Proceedings of the 1995 Winter Simulation Conference
ed. C. Alexopoulos, K. Kang, W. R. Lilegdon, and D. Goldsman

A PARALLEL DISTRIBUTED SIMULATION OF A
LARGE-SCALE PCS NETWORK: KEEPING SECRETS

Brian A. Malloy

Department of Computer Science
Clemson University

Clemson, South Carolina 29634, U.S.A.

ABSTRACT

Recently, research and development of complex PCS
(personal communication service) networks has in-
creased due to the rise in demand for mobile cellu-
lar communications. The efficiency of a PCS net-
work is crucial in minimizing cost while maintaining
quality service to mobile subscribers. Simulation is
used extensively to facilitate the development of an
efficient network. In this paper we present a con-
servative distributed simulation of a large-scale PCS
network. The conservative approach that we propose
permits large simulations using the PVM software to
configure the network into a parallel machine. Using
a unique approach to exploit lookahead, we are able
to induce speedups comparable to those produced in
Carothers et al. (1994).

1 INTRODUCTION

One approach to providing large-scale simulation
studies is through the exploitation of parallelism.
Currently, techniques do exist for parallelizing a PCS
network. In Carothers et al. (1994), a parallel sim-
ulation is presented that uses an optimistic protocol
on a distributed network of workstations to obtain
excellent speedup in the range of 2.8 to 7.8, on eight
processors. The speedup for the optimistic protocol
is especially impressive since communication cost is
high in a distributed approach. However, the opti-
mistic protocol can be demanding on the memory hi-
erarchy so that large simulations for more than 1024
cells may be prohibitive.

In Greenberg et al. (1994), a parallel simulation
is presented that uses the conservative protocol on a
MasPar, a tightly-coupled, synchronous multiproces-
sor equipped with 16k processors. Using the MasPar,
a speedup of 120x was achieved over the sequential
execution on a fast workstation. Since the conserva-
tive approach is less demanding of the memory hi-

571

Albert T. Montroy

Harris Information Systems Division
PO Box 98000
Melbourne, Florida 32902, U.S.A.

erarchy, an order of magnitude increase in the size
of networks previously simulated using the optimistic
approach was achieved. However, the MasPar multi-
processor may not be available to many simulationists
interested in the study of PCS network performance.

In this paper, we present a parallel simulation that
uses the conservative protocol on a distributed net-
work of workstations. Using the approach outlined
in Greenberg et al. (1994), we were not able to in-
duce appreciable speedup into our parallel distributed
simulation. However, by configuring the network to
reduce communication and by exploiting lookahead in
a unique fashion, we obtained speedups in the range
of 3.4 to 7.5, on eight processors, over the sequential
executions. The parallel architecture for our execu-
tions was parallel virtual machine (PVM) (Geist et al.
1993) and timings for our simulation were measured
using wall clock time. Timings of the sequential exe-
cutions that we used as a comparison to the parallel
executions were the fastest timings obtained.

In the next section we present background mate-
rial followed by Section 3 which overviews the model
and the approach that uses secrets to obtain good
speedup. In Section 4, we present implementation
details. Section 5 highlights the results of our experi-
ments. In the final section we draw some conclusions.

2 BACKGROUND

In this section we provide background for our work
beginning with a description of a typical personal
communication service network. We then overview
the two important protocols for parallelizing simula-
tions and give a brief summary of PVM.

2.1 What is PCS

A personal communication service (PCS) network
(Cox 1990) is a wireless communication network,
which provides service for mobile phone users or PCS
subscribers. The communication area covered by a

972 Malloy and Montroy

PCS is partitioned into areas called cells with a set of
radio channels assigned to each ccll. A mobile phone,
or portable, resides in the signal range of a particu-
lar cell for a period of time and then moves to another
cell.

There are two important channel allocation
schemes, fized channel assignment (FCA) and dy-
namic channel assignment (DCA). We now describe
FCA, the allocation scheme used in this work.

When a subscriber makes a phone call, the sta-
tus of the destination portable is determined. If the
portable is currently involved in another call then the
line is busy and the call is dropped; the cell does not
proceed past this point. If the line is not busy then
the cell in which the portable resides attempts to al-
locate a radio channel to connect the call. If the cell
is unable to find a free channel to connect the call
then the call is blocked. The arrival of a new call is
not the only way that a channel may be requested. If
a portable is involved in a call when it is moving out
of signal range of the current cell, it frees the channel
that was allocated to the call and requests a channel
from the cell into which it is moving. This action
of passing a call-in-progress from one cell to another
is called a call handoff. If no channel is available
in the destination cell then this is termed a handoff
block and the call is terminated. If a channel is avail-
able in the destination cell then it is allocated and
the call continues with no perceivable interruption.
Channels are released only when a portable with a
call-in-progress moves out of the current cell’s signal
range or the call completes.

An important criteria used to judge the quality of
a PCS network is the blocking probability or the
ratio of the number of blocked calls to the number of
attempted calls. Intuitively, the blocking probability
is the probability that a call will not be connected due
to channel availability. To provide quality service to
subscribers, it is important to engineer the PCS net-
work so that the blocking probability is low, typically
less than 1 percent (Carothers et al. 1994).

Blocking probability can be controlled in a PCS
network simulation by adjusting several of the pa-
rameters that define the network. These parameters
are average call length, average call interarrival
time, number of channels per cell, and number
of portables per cell. As the ratio of portables per
cell to channels per cell decreases, so does the block-
ing probability. Likewise as the average call length
decreases and the average call inter arrival time in-
creases the blocking probability decreases.

Performance modeling of large high-capacity per-
sonal communication service (PCS) networks is of-
ten accomplished through discrete event simulation.

Hexagonal or square cells are used to represent the
network in a PCS simulation. To avoid obtaining in-
accurate statistics from the simulation, experiments
should ideally model large networks consisting of
thousands of cells. Since mobile phones move from
cell to cell, all cells must be simulated to evaluate net-
work performance. Using conventional sequential al-
gorithms results in time consuming and burdensome
simulation runs. As a result of these slow simula-
tion runs, most studies only examine small-scale PCS
networks containing less than 50 cells, and output
statistics of the boundary cells are generally discarded
to avoid the boundary effect (Kuek and Wong 1992,
Zhang and Yum 1989). This approach may lead to bi-
ased output statistics, but simulating a large network
with a wrap-around topology can be used to achieve
reliable results (Lin and Mak 1994).

2.2 Protocols for Parallel Simulation

The two general categories of protocols used in par-
allelizing simulation programs are the conservative
approach and the optimistic approach. In conser-
vative simulations a processor does not execute an
event scheduled for time t until all messages with
time stamp less than ¢ have been processed. This
sequencing of event processing is known as the local
causality constraint . Adherence to this constraint
ensures that execution of all events is in chronologi-
cal order. In optimistic simulations, the chronologi-
cal processing of events is not necessary. A processor
may execute events in any order and when the local
causality constraint is violated the processor returns
to a previous state where the constraint holds. This
action of state recovery is known as roll back. The
optimistic approach can produce substantial speedup
due to parallelism (Carothers et al. 1994).

In the conservative approach, success is typically
measured by the amount of lookahead that can be
achieved to allow a window of opportunity in which
processors can execute in parallel. In the optimistic
approach, success is typically measured by the pre-
dictability of the events so that rollbacks, to recover
from violations of the local causality constraint, are
kept to a minimum. The PCS network simulation
contains a high degree of predictability.

2.3 Parallel Virtual Machine

Parallel Virtual Machine (PVM) (Geist et al. 1993) is
a software package that provides support for the con-
struction of a parallel computer using a network of
workstations. PVM supports a message passing com-
munication paradigm that can accommodate more
than 25 platforms, ranging from a Cray/YMP to an

Large-Scale PCS Network 573

80386 personal computer running the Unix operating
system. Messages may be passed between any of the
machines supported; data conversions, for platforms
which use different data representations, are trans-
parent to the user.

The cost of communication in PVM is high. Fur-
thermore, many machines may be contending for the
use of the network and this contention can have seri-
ous impact on performance. Thus, reducing commu-
nication in programs running in PVM is therefore a
crucial consideration.

3 DESIGN OF FCA MODEL

Our PCS model is composed of two main object
types, a cell and a portable. The cell represents a cel-
lular tower and the communication area covered by
that tower. Each cell has a certain number of chan-
nels associated with it that may be allocated to calls
in that cell. The portable represents a portable phone
unit. Each portable resides in a cell for a period of
time and then moves to one of four neighboring cells.
The important events of the simulation are the ac-
tions of the portables. These events are movements,
call arrivals, and call completions.

We represent the PCS network as a square mesh of
cells. In the parallel version of the PCS network the
square is partitioned into stripes of equal dimensions
where each stripe is assigned to a processor. Figure
1 illustrates a PCS network composed of four stripes
where each stripe has sixteen cells and the overall
simulation area covers sixty-four cells. We chose to
partition the square in this manner in order to min-
imize the number of communication edges per pro-
cessor, thus reducing the amount of inter-processor
communication needed in the parallel version.

As illustrated in Figure 1, portable movement
across stripe boundaries falls into two categories:
communication movement and non-communication
movement. When a portable moves in the direction
East or West across stripe boundaries a message must
be sent to a neighboring processor; therefore this
movement represents communication between proces-
sors in adjacent stripes. In contrast, all movement
across the North and South stripe boundaries requires
no communication since the portable remains in the
same stripe.

An intuitive mapping of the sequential square grid
to processors may be to partition the square into
smaller perfect squares. This mapping would result
in each processor having four communication edges, a
North, South, East, and West edge. With the stripe
mapping illustrated in Figure 1, each processor has
only two communication edges; one for the processor

to the East and one for the processor to the West.
This change in the mapping reduces the communica-
tion needed between processors by a factor of 2.

Our model of the PCS network processes call ar-
rivals, call completions, and portable movement as
described by Carothers et al. (1994). The PCS model
simulates one end of the call. Thus, for any call cur-
rently in progress, each portable may be considered a
call receiver or a call originator, but the PCS model
does not actually maintain the connection for both
ends of the same call.

3.1 Achieving Efficient Lookahead

The stripe configuration that we propose, not only
reduces the amount of communication by minimizing
the number of neighbors with which each processor
interacts, it also provides an opportunity to exploit
lookahead. The opportunity arises now because each
stripe has only two neighbors and these neighbors are
separated from each other by a fixed difference, the
width of a stripe.

3.1.1 Taking Advantage of Stripe Width

We define the width of a stripe, stripewidth, as the
number of columns of cells that compose the stripe.
All stripes are of the same width, and the maximum
lookahead that any given processor can give its neigh-
bors is the width of a stripe. The stripe width is also
used to generate stripewidth number of future move-
out times and directions for each portable in the sim-
ulation. Therefore if stripewidth is four then we gen-
erate the next four moveout times and directions for
each portable. A move is from one cell to an adjacent
cell and may or may not be across a stripe bound-
ary. When a portable moves into a new cell a new
moveout time and new direction is generated to re-
place the move that was just processed. In addition
to generating a new moveout time and direction upon
moving into a cell, the portable inspects itself to de-
termine the earliest time that it could be leaving this
stripe. The portable simulates its location for the
next stripewidth moves. It may know exactly what
time and what direction it will be moving to another
processor or it may simply know where within the cur-
rent stripe it will be after the next stripewidth num-
ber of moves. If the portable knows exactly when it is
moving out of this stripe it records its exact moveout
time for either the East or West direction. This anal-
ysis is only required when the portable moves into a
new cell and only if that portable does not already
know exactly when and in what direction it will be
leaving the current stripe. This information is used
to determine the lowest possible time at which the

574 Malloy and Montroy

Figure 1: A PCS network consisting of four stripes where each stripe has 16 cells and the overall simulation area
covers 64 cells. In the parallel simulation each of the four stripes are assigned to a processor. This figure also
illustrates the wrapping around of portable movement across stripe boundaries.

processor may be sending a portable to either of its
neighbors. The lookahead that any processor can give
one of its neighbors in direction d is the minimum of
the following: the lowest stripe moveout time for di-
rection d, the lowest time a message is expected from
another processor + stripewidth.

The lookahead that we generate by using the width
of a stripe does not ensure adherence to the local
causality constraint. The lookahead may sometimes
become invalid. Assume that a processor, P;, has
given a lookahead to processor P; that allows P; to
continue processing until time ¢ without the possibil-
ity of receiving a message from P;. This lookahead
becomes invalid if at some time less than ¢ processor
P; sends a portable to P; that will return to P; be-
fore t. This means that processor P; will need to send
a message to P; earlier than P; expects to receive a
message. To avoid deadlock and the possibility of los-
ing portables due to the lookahead becoming invalid
we use a method called keeping secrets.

3.1.2 Keeping Secrets

In order to deal with the possibility ot a portable
moving to one processor and then moving back to
the original processor in less than stripewidth time,
we introduce a concept that we call keeping secrets.
If a processor is sending a portable to a neighbor that
will return before the processor expects to receive a
message from that neighbor then the processor must

record the time at which the portable will return.
This time is needed by the processor so that it will not
violate the local causality constraint. The analysis to
determine if this event is possible is done as the send-
ing processor is preparing to send the portable. This
means that the stripe sending the portable knows, at
the time that the message is sent, that the portable
will be returning before the recipient expects to send
a message. This is the secret. The receiving stripe
will not know that it will be sending this message
until the portable is ready to move out.

4 IMPLEMENTATION

Our PCS network is a self-initiating simulation where
the cells generate their own incoming calls through
the portables and the call completion times along
with moveout times are generated by the portables
themselves.

Each cell has four queues to hold portables, one
for each direction (North, South, East, and West).
The queue into which a portable is inserted corre-
sponds to the direction of the portable’s next move.
Each queue is a simple linked list that is O(1) with re-
spect to portable movement, and O(n) with respect to
portable insertion (where n is the number of portables
residing in the cell). During the initialization phase
of the simulation each cell initializes a predetermined
number of portables to reside in that cell at the start
of the simulation.

Large-Scale PCS Network 575

algorithm Simulate PCS parallel
input Simulationlength
output Simulation of this stripe

begin Simulate PCS Parallel
time = 1
while time <= SimulationLength
for each cell in this stripe
complete calls scheduled to end at this time
endfor
for each cell in this stripe
process all move outs scheduled for this time
process all move ins local to this stripe
hold portables destined for neighbors
endfor
for each direction, N, S, E, W
if time to send message to neighbor or have
or have portables to send to neighbor
send the message
endif
endfor
while proceeding will violate causality constraint
receive a message
endwhile
for each cell in this stripe
process calls scheduled to arrive at this time
endfor
time + +
endwhile
end

Figure 2: Algorithm to simulate PCS network.

algorithm Send Message
input PortableHoldinglist, ReceiveTime, SendTime,
direction, local clock time

output Message to neighboring stripe (processor)

begin Send Message
SendTime[direction) =MIN(Lowest M oveout[direction],
LowestReceiveTime + stripewidth)
Pack SendTime[direction] /* the new lookahead */
if PortablesHoldingList[direction] IS EMPTY
msgtype = PMSG
Pack msgtype
/* pack the number of portables being sent */
Pack HoldingList[direction].count
for all portables in HoldingList|direction)
if ReturnTime < ReceiveTime|direction)
if ReturnTime <
SecretSendbackTime[direction]
SecretSendbackTime[direction] =

ReturnTime
endif
endif
Pack portable and destination cell
endfor
else
msgtype = NMSG
endif

send message to neighbor(direction]
with time stamp of time
_end

Figure 3: Algorithm to send a message.

Each portable has three independent time stamp
fields using exponential distributed time stamps.
These fields are the call completion time stamp, the
next call time stamp, and the move time stamp. Call
completion refers to the time at which the current
call will end. If there is no call currently in progress,
the call completion time stamp has the value of zero.
Initially we assume that there are no calls in progress.
The next call time stamp is the time at which the next
call is scheduled to arrive to that portable. The move
field is the time at which the portable will move from
its current cell to one of the four neighboring cells.
Move time stamps and the directions corresponding
to each move are stored in an array implemented as a
queue. The size of the array is the number of columns
of cells in each stripe. At any time during the course
of the simulation the head of the queue is positioned
at the portables next move information. When new
move times and directions are generated, the head of
the move queue is advanced.

The simulation parameters such as portables per
cell, average call interarrival time, average call length,
average cell time, simulation length, and simulation
size are defined by the user in an input file that is ac-

cessible by all processors. The parameters are defined
as follows: portables per cell is the number of porta-
bles in each cell at the start of the simulation, average
call interarrival time is the mean time at which new
calls arrive, average call length is the mean duration
of a call, average cell time is the mean time that a
portable stays in a cell, and simulation length is the
number of clock ticks to run the simulation.

4.1 Simulating the PCS Network

Algorithm SimulatePCS, shown in Figure 2,
overviews the simulation process that runs on each
processor. The input to the algorithm is Simulation-
Length, which is specified in a common startup file
that all processes may access. The simulation contin-
ues to process until the local clock of that processor,
time, exceeds StmulationLength.

The three events possible, call completion, move-
ment, and call arrival are processed in a specific or-
der. At any time ¢. all calls scheduled for completion
at t are completed, all movement at time t is pro-
cessed, and all calls scheduled to arrive at ¢ request
a channel. With this ordering, when a channel is re-
leased at time ¢, it is also available to be reallocated

376 Malloy and Montroy

at time ¢.

Each processor maintains a ReceiveTime, Send-
Time, and a SecretSendbackTime for each of its
neighbors. For a direction, d, and a processor, p,
ReceiveTimey corresponds to the last lookahead that
was given to p by neighbor,. Similarly, SendTime, of
processor, p, corresponds to the last lookahead that p
gave neighbory. The SecretSendbackTime for a given
neighbor is a time at which that neighbor will be send-
ing a message containing a portable. It is a secret
that this processor is keeping. When a SecretSend-
backTime for a neighbor is set to oo, the processor is
not keeping a secret with respect to that neighbor.

A processor sends messages to a neighboring pro-
cessor only when the local clock time is equivalent to
the SendTime for that neighbor or when the send-
ing processor has portables to send in that direction.
Likewise, a processor only receives messages from a
neighbor when its local clock is equivalent to either
the RecetveTime or the SecretSendbackTime for that
neighbor.

4.2 Message Exchanging Between Stripes

There are two types of messages exchanged by pro-
cessors throughout the simulation. These message
types are: (1) a portables message (PMSG), and (2)
a null message (NMSG). Portable messages consist of
portables destined for a neighboring processor and a
new lookahead for that neighbor. Null messages con-
tain only the new lookahead so that the recipient of
the message may continue processing. Figure 3 shows
the algorithm used by each processor in sending a
message. Input to this algorithm is: HoldingList, Re-
cewveTime, SendTime, direction, and the local clock
time,time. The HoldingList[direction] contains any
portables that are moving out of this stripe to neigh-
bor[direction]. The portables were inserted into the
list during the movement processing phase of the sim-
ulation algorithm. The stripe sending the message
first determines the maximum lookahead that it can
give neighbor/direction]. This value is used to update
SendTime[direction] and is then packed in the mes-
sage buffer to be sent. After packing the new looka-
head the message type, msgtype, is determined and
packed. If HoldingList[direction] is not empty then
msgtype is set to PMSG otherwise msgtype is set to
NMSG. The stripe then packs msgtype so that he re-
cipient of the message knows what actions to take
upon receipt of the message. If msgtype is PMSG
then the portables are packed in the message buffer
along with the destination cell number. In the process
of packing the portables, each portable is examined
to determine if it will return to the sending stripe be-

Table 1: Summary of the messages and contents for
each simulation run, where N is the traffic density
and M is the mobility.

Statistic total null portable portables
N, M messages | messages | messages | /message
75, 1/75 1081279 582084 499195 1.07
75, 1/45 1245808 449781 796027 1.12
75, 1/15 2072463 126179 1946284 1.37
50, 1/75 1017657 677452 340205 1.05
50, 1/45 1106954 555602 551352 1.08
50, 1/15 1677620 243214 1434406 1.24
25, 1/75 994034 819870 174164 1.02
25, 1/45 1003849 717697 286152 1.04
25, 1/15 1248336 449490 798846 1.12

fore the destination stripe expects to send a message.
The time the portable will return is ReturnTime. If
this situation is possible and ReturnTime is less than
SecretSendback Time[direction] then SecretSendback-
Time[direction] is updated with ReturnTime. The
message is time stamped with the current value of the
local clock, time, and then sent to neighbor[direction].

A stripe receives a message only if incrementing
the local clock time would violate the local causality
constraint. The status of the causality constraint is
determined with respect to both the West and East
neighbors. The stripe is in danger of violating the
constraint with respect to direction d if the local clock
time is equivalent to either Receive Time[d] or Secret-
SendbackTime[d]. The process of receiving a message
is complimentary to the sending process.

5 EXPERIMENTS

In this section we describe the results of our ex-
periments for a PCS network. The variables that are
important to our experiments are traffic density, mo-
bility, average call length, and call arrival rate. Traffic
density is defined as the number of portables per cell
and mobility is the rate at which portables move out
of cells. The average call length is the mean duration
of a call and the call arrival rate is the rate at which
new calls are generated.

Our experiments measure speedup and investigate
the effects of the traffic density and mobility with
respect to speedup. We conducted experiments us-
ing traffic densities of 25, 50, and 75 portables per
cell. Each traffic density was tested with mobilities
of 1/(15 minutes), 1/(45 minutes), 1/(75 minutes).
The call interarrival rate and the average call length
were held constant across experiments. The call ar-

Large-Scale PCS Network 877

15

6.5

55¢F

Speedup
W

45 F

zzz
UL

w
"

1/45 1175

Mobility in portables per minutes

N =25

N = 50 N =175

1/15 | 1/46 | 1/75 | 1/16

1/45 | 1/76 | 1/16 | 1/45 | 1/75

Seq 9.4 10.02 | 15.23 | 17.04

20.42 | 27.32 | 25.28 | 25.55 | 36.05

Par 2.75 2.56 2.5 4.4

4.28 4.12 5.5 5.07 4.82

Spdup | 3.41 | 3.92 | 6.09 | 3.87

4.77 6.63 4.6 5.04 7.49

Figure 4: The graph illustrates the speedups achieved for different traffic densities with respect to mobility.
N is the traffic density. The table displays the best sequential and parallel times for each experiment and the
corresponding speedups. Times have been rounded to the nearest 100" of an hour.

rival rate was set to 1/(10 minutes) and call length
was exponentially distributed with a mean of 3 min-
utes. The ratio of portables per cell to channels per
cell was fixed at 2.5. The simulation size was 1024
cells and all experiments ran for 2.5 x 10 simulation
seconds. The distributed PCS network consisted of 8
workstations where each processor simulates a stripe
containing 128 cells. Both the sequential and dis-
tributed experiments were conducted on a network of
SUN SLC workstations.

To give a fair measure of speedup we used the
fastest sequential time for specific portables per cell
and mobility. Table 1 displays the number of porta-
bles per message, the number of portable messages,
the number of null messages, and the total number of
messages sent for each experiment conducted. Figure
4 illustrates the execution times of our experiments
and the speedups that were achieved.

In the sections that follow, we illustrate the effects
of traffic density and mobility on the performance of
the parallel simulation.

5.1 Increasing Traffic Density

Our experiments indicate that Increasing the traf-
fic density results in an increase in the number of
portable messages and a decrease in the number of
null messages sent during the course of the simula-
tion. Figure 1 illustrates that the decrease in null
messages is overshadowed by the increase in portable
messages; thus, the total number of messages is in-
creased.

Figure 4 shows that as the number of portables per
cell increases so does speedup. This is largely due to
an increase in processor workload.

5.2 Decreasing Mobility

Decreasing mobility greatly influences the number
and types of messages sent. Figure 1 shows that as
mobility decreases the number of portables per mes-
sage decreases and the number of portables messages
decreases significantly. The null messages increase,
but the total number of messages decrease due to the
significant decrease in the portables messages.
Speedup increases as mobility decreases (Figure

