Proceedings of the 1995 Winter Simulation Conference
ed. C. Alexopoulos, K. Kang, W. R. Lilegdon, and D. Goldsman

SIMOBJECT: FROM RAPID PROTOTYPE TO FINISHED MODEL — A BREAKTHROUGH IN
GRAPHICAL MODEL BUILDING

Jeffry Jones

CACI Products Company
1600 Wilson Boulevard
Arlington, VA 22209, U.S.A.

ABSTRACT

SIMOBJECT is a portable, model-building framework
of objects embedded in a graphical editing environment.
This framework facilitates the prototyping of systems as
diverse as communications or transportation networks,
manufacturing processes, and business operations.
OBJECT.MGR, the graphical object editor, is used to
extend these prototypes and evolve them into detailed
applications as more is learned about the system that is
being simulated.

1 BACKGROUND

In a wide variety of industries, simulation modeling is
increasingly used to predict the performance and study
the behavior of complex systems, perhaps most
successfully in communications, transportation,
logistics, manufacturing, and military planning.
However, barriers to its wider use are the time, cost, and
technical expertise required to create and maintain a

e <ot

le_Ed Create_Define_SimulsteBeport frchive Help

Figure 1: COMNET III is One of Several Successful
Applications Built on SIMOBJECT

541

simulation model for each particular system. The
availability of off-the-shelf models has partially
eliminated this barrier, but there remains the need for
more timely development of prototypes, new models,
and customized versions of off-the-shelf models.

Our approach for overcoming the difficulties of
developing simulation models is to provide the model
developer with a collection of reusable software
components that can be extended and configured into a
model. By also providing the model developer with a
graphical interface to manage the modification and
assembly of these components we have greatly reduced
the amount of time required to build, enhance, or tailor a
model.

It is the need for reusable components that can be
extended to meet special requirements that argues most
strongly for an object-oriented approach. The
inheritance mechanism of an object-oriented model-
building technology provides the capability to meet that
need. Through inheritance from other objects, an object
can be given additional or modified functionality—it can
be given new data fields and new method procedures to
manipulate them. But, at the same time, the inheritance
mechanism constrains the changes so that they conform
to the original interface specification, and thus preserves
interchangeability.

Objects with the same functional interface, although
differing in their internal implementations, can be
substituted for each other without disturbing the rest of
the model. For instance, a traffic router node in a
network simulation model can be replaced with a node
that has an entirely different routing strategy without
having to make changes to other parts of the model.

The choice of programming language for simulation
modeling is important, especially if the application is to
be developed by someone who is an expert in the system
being studied instead of a professional programmer. It is
possible to develop a simulation model using a general
purpose language such as C++ supplemented by
subroutines to support the concepts of events

942

sequencing. However, there are major benefits to
starting with a language that understands the semantics
of object interaction over time and the concurrency of
object behaviors. For example, using such a simulation
language, the developer will be warned at compile time
about the misuse of WAIT or INTERRUPT statements.
On the other hand, when using C++ subroutines, the
misuse warning does not appear until late in the testing
phase when the code is executed at run-time.

At CACI, we have 30 years of experience in
providing simulation software such as the SIMSCRIPT
IL.5 language and off-the-shelf simulation applications
such as COMNET ILS. In 1989, we introduced
MODSIM 11, a high-level, object-oriented simulation
language. MODSIM II allows the description of the
behaviors of objects over time, and also can address
concurrent object behaviors such as waiting, activating,
and interrupting.

The developments described here are the outcome of
efforts to combine the productivity benefits of off-the-
shelf tools with the complete flexibility of a
sophisticated modeling language. It seemed that this
could be achieved by (1) developing a library of
reusable objects, and (2) developing the means for
graphically modifying and extending objects and
configuring them into a model. Based on MODSIM I,
we have developed SIMOBJECT and OBJECT.MGR.

SIMOBJECT can be thought of as providing a means
for graphical modeling—the building and modification
of simulation models by configuring objects selected
from a database of basic, prebuilt simulation objects.
OBJECT.MGR, on the other hand, can be regarded as a
means for graphical programming—giving objects new
attributes and behaviors in order to build new types of
objects to add to the database.

2 GRAPHICAL MODELING WITH SIMOBJECT

SIMOBIJECT is a model-building framework of objects
embedded in a graphical editing environment. The
collection of objects in the SIMOBJECT framework
support both the building of models of systems that
involve flows through networks, and the building of
graphical interfaces to edit and configure these models.
Put together, these capabilities support the complete
prototyping and evolution of many kinds of simulation
models.

SIMOBJECT’s powerful graphical modeling
environment, coupled with its library of off-the-shelf
objects, sharply reduces the time required for
prototyping a system. A working model is assembled by
selecting objects from the palette and dragging them to
the work area on the screen. These objects are connected

Jones

together to represent logical sequences and routes. The
parameters of each object are selected through its
associated dialog box. At any time, the model can be
checked for consistency and completeness.

SIMOBIJECT’s collection of prebuilt, simulation-
based objects includes Nodes, which model processes,
resources, and hierarchy, Tokens, which model the
elements that move through the system, and Arcs, which
form the node-to-node connections along which Tokens
flow.

Each node object is associated with a routing object
that understands the protocol by which tokens can be
either pushed out of or pulled through the node. When a
router is presented with a token at a node, the router can
use any arbitrary logic to determine when and how to
move the token. This separation of the routing object
from the node object allows routers to be replaced by
routers with different behaviors without perturbing the
model layout. Different instances of routing objects can
be used to characterize different requirements. In a
communications network, for example, one instance of a
router can implement a flooding protocol while another
implements point-to-point messages. In a model of
workflow through a production area, the router might
implement a line-balancing method.

A special feature of SIMOBJECT allows the
developer of a prototype model to use SIMOBJECT’s
powerful graphical environment to create a customized
graphical interface for subsequent users of the prototype.
This feature is unique to SIMOBJECT. Both the
prototype model and the graphical interface for the user
are built at the same time. The customized interface
enables users of the model to graphically assemble the
scenario for a run of the simulation without having to
write any programming code.

When run, the simulation model presents an animated
display of the system being studied. The user may
interrupt the simulation, make changes, and immediately
see the effect of the changes by continuing the
simulation. Most objects have the capability, which can
be selectively enabled, to automatically gather statistics
from a simulation run.

SIMOBIJECT provides an advanced starting point for
developing models by providing a model framework. It
can be used to model systems as diverse as
communications, logistics, and transportation networks,
manufacturing processes, and business operations. Any
system that can be depicted as flows through a network
can be graphically modeled using SIMOBJECT.

Another capability that SIMOBJECT offers the model
user is the option to display less detail in order to
simplify the screen. With a complex model, the screen
may be so cluttered with icons that it becomes difficult
to follow the animation. Because SIMOBIJECT’s

SIMOBJECT 543

graphics are hierarchical, an entire subsystem can be
shown as a single icon even though the subsystem is
being simulated in detail.

In the early stages of model development, it is often
convenient to define an object or subsystem in a general
way, with the details of its behavior to be filled in when
more is known about it. Even after the detailed model is
completed, it may be desirable to select the general
definition for a particular simulation run, either to
reduce running time or because it is adequate for the
purpose of the study. With SIMOBJECT, the desired
version of an object or subsystem can be selected at run
time. This capability to conveniently select at run time
from different levels of detail, or to select from a menu
of alternative subsystem configurations when
performing trade-off studies, provides a feature long
sought after by model users.

SIMOBJECT graphical modeling is general, and
supports rapid model development across a broad range
of different applications. This capability applies to any
modeling problem that can be characterized by
SIMOBIJECT'"s node-link approach.

For example, CACI is using SIMOBJECT to build a
next-generation communications model. Another
development effort, going on at the same time, uses
SIMOBJECT as the foundation for a model of business
process re-engineering. Two quite different applications
— same underlying SIMOBJECT software foundation.

Each of these two applications consists of several
hundred object types, of which about 80% are derived
from objects provided by SIMOBJECT. Building on
off-the-shelf objects through object inheritance reduced
development by half. This productivity gain comes
about because it requires less work to customize a pre-
built object for a particular application than to define
and implement an object from scratch.

While a library of objects for communications
modeling or business process re-engineering may
function well enough to satisfy the needs of most users,
some modelers will require a well-defined method for
extending the modeling environment. Configuring off-
the-shelf components by choosing parameters alone may
not be enough, for example, where the characterization
of a new, or experimental, situation is required.

In the past, successfully making such changes to a
large, complex program was dangerous and generally
avoided—especially if the original developers had
moved on and could not be consulted. The conventional
way to do it is by locating the underlying code, changing
it, and hoping that unwanted side effects were not
introduced. The inheritance mechanism of an object-
oriented environment facilitates both locating and
isolating the code to be changed. Changes in

functionality can be made to objects without changing
their interface specifications, which means that the
modified object can be used without introducing
unexpected disturbances to the model.

At CACI, we felt that it should also be possible to
apply graphical interactions to make programming
changes. The same set of interactions used to configure a
network can be used to graphically configure the
properties of an object. We have developed a utility for
SIMOBJECT that applies graphical manipulation
techniques to the description of objects themselves. We
call this utility OBJECT.MGR.

3 GRAPHICAL
OBJECT.MGR

PROGRAMMING WITH

OBJECT.MGR is a utility for graphically browsing,
modifying, and constructing the objects that are part of a
simulation model. OBJECT.MGR’s graphical
environment is used to make programming changes to
existing objects and to create new objects.

Because OBJECT.MGR maintains complete
descriptions of all objects in a database, it can provide
the model developer with a variety of ways to view and
manipulate these descriptions. A graphical tree
representation can display an object’s inheritance
relationships with all its ancestors. The data structure of
an object can be composed or edited by dragging and
dropping data fields from the palette. The code of its
method procedures can be graphically traversed as a
hierarchy of statements.

One of the attractions of using graphical editing
techniques is that the editing environment ‘“knows”
about the structuring of objects and so can guide the
interaction, avoiding meaningless constructs. Rather
than retyping identifying names, type and reference
information can be associated with an item simply by
clicking on icons. Contrast this with conventional text
editing—not only must the programmer be fluent with
what is often arbitrary syntax, but there is no feedback
about errors until compilation.

OBJECT.MGR is not restricted to graphical views.
Textual presentations of code may be generated at
various levels of granularity for inspection and editing
with conventional text editing tools. On completion of
an edit, the database representation is updated to
incorporate the changes. OBJECT.MGR allows editing
at any desired level, can translate back and forth
between graphical and textual views.

An important feature of OBJECT.MGR is its support
for searching and browsing of object databases. It is in
the nature of object-oriented software to reuse objects in
inheritance relationships, building complex objects from

544

simpler ones. A requirement is to be able to search sets
of objects for desired capabilitics and browse through
the inheritance of complex objects.

In OBJECT.MGR the user can search for an object
type by name, either for definition or references; the
search can be constrained to search only subsets of
objects. The browsing feature allows the user to navigate
hierarchically through the object collections and
structures in the database by clicking on icons. In
addition, the inheritance graphs may be used to jump
directly to object definitions. Placemarkers to objects of
interest can be accumulated during a model-building
session for quick access to their definitions.

Within OBJECT.MGR, a mouse click opens the icon
representing the SIMOBIJECT database. Either browsing
hierarchically, or using the search capabilities, the user
identifies the object whose functionality is to be
modified. Consider how a model developer might derive
his own version of one of SIMOBJECT’s objects by
adding a new field and modifying some of the object’s
method procedures. For instance, there may be a need
for a router object to retain memory of the last chosen
route and to base subsequent routing on this.

A new object icon is selected from the palette and
dragged into the work area. A dialog entry gives it a new
name. Next the router object that is to be modified is
dragged from a reference window and dropped on top of
the new object. At this point the new object has all of the
inheritance relationships of the original router. To add a
new field, a field is dragged from the palette, named,
and dropped on the new object.

Clicking on the new object opens up a list of icons for
its fields and methods. To change the behavior of the
object, the developer adds to or overrides the method
procedures either graphically or by writing code
changes. The logic can be edited graphically by
dragging and dropping statements or with a conventional
text editor. A menu selection brings up a text editing
window and generates a textual display of the code.
When the modifications are completed, a menu selection
regenerates the SIMOBJECT application. Now
SIMOBIJECT displays the newly created router object on
its palette of available modeling objects. The model
developer can drag it from the palette to replace routers
in a simulation model.

4 CONCLUSIONS

Graphical user interfaces have been enormously
successful in making business software applications
accessible to end users who do not want to be involved
in programming or using arcane commands. We believe
that graphical interfaces developed for SIMOBJECT and

Jones

OBJECT.MGR can do the same thing for simulation
modeling.

SIMOBIJECT supports both the building of models
and the building of graphical interfaces to edit and
configure these models. SIMOBJECT’s library of
prebuilt objects and model-building framework provide
an advanced starting point for the developer of a
prototype model. While the prototype is being built,
SIMOBJECT’s powerful graphical environment can be
used to simultaneously create a customized graphical
interface for the users of that prototype. This graphical
user interface is not something that has been added, but
rather is an integral part of the simulation model.

When the objects in SIMOBJECT’s library do not
meet the needs of the model developer, OBJECT.MGR’s
graphical environment can be used to make changes to
existing objects and to create new objects. This graphical
programming capability is a major breakthrough,
making it possible to navigate graphically through the
database of a complex simulation model to find objects
and then to modify them without affecting the rest of the
model. OBJECT.MGR gives the model developer a
graphical means to extend existing simulation models
and evolve them into more detailed models.

Systems change over time, and models of those
systems also must evolve and change. Without the
ability to readily update the model to reflect system
changes, it may rapidly become obsolete. Many large
complex models, developed using traditional
technologies, are just too difficult to modify because of
the fear of introducing unwanted side effects. Rather
than risk the introduction of errors, it is common to
“fool” the model through data choices. This last resort
usually is unsatisfactory.

The object-oriented architecture underlying models
developed with SIMOBJECT ensures that the impact of
changes can be accurately predicted and understood. The
powerful browsing and editing capabilities of
OBJECT.MGR allow modifications to be made readily
and with confidence—with exactly the same tools used
to develop the model initially.

AUTHOR BIOGRAPHY

JEFFRY JONES has built a wide variety of simulation
models ranging from analytical studies of reactor fuel
elements to theoretical models of satellite
communications to discrete event simulation of the
Space Station Information System. He is currently an
Executive Associate in the Simulation and Modeling
Department of CACI Products Company.

