Proceedings of the 1995 Winter Simulation Conference
ed. C. Alexopoulos, K. Kang, W. R. Lilegdon, and D. Goldsman

CPSim: A TOOL FOR CREATING SCALABLE DISCRETE EVENT SIMULATIONS

Bojan Groselj

BoyanTech, Inc.
7601 Timberly Court
McLean, Virginia 22102, U.S.A.

ABSTRACT

CPSim is a tool that was originally designed for par-
allel simulations. A strict separation between the
CPSim kernel and its application library enabled the
creation of a serial version, preserving the user inter-
face in the process. In other words, the same source
simulation program written in C that uses the CPSim
library may be compiled to run on a personal com-
puter or on a multicomputer. This paper presents the
CPSim programming model that enabled scalability
and portability. It is also shown that a CPSum simu-
lation executed on a single processor can outperform
a classical event-list simulation.

1 INTRODUCTION

Over the past years, the field of parallel discrete
event simulation (PDES) has matured and produced
several experimental as well as commercially avail-
able parallel simulation tools (Baezner, Lomow, and
Unger 1994, Nicol 1993, Nicol and Heidelberger 1994,
Steinman 1991, Waldorf and Bagrodia 1994). Fuji-
moto (1990) demonstrated that PDES is well suited
for many large discrete event simulations, such as
the simulations of communication systems, traffic,
computer networks, and computer systems. PDES
can handle much larger models and can handle them
more efficiently. In the commercial simulation world,
the main challenge is to parallelize the existing user-
friendly simulation tools. So far, no large commercial
vendor has invested time and money to develop a par-
allel simulation tool with the user interface of a serial
simulator. The primary reason is (still) a high cost
of parallel hardware, the secondary reason is a some-
what limited modeling capability, and last but not
least, developing efficient parallel simulation tools is
much riskier than developing fancy user interfaces.
Some commercial vendors of serial simulators are
aware, however, that the multiprocessors are becom-

579

ing increasingly affordable and that the simulations
of communication networks can be carried out effi-
ciently in parallel. In order for their clients to switch
from serial simulators to their parallel versions, they
have to provide the same graphical user interfaces,
and preserve the thousands of lines of code already
written for serial simulators. Since serial simulators
were not “wired” for parallel machines, they can be
ported to parallel machines only under certain condi-
tions. Among these conditions is ample parallelism in
the model (i.e., computationally intense simulations),
access to an underlying language, the ability to sched-
ule future events at known time-stamps, and most im-
portantly, the ability to compute positive lookahead
(Nicol and Heidelberger 1994). The positive looka-
head for a submodel A means that at certain simula-
tion time ¢, there exists a guarantee that submodel A
may not affect any other submodel until time s, where
s > t. A good lookahead enables many events to be
processed in parallel without any inter-processor syn-
chronization.

There exist other problems when porting serial sim-
ulators to parallel platforms. Among them are global
snapshots and global variables. Global snapshots
mean that at some simulation time, some global infor-
mation is required. In parallel world, this means that
the simulated objects have to be globally synchro-
nized. This problem can be handled by a conservative
PDES, using moving window protocols, for example,
and utilizing slightly old information (Nicol, Green-
berg, and Lubachevsky 1992). Global snapshots are
very difficult to implement in optimistic PDES, also
known as Time Warp (Jefferson 1985), because of the
high cost of global rollbacks. Note that the user’s
data have to be rolled back as well.

If a parallel simulation tool uses global variables,
then any processor should be able to access them.
This problem cannot be solved without an additional
communication/synchronization cost.

CPSim is a commercially available tool for creating

580

discrete event simulations, based on a variation of
conservative PDES (Groselj 1994). CPSim was devel-
oped primarily as a parallel simulation tool for large
high performance discrete event simulations. There-
fore, CPSim does not have a graphical user interface,
and the user is expected to be fluent in C. As an
experiment, CPSim was modified for serial simula-
tions, preserving the portability of the user source
code. Surprisingly, the serial version performed bet-
ter than a classical event-list sunulator.

Currently, the CPSim simulation model has to be
represented as a directed graph of communicating ob-
jects and all variables have to be declared locally in
each processor. The granularity of objects is defined
by the user. For example, a CPSim object can be
a telephone switch or the entire submodel of a su-
perposed serial simulator. (The preliminary studies
show that CPSim can be used as a parallel engine
for serial simulation tools such as MODSIM! or SES-
Workbench?.)

CPSim consists of the CPSim kernel and the CPSim
library. The CPSim kernel provides for synchroniza-
tion, scheduling, deadlock prevention and message
passing on multicomputer platforms. The CPSim li-
brary consists of C functions that are used to build
an application program. These functions enable sim-
ulation programmer to

e define the simulation model

o assign simulated objects to a selected number of
processors (automatically or manually)

e generate, appoint, and destroy events
e use various pseudorandom number generators
o print simulation reports

There exist two versions of the CPSim kernel,
CPSim 1.0 and CPSim 1.0s. The former is designed
for parallel architectures (e.g., iPSC/860%, CM-54,
networks), and the latter for uniprocessors (e.g., PCs,
workstations). The libraries are the same for both
versions. Therefore, the same application program
may run on a PC or on a CM-5.

Besides the obvious advantage of portability,
namely, that the same program can be executed on
different machines without any change of the source
code, there is also another advantage. A program
(possibly a scaled-down model) can be developed on

IMODSIM is a registered trademark of CACI Products
Company

2SES-workbench is a registered trademark of SES, Inc.

3iPSC and i860 are registered trademarks of Intel
Corporation.

4CM-5 is a trademark of Thinking Machines Corporation.

Groselj

a PC or a workstation, and fully debugged there using
a C debugging tool. After the program is running, it
can be scaled-up and executed on a parallel machine.
The user can specify the number of processors with-
out recompiling the program. From the user’s point
of view there is no difference between sequential and
parallel programming.

2 THE CPSim PROGRAMMING MODEL

The CPStm simulation model is a directed graph of
simulated objects. There is an arc from object A to
object B if object A can cause an event at object B.
An event is, for example, the arrival of a customer, a
signal, or a message. In CPSim 1.0, the input graph
is static. In future versions of CPSim, the graph may
be modified during the simulation.

The object graph is partitioned among the proces-
sors, so that the clusters of objects reside on differ-
ent processors. The underlying programming model
is event message passing. The events are passed be-
tween objects along the arcs of the object graph. If
two communicating objects reside in the same proces-
sor, then the event transmission consists of inserting
the event data structure into the appropriate input
queue of the recipient.

esend(inde:_sender, event, receiver);

evenl queue

(

processor |

esend(inde._sender, event, rec}eiver):

~ processor |

4
evenl queue

{

Figurc 1: Event Message Passing in CPSim

Besides regular event messages, CPSim employs the
so-called null messages. Null messages are synchro-
nization messages that carry time-stamps (or their
lower bounds) of future event messages.

Figure 1 shows the CPSim implementation of the
event message passing mechanism on a single pro-
cessor machine and on a parallel processor machine.

CPSim

In this example, object A causes an event at ob-
ject B. The user has to call function esend, where
index_sender is the index of object A, receiver is
the CPSim descriptor of object B, and event is the
pointer to the event data structure. Function esend
inserts event in the appropriate input queue of ob-
ject B. If object B is in the same processor, then the
event is simply appended to the B’s queue for the
events from A. If object B is located in a different
processor than A, then the event is inserted into B’s
mailbox. Events are delivered periodically. After B’s
processor receives the event, the event is appended to
the B’s queue for the events coming from object A.

Event-scheduling is done locally at each processor.
CPSim schedules an event of object A for process-
ing at simulation time ¢ only if object A cannot ex-
pect any events before simulation time ¢ (conservative
rule). Each object maintains a local simulation time
(LST). LST is the simulation time at which the object
is ready to accept another event. In general, LSTs are
not synchronized.

The objects that are allowed to process events ac-
cording to the conservative rule are unblocked, all
other objects are blocked. The main task of the CPSim
kernel is to unblock as many objects as possible. This
task is much easier to accomplish in the serial version.
The parallel version has to employ an additional pro-
tocol for deadlock prevention.

One of the benefits of a conservative PDES is that
the time-stamps of events that arrive at object B from
another object A are non-decreasing. Therefore, the
events can always be inserted at the tail of the queue.
This insertion takes constant time. The scheduling
(deletion) of an event takes slightly longer. For ex-
ample, let us assume that object B has three input
queues. The next event to be scheduled at B is one
of the events at the head of each input queue. In our
example, only three events have to be examined. If
the event with the smallest time-stamp is a non-null
event, then it can be processed immediately. If it is
a null event, then object B is blocked and the sched-
uler has to examine another object. The experiments
with CPSim show that on the average about one half
of all objects is unblocked. Hence, if the number of
input queues at each object is small, then the inser-
tion/deletion of an event takes constant time. This
fact explains why CPSim can outperform the event-
list simulation with O(log N') overhead per each event
insertion/deletion, where N is the size of the event
list. In CPSim, however, there exists additional over-
head associated with the procedure that increases the
time-stamps of null-messages. The overhead of this
procedure is O(log n) per event, where n is the num-
ber of objects located in the processor (Groselj 1994).

581

Note that in most simulations N is much larger than
n.

3 CREATING SIMULATIONS IN CPSim

The process of creating simulations in CPSim can be
best illustrated by Figure 2 below. The example is
simulation of message passing on a hypercube multi-
computer system (BoyanTech, Inc. 1994).

limestamp SOURCE
, type £ NODE ARRIVAL
Define evenl Jestinotion CHANNEL ARRIVAL
doto structure
nexl node
hops to dest.

Define
object
graph

Store object
descriptors in
local data structures

E.g. descriptor 3 to source(2].

case SOURCE:

~ find corresponding source

- update local simulation time
- generale NODE ARRIVAL

— send event lo appropriate node

cose NODE ARRIVAL:
— find corresponding node
— update local simulation time
— if node = deslination free event
else send CHANNEL ARRIVAL to
oppropriate channel

Wirite application
routines for different
types of events

case CHANNEL ARRIVAL:
— updale local simulotion time
— send NODE ARRIVAL to nexl node

Figure 2: Creating an Application

The model consists of the following objects: sources,
nodes, and channels. Each node has a corresponding
source that generates messages to random destina-
tions (i.e., other nodes). A node routes an incoming
message to one of the outgoing channels following the
shortest path from source to destination. Since there
are in general several equivalent paths, one is chosen
randomly.

The user has to first define the event data struc-
ture. Every event must have timestamp and
type fields. In this example, the user might
also define fields destination, next_node, and
hops_to_destination. Next step consists of defin-
ing the object graph. This procedure is accomplished

582

by calling the functions new1p and connect.l1p to
define new objects, and establish directed communi-
cation channels between them, respectively. The user
has to store the object descriptors returned by func-
tion new_1p in user’s private data structures. Finally,
the user has to write code for processing the particu-
lar events. The last step is standard in all event-based
simulations. The events in our example are: source
event (generation of a new message), node arrival,
and channel arrival.

4 PERFORMANCE

The performance of a CPSim simulation depends on
many factors, such as hardware, the size and topol-
ogy of the model, lookahead, pre-sampling of future
service times, the allocation of objects to processors,
and the rate at which the events are generated in sim-
ulation (BoyanTech, Inc. 1994). In general, determin-
istic CPSim simulations will run fast. A simulation is
considered deterministic if service times are constant,
they can be generated in advance (pre-sampling), or
the lower bounds on service times are larger than 0
(positive lookahead).

Running time [sec]
512 i

256 —
128 o
N
64
-]
32
16
°
8 |
4
1 2 4 8 16 32

Number of processors

Figure 3: Simulation Performance

Quite commonly, the size of the model is too large
to fit in a particular machine. Besides higher overall
speed, modern multicomputers provide a substantial
amount of memory, so they can handle larger models.
Figure 3 shows performance for the CPSim simulation
of a 5-dimensional hypercube on four different plat-
forms:

1. IBM/PC-AT® with Intel 80386 processor

5IBM and AT are registered trademarks of International
Business Machines, Inc.

Groselj

2. Sun SPARCsystem® 10 (sun4m)
3. Intel iPSC/860 with 1, 2, 4, 8, 16, and 32 pro-

Cessors
4. Connection Machine CM-5 with 32 processors

As a comparison, the same example was run on
SPARC 10 using a classical event-list simulation with
a heap implementation of the event list.

Intel iPSC/860 is an older multicomputer hence it
is not surprising that CPSim simulation on SPARC 10
runs approximately three-times faster than on a 32-
node iPSC/860. The CPSim simulation on a 32-node
CM-5 was the fastest, however, for this small model
it was not much faster than on SPARC 10. The serial
version of CPSim was about three-times faster than
the event-list simulation, both run on SPARC 10.
The performances of a PC and a two-node iPSC/860
are about the same.

Multicomputers exhibit better performance for
larger models. A simulation of an 11-dimensional hy-
percube with 26,624 objects was executed on SPARC
10 and on CM-5. 3,172,847 events occurred during
the simulation. The running time on CM-5 was 52
seconds while the average running time on SPARC
10 was 375 seconds. The speedup is more than 7,
compared to the speedup of 3 for the small model.

5 CONCLUSION

While parallelizing the existing sequential simula-
tions is quite difficult, the reverse is not. Simulation
running under CPSim can be efficiently executed on
workstations as well as on parallel machines. Scal-
ability and good performance was achieved by care-
fully designing the CPSim’s data structures, message
passing, and synchronization mechanisms. There are
some restrictions imposed by parallel simulation mod-
eling. However, the ability to run very large simula-
tions, and run them efficiently, is worth the trouble.

ACKNOWLEDGMENTS

The author thanks David Nicol of the College of
William and Mary for pointing out his work (with
Philip Heildelberger) on extending parallelism to se-
rial simulators.

REFERENCES

Baezner D., G. Lomow G., and B. Unger. 1994. Par-
allel simulation environment based on Time Warp.

6 All SPARC trademarks are trademarks or registered trade-
marks of SPARC International, Inc.

CPSim

International Journal in Compuler Simulalion 4:
183-208.

BoyanTech Inc. 1995. CPSim 1.0 user’s guide and
reference manual. McLean, Virginia.

Fujimoto, R. M. 1990. Parallel discrete event simula-
tion. Communicalions of the ACM 33: 30-53.

Groselj, B. 1994. Cocktail party simulation. In
Progress in Simulation, Volume 2, ed. G.W. Zo-
brist and J.V. Leonard, 151-200, Norwood, NJ:
Ablex Publishing Corporation.

Jefferson D. R. 1985. Virtual time. ACM Transac-
tions on Programming Languages and Systems T:
404-425.

Nicol D., A. Greenberg, and B. Lubachevsky. 1992.
MIMD parallel simulation of circuit-switched com-
munication networks. Proceedings of the 1992 Win-
ter Simulation Conference, Society for Computer
Simulation: 629-635.

Nicol D. 1993. The cost of conservative synchroniza-
tion in parallel discrete event simulations. Journal
of the ACM 40: 304-333.

Nicol D. and P. Heidelberger. 1994. On extending
paralelism to serial simulators. NASA ICASE Re-
port No. 94-95, NASA Langley Research Center.

Steinman J. S. 1991. Speedes: Synchronous parallel
environment for emulation and discrete event sim-
ulation. In Advances in Parallel Sitmulation, SCS
Simulation Series 23: 95-103.

Waldorf J. and R. Bagrodia. 1994. MOOSE: A
concurrent object-oriented language for simulation.
International Journal in Computer Simulation 4:

235-257.

AUTHOR BIOGRAPHY

BOJAN GROSELJ is the founder of BoyanTech,
Inc., McLean, Virginia. Previously he held computer
science faculty positions at the University of South-
western Louisiana, Lafayette, and at the University of
Maryland, College Park. He received B.S. and M.S.
degrees in electrical engineering from The University
of Ljubljana (Slovenia) in 1978 and 1981 respectively.
In 1988, he received a Ph.D. degree in computer sci-
ence from McGill University. His rescarch interests
are focused on parallel discrete event simulation, dis-
tributed computing, and combinatorial optimization.

583

