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ABSTRACT

The demand for mobile communications over the past
few years has grown at a rapid pace. This demand
has led to intensive research and development efforts
for complex PCS (personal communication service)
networks. Capacity planning and pérformance mod-
eling is necessary to maintain a high quality of ser-
vice to the mobile subscriber while minimizing cost
to the PCS provider. A question of pragmatic inter-
est concerns the modeling of subscriber or portable
movement in a PCS network. Typically, portable
movement models are based on a probabilistic distri-
bution function with fixed mean. These models may
be an over-simplification of real portable movement
patterns. For example, portable movements during
rush-hour traffic may be slowed due to traffic jams.
However, when the volume of vehicular traffic is less,
portables are allowed to move more freely and with
greater speed. To capture this type of portable move-
ment behavior, we develop a population dependent
PCS model where portable movement is based on
the number of portables currently residing in that
service area or cell. Because of the large amount of
computation required to simulate PCS networks, we
implement this model on a distributed Time Warp
simulator, which has been shown to reduce the exe-
cution time of a single run from 20 hours down to 3.5
hours. Using this simulation model, we study the ef-
fect of different call workloads and population depen-
dent portable movement patterns on PCS blocking
statistics and present our preliminary results.

1 INTRODUCTION

A personal communication service (PCS) network as
described by Cox (1995) provides wireless communi-
cation services for nomadic users. The service area of
a PCS network is populated with a set of geograph-
ically distributed transmitters/receivers called radio
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ports. A set of radio channels are assigned to each
radio port, and the users in the coverage area (or cell
for the radio port) can send and receive phone calls
by using these radio channels. When a user moves
from one cell to another during a phone call a hand-
off 1s said to occur. In this case the PCS network
attempts to allocate a radio channel in the new cell
to allow the phone call connection to continue. If all
channels in the new cell are busy, then the phone call
is forced to terminate. It is important to engineer the
system so that the likelihood of forced termination is
very low (e.g., less than 1%).

Most PCS models fall into two types of models:
portable-initiate (Lin and Mak 1993 and Wong 1993)
or call-initiated (Chuang 1993 and Tekinary and Jab-
bari 1992). The portable-initiated model is organized
around two object types: cell and portable. The
cell represents a cellular receiver/transmitter that has
some fixed number of channels allocated to it. The
portable represents a mobile phone unit that resides
within the cell for a period of time and then moves
to one of the four neighboring cells. As shown in Fig-
ure 1, when a new call arrives at a cell, the cell first
determines the status of the destination portable. If
the destination portable is busy with another call,
this call 1s counted as a busy line. A busy line occurs
when a portable is currently connected in a phone
call and another phone call arrives for that portable.
If the portable is not busy, the cell determines chan-
nel availability. If all channels are busy, the call is
counted as a call block. If a channel is available, it
i1s allocated for the destination portable’s use and
the call is allowed to connect. While a call is in
progress, the portable tracks its location. When the
portable determines it is moving out of the current
cell’s signal range, it drops the currently used chan-
nel, and requests a channel from the neighbor cell into
which 1t is moving. If all channels from the neigh-
boring destination cell are busy, this call counts as
a hand-off block. If a channel is available, the call
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Figure 1: Portable-initiated model: flowchart for call
processing within a single cell. A “Portable Arrival”
denotes a portable entering a cell’s area.

reconnects and continues without interruption. Now,
where the portable-initiated model tracks the move-
ment of portables even if they are not in conver-
sations, the call-initiated model only simulates the
behavior of a portable during phone conversations.
Other functionalities in the call-initiated model are
identical to the portable-initiated model.

Typically, portable movement is modeled using a
probabilistic distribution with some fixed mean as
done by Wong (1993). However, this model may over-
simplify real portable movement patterns. Consider
the following example: you are traveling to work in
your car. Suddenly, the flow of traffic ahead of you
comes to a halt and you find yourself in another morn-
ing rush-hour traffic jam. Realizing you could be late
for work, you pick up your PCS hand-set to call your
boss only to hear a recorded voice say “All channels
are busy, please try again later”. In this situation,
a large number of portables have become struck in
the same cell due to the traffic jam. Consequently,
portable movement patterns have become dependent
on the number of portables currently residing in the
cell. To model this type of portable movement be-
havior, we use the portable-initiated PCS model since
it keeps track of all portable movements.

To guarantee the simulation model has reached
steady state and the network performance statistics

are not biased it has been shown that the number of
cells in the network should be large (greater than 256)
and amount of simulated time should be greater than
5 x 10% simulated seconds (Carothers et al. 1994). To
reduce the execution of these simulation models, we
use a distributed simulator based on the Time Warp
mechanism by Jefferson (1985).

The remainder of the study focuses on the effect
of varying call workloads and mobility patterns on
PCS network performance. In Section 2 we briefly
describe our distributed Time Warp implementation.
Section 3 describes the PCS network performance re-
sults and Section 4 presents conclusions of this study,
and future work.

2 DISTRIBUTED TIME WARP

The distributed simulator consists of a collection
of logical processes or LPs, each modeling a dis-
tinct component of the system being modeled. LPs
communicate by exchanging timestamped event mes-
sages. Like most existing distributed simulation pro-
tocols, we assume different LPs may not share state
variables that are modified during the simulation.
The synchronization mechanism must ensure that
each LP processes events in timestamp order in order
to prevent events in the simulated future from af-
fecting those in the past. The synchronization issue
has been widely studied (e.g., see Fujimoto 1990 and
1992, Misra 1986, Richter and Walrand 1989). The
Time Warp mechanism uses a detection-and-recovery
protocol to synchronize the computation. For a more
detailed discussion of the Time Warp mechanism we
refer the reader to Fujimoto (1990) and Jefferson
(1985).

A version of Time Warp has been developed that
executes on a collection of DEC 5000 workstations,
Sun Sparc workstations, SGI Indy workstations or a
mixture of these machines. All performance results
presented here were performed on DEC machines in-
terconnected by an Ethernet. The Time Warp system
is written in C++. A principal objective of this im-
plementation is to enable efficient simulation of thou-
sands of “light weight” LPs (i.e., processes that con-
tain a small amount of state and perform little com-
putation in each event) in an object-oriented envi-
ronment on networked, heterogeneous workstations.
Here we will describe some of the user and kernel
level features of the Time Warp system.

LPs are implemented as C++ objects, and are re-
ferred to as “entities.” Each LP (entity) consists of
a state vector that stores the LP’s private data, and
a set of methods that define the allowable operations
that can be performed on that data. Each method
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corresponds to a type of event.

It is anticipated that most simulations will contain
far more entities than processors, so each processor
will typically contain hundreds or thousands of en-
tities (LPs). A priority queue data structure called
the calendar queue by Brown (1988) is used in each
processor to select the next entity to execute. The
processor’s scheduler always selects the entity con-
taining the smallest timestamped event as the next
one for execution. Each entity includes a linear list
to hold the unprocessed events (method invocations)
scheduled for that entity.

To avoid unnecessary system overheads from
malloc system calls and memory fragmentation, the
Time Warp kernel allocates a single contiguous block
of memory from which events and other internal data
structures are allocated.

Communications between processors is imple-
mented using PVM 3.2 (Parallel Virtual Machine),
a message passing system for heterogeneous collec-
tions of networked computers (Geist 1993). In ad-
dition to PVM's default message routing, PVM will
route messages directly between application processes
by setting up a TCP/IP connection between each
enrolled application, thus bypassing the PVM dae-
mons at both the sending and receiving host. In this
mode, the sending process is not blocking, making
PVM’s direct routing mode an asynchronous commu-
nications protocol. When routing messages in direct
mode, the total time to deliver a message is in the
range of 1.4 to 2.0 milliseconds on a Sun Sparc-2.
When executing our distributed Time Warp kernel,
PVM is configured to directly route messages.

3 PERFORMANCE RESULTS

In this section we present performance data for the
population dependent PCS simulation model. The
definitions and notation that will be used throughout
the remainder of this paper are as follows:

o The portable residual times in a coverage area
are based on a probabilistic distribution with the
mean 1/n multiplied by the number of portables
that currently reside within that cell. The pop-
ulation dependent portable residual time distin-
guishes this PCS model from the PCS models
discusses in our previous work.

o The call holding time is exponentially distributed
with mean 1/ = 180 seconds.

e The call interarrival times to an individual
portable are exponentially distributed with mean

1/).

o The aggregate call load to a cell is measured in
Erlangs. An Erlang is N x A/u, where N is the
average number of portables residing in that cell.

e p; is the forced termination probability (the
probability that a hand-off call is blocked).

e p, is the probability that a new call is blocked.

¢ pnc 1s the total call blocking probability. This
probability includes both new call blocks and
hand-off calls that are forced to terminate. An
incomplete call is either blocked as a new call or
it may make several successful hand-offs before
it 1s forced terminated.

The speedup for this simulation model ranges be-
tween 2.8 and 7.8 using 8 DEC 5000 workstations
(Carothers et al. 1994). Here, it was shown that
speedup increases when (i) number of portables per
cell increases, (ii) call interarrival time decreases,
and (iii) mobility (n) decreases. For a detailed per-
formance analysis of the portable-initiated and call-
initiated PCS models executing on a Time Warp sim-
ulator, we refer the reader to Carothers et al. (1995).

To determine the effect of varying call workloads
and population dependent mobility patterns on PCS
blocking statistics, we conducted a series of experi-
ments where the call interarrival times and mobility
distribution and mobility interarrival times were var-
led. The number of channels per cell was fixed at 8.
The 1initial number of portables assigned to each cell
was also fixed at 25. Each experiment contained 1024
cells and ran for 2.5 x 10° simulated seconds to en-
sure that the output statistics where not biased. The
results presented here represent over 330 runs of the
distributed simulator.

The mobility distribution is varied over a range of
5 different probabilistic distributions: (i) exponential,
(1) Pareto with o = 1.6, (iil) Pareto with a = 5.0,
(iv) Pareto with o = 100.0 and (v) uniform. These
distributions were chosen because they represent a
wide range of statistical characteristics, such as the
length of the tail and rate of decay. The exponential
distribution 1s traditionally used to model portable
movements and was originally suggested by Wong
(1993).

To give the reader a feel for these distributions,
Figures 2 and 3 plot the inverse cumulative distribu-
tion function against z values in the range of 0 to 1
for each distribution. The shape of the Pareto distri-
bution, as shown in Figure 2, is controlled by the «
parameter. When o is equal to 1.6 (Figure 2(a)), the
variance of the Pareto distribution is infinite and has
a very long tail. However, when o is equal to 5.0, the
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Figure 2: Inverse cumulative distribution function for Pareto with mean = 180.0 seconds for different values of
a: (a) a=1.6, (b) @ =5.0, (c) o =100.0.
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variance has become finite and the tail has shrunk.
Finally, for « equal to 100.0, there is almost no vari-
ance and the distribution has become, for the most
part, deterministic about the mean. Another impor-
tant aspect about the Pareto distribution is that it
never decays to 0. However, as shown in Figure 3,
both the exponential and uniform distributions de-
cay to 0 and have short tails.

Figure 4 shows effect of load on PCS blocking
statistics for each of the different mobility distribu-
tions. 7 is fixed at 0.25u. It is observed that the
Pareto distribution family consistently yields slightly
higher pf, p, and p,. statistics, than the uniform
or exponential and the uniform distribution yields
slightly higher blocking statistics than the exponen-
tial.

Figure 5 is the same as the previous figure, ex-
cept that 7 is equal to 2.50u. Here, we observe a
completely different behavior than that in Figure 4.
The Pareto distribution with « equal to 5.00 or 100.0
yields p; statistics that are twice those produced by
the exponential and p, and p,. statistics that are al-
most three times the exponential statistics. Also, it
is observed that the uniform blocking statistics are
significantly higher than the exponential, which was
not observed in the previous figure.

We believe the higher blocking statistics produced
by the Pareto and uniform distributions in the above
figures is due to the distributions causing more K-ary
hand-offs that not only result in more force termina-
tions, but become correlated with the newly arriving
calls, resulting in a significant increase the new call
blocking probability, p,. However, more investigation
is needed to fully understand this phenomenon.

Figure 6 is the same as the previous two figures,
except that 7 is equal to 10.00p. Unlike the first
two figures, we see that the blocking statistics do not
vary with respect to the mobility distribution. Also,
all blocking statistics have decreased by an order of
magnitude over the previous two figures.

To shed light on how the mobility rate effects the
PCS blocking statistics across different mobility dis-
tributions, the PCS blocking statistics for each mobil-
ity distribution is shown as a function of 5 for differ-
ent call workloads in Figures 7-9. It is observed from
these figures that initially as 1 increases, the block-
ing statistics for all the distributions increase (some
more than others). However, when 7 is 2.00u, the
blocking statistics are starting to decrease. We also
observe that the variance in blocking statistics for the
different mobility distributions ceases for n > 5.00u.
This trend appears across different call workloads (A
equal to 1.25, 3.75 and 6.25 Erlangs). We believe the
initial increase in blocking statistics as 7 increases is

due to (i) an increase in A -ary hand-offs and (i1) these
hand-off being correlated with the arrival of new calls
so that many of these new calls are blocked and the
hand-offs are forced to terminate. However, as n con-
tinues in increase this correlation ceases and the high
mobility rate actually helps to stabilize the system
by allowing portables to move to less busy cells with
the result being that new arriving calls are able to
connect.

4 CONCLUSIONS

In this paper we present a model for simulating large-
scale PCS networks that takes into account popula-
tion dependent mobility patterns. We reduce the wall
clock execution time of this computationally intensive
simulation model without compromising the statis-
tical integrity of the model by using a Time Warp
distributed simulator. The distributed simulator has
been shown to reduce the execution time of PCS sim-
ulations from 20 hours down to 3.5 hours. Using this
distributed simulator, we study the effect of differ-
ent population dependent mobility patterns and call
workloads on PCS network performance. To generate
different mobility patterns, the mobility distribution
function was varied across 5 different probability dis-
tributions: (1) exponential, (ii) Pareto with a equal
to 1.6, (iii) Pareto with o equal to 5.0, (iv) Pareto
with o equal to 100.0 and (v) uniform. From this
preliminary study, the primary results are:

e The Pareto distribution for medium mobility
rates (0.75p < n < 2.50u) appears to yield sig-
nificantly higher PCS blocking statistics than the
exponential, especially when the Pareto distribu-
tion is deterministic (a = 100.0).

o For high mobility rates ( > 5.0p), PCS blocking
statistics appears to decrease. However, because
only a few higher mobility rates are covered in
this study (n = 5.0p, 10.0y, and 15.0p), it is pos-
sible that PCS blocking statistics cycle up and
down as the mobility is increased. Further study
1s needed.

Finally, areas such as hand-off strategies, dynamic
channel assignment, and wireless packet switching
can be investigated by extending the simulation
model presented here. These are topics of future
work.
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