48 64

Processors

Figure 2: Results for Qnet Simulation #2 (10 hot spots in middle third)

160 T T T T T T
Default -&--
140 Card Dealing -8---
Load Balancing —o—
_ 120
8
- 100
B
=
= 80
-2
3 60
&
40
20
0 T 1 L L
4 8 12 16 24 32 48 64

Processors

Figure 3: Results for Qnet Simulation #3 (20 hot spots uniformly distributed)



SPEEDES

for PDES because the aircraft, air traffic controllers,
and airports operate naturally in parallel.

The DPAT model contains SPEEDES simulation
objects for 520 airports and 701 sectors. Events in
the system include takeoffs, landings, and transfers
of aircraft between sectors. Scheduling data from
the Official Airlines Guide (OAQG) is used to schedule
commercial flights while general aviation flights are
scheduled stochastically. Details of this model can be
found in (Wieland, Blair, and Zukas 1995).

The DPAT simulation begins by reading in large
files of flight and airplane data to initialize system
parameters and schedule initial events. When we first
executed DPAT on the Intel Paragon, we encountered
severe performance problems due to memory paging.
In particular, the aggregate size of the executable and
data exceeded the roughly 23 MBytes per node of
user-available memory. After discussing the problem
with MITRE, we modified the program to use a sub-
set of the aircraft data. This modification eliminated
the memory problems (when multiple processors were
used) without reducing the amount of computational
work required.

The DPAT simulation organizes the airports and
airspace sectors into geographic groupings called cen-
ters. For example, the La Guardia, Kennedy, and
Newark airports in New York and New Jersey belong
to a center that contains the airspace sectors around
those airports. The Los Angeles and San Francisco
airports belong to different centers because of the dis-
tance (and number of other airports) between them.
These geographic centers form the basis for DPAT’s
default partitioning of simulation objects to proces-
SOrS.

Given that a flight must travel through contiguous
sectors between airports, it is logical to assume that
a geographical partitioning of the airports and sec-
tors will reduce communication costs. The problem,
however, is that the geographic distribution may not
result in an even distribution of work. With DPAT,
the airports and sectors are divided among 22 cen-
ters, where the “laziest” center is associated with 421
events and the busiest center has 20963. Even if more
than 22 processors are used, only 22 will receive work.
This center-based approach serves as the default map-
ping for DPAT.

As an alternative, the card-dealing approach as-
signs an equal number of objects to each processor
without regard for interobject communication. Fur-
thermore, card dealing has no knowledge of relative
weights of the objects, so the work may not be evenly
distributed after all.

We executed DPAT on the Intel Paragon us-
ing three different mappings: default (center-based),

595

card dealing, and load balancing. For consistency,
all of the runs were taken with Nrisk = 250 and
Nopt = 500, which were determined from the best
timings of the default partitioning.

Figure 4 presents results for the DPAT simulation
under the default (center-based) allocation, card deal-
ing, and load balancing. It is easy to see that the
default mapping gave the worst results. However,
we were surprised to see that card dealing and au-
tomated load balancing gave very similar results for
up to 24 processors. It appears that the wide vari-
ety of computational weights for the objects made it
easy for card dealing to find fairly even distributions
of work. With very large numbers of processors (32 to
64), automated load balancing was better than card
dealing by 20-25%. Thus, automated load balancing
in SPEEDES can give significant improvement in ex-
ecution times when large numbers of processors are
used.

5 CONCLUSIONS

Given the simplicity of our approach, it seems to do
a good job! As expected, there is clearly benefit to
using run-time information in a fast, simple algorithm
to guide mapping. In general, card dealing provides
a good initial mapping for the collection of run-time
data. For further work, we will complete the cycle,
giving SPEEDES the ability to migrate objects to
implement at run-time the mappings based on run-
time information.

ACKNOWLEDGMENTS

This work was supported by the National Aeronau-
tics and Space Administration under NASA Con-
tract NAS1-19480 while the authors were in residence
at the Institute for Computer Applications in Sci-
ence and Engineering (ICASE), NASA Langley Re-
search Center, Hampton, VA 23681. Professor Nicol’s
work is also supported in part by NSF Grant CCR-
9201195.

We would like to thank Jeff Steinman and Fred
Wieland for their assistance with SPEEDES and
DPAT.

REFERENCES

Nicol, D. M. 1988. Parallel Discrete-Event Simula-
tion of FCFS Stochastic Queuing Networks. Pro-
ceedings ACM/SIGPLAN PPEALS 1988: Ezperi-
ences with Applications, Languages and Systems,
pp. 124-137.



