Proceedings of the 1995 Winter Simulation Conference

ed. C. Alexopoulos, K. Kang, W. R. Lilegdon, and D. Goldsman

OBJECT ORIENTED MODELING WITH SIMPLE++

Dietmar F. Geuder

AESOP GmbH
Mittlerer Pfad 9
70499 Stuttgart, GERMANY

ABSTRACT

Object orientation has become a major competitive factor
in information technology. Reasons for this are the con-
trol of complexity, increased quality and possible reuse of
modules. The discrete event simulation system
SIMPLE++ being presented in this paper brings these
advantages to the simulation user.

SIMPLE++ is a general purpose system for the object
oriented, graphical, and integrated modeling, simulation,
and animation of systems and business processes. Models
are built with objects from a class library containing pre-
defined building blocks. User defined classes can be cre-
ated in an integrated way, allowing the modeling environ-
ment to be tailored to different application areas. The
class structure, inheritance and unlimited number of hier-
archical levels lead to a significant increase of productiv-
ity in building, changing, and maintaining models.

The concept and benefits of object oriented modeling
will be illustrated in the following. In addition to the
modeling environment, the support for validation, simu-
lation, and evaluation of results is covered. Also, the inte-
gration of simulation models into existing IT solutions as
well as application specific object libraries are explained.

1 INTRODUCTION

During the last forty years simulation systems evolved
from basic programming languages to graphical and
application oriented modeling and simulation environ-
ments (Schmid 1994). With the original pure simulation
languages, modeling requires a comparatively high level
of programming skills and is therefore mainly performed
by specialists. Yet these languages provide for a substan-
tial flexibility to model the real world to as much detail as
necessary and allow a vast variety of application areas to
be covered.

Modern graphical simulation tools being targeted for
specific application areas usually offer a standard set of

534

building blocks or templates. With these a model can
easily be built graphically on the computer screen. The
model is then adjusted to the real system by setting
parameters and selecting standard operation rules. This
makes simulation systems more user friendly and
requires less programming expertise. Thereby models
can be built by practitioners with only limited experience,
making simulation more widely accepted in industry.

The modeling power of these conventional tools,
however, reaches its limit with the high complexity of
modern processes in industry. As technical processes in
all types of application areas become increasingly com-
plex and interconnected, methods to manage this com-
plexity must be provided by the modeling environment.
Also, users need to be able to define and integrate specific
rules and control strategies existing in the real system.
Adjusting parameters and selecting rules often cannot
provide this flexibility.

For handling complexity and for increasing efficiency
in software development the concept of object orientation
proved to be a powerful paradigm. Many complex sys-
tems can only be built and maintained if they are struc-
tured according to the principles of object orientation. An
additional effect of the object oriented approach is the
increase in quality and the reuse of components. This is
even more evident with modeling environments of simu-
lation systems.

For this reason SIMPLE++ was designed to provide a
fully object oriented modeling environment. Models are
built by graphically inserting instances from a set of
classes of a library. In the same way new more complex
user-defined classes are built and automatically become
part of the modeling environment. An unlimited number
of hierarchical levels is supported for modeling and
inheritance makes the modification of models very effi-
cient.

The properties and benefits of this object oriented
approach and further unique features of SIMPLE++ will
be illustrated in the following sections.

Object-Oriented Modeling with Simple++ 535

2 OBJECT ORIENTED MODELING

Object orientation has become an important criterion for
software development in recent years and is widely
propagated by major IT companies. Instead of a ‘flat’
functional approach to describing and implementing sys-
tems, the functionality is encapsulated in a hierarchy of
distinct classes with fixed interfaces. This approach
applies in the same way for object oriented simulation
systems. SIMPLE++ being fully object oriented is not
only implemented with this technique in C++ but also
brings the full power of this methodology to the user.

2.1 Concepts of Object Orientation

The key concept of object orientation is the separation of
complex systems into distinct independent parts. These
parts or objects have their own data and functionality and
communicate with other objects by defined interfaces. By
this encapsulation the complexity of simulation models
becomes manageable.

Specific types of objects are represented by a class
while the objects themselves as used in a system or
model are instances of this class. This is much like the
concept of templates from which as many copies as nec-
essary can be placed in a model. The important differ-
ence, however, is that the instances (children) of a class
will always be in an inheritance relation to their parent
class, i.e. they will inherit the properties and functionality
from the class. Any changes made to a class will thereby
automatically be propagated throughout the entire model
and be applied to all instances. The copies of templates
used with conventional systems do not reflect changes
made to the template (see Figure 1).

conventional object oriented

g::?{ite @ @ class

7y CY N
emprare | (WA) &@| | ™ (:]) QD
(=D 5

model model

Figure 1: Changes to Classes are Automatically Prop-
agated by Inheritance

The automatic propagation of changes is especially
important for making modifications and for maintenance
of simulation models. The productivity and quality is
considerably increased by inheritance compared to tradi-
tional systems without this feature.

The same principle holds for subclasses being derived
from a class. Variants of an object type can easily be cre-
ated by building subclasses of a more general class which
contains properties and functionality common to the vari-
ants. The properties which distinguish the different vari-
ants are then modified or added to the corresponding
subclasses (see Figure 2).

@ O

©@O00] [@oa] [@m@mo] [O&N]

Figure 2: A Class Hierarchy of Derived Classes is
Used for Variants with Common Properties

Again any modification to the common properties
need only be performed once to the top level class as the
changes are inherited automatically by all subclasses/
variants. With an unlimited number of levels an entire
hierarchy of derived subclasses can be established in this
way.

This feature proves to be a very powerful approach to
create models for the “what if” scenarios simulation
models are commonly used for. Variations of a model can
efficiently be built and maintained. The common parts of
the system are constructed and changes to it are made
centrally in the top level class while the subclasses con-
tain the parts specific to the different systems. An assem-
bly and a storage area may, for example, be identical for
variants of a manufacturing system while different trans-
portation systems are to be evaluated. Should the storage
area need to be modified at any later time, this has to be
done only once, reducing the amount of modeling work
and the probability of errors.

For simulation models an object focus is very appro-
priate as the systems to be modelled usually contain
physical objects. In a manufacturing environment, for
example, different types (classes) of machines may be
used and a few of each type (instances) will actually be
located in a production line. These objects are usually
grouped into hierarchical levels representing entities or
objects on their own. Thus an object oriented approach
comes very natural for a modeler trying to implement a
real life system. It is not by chance that the first language
introducing the concept of object orientation was the sim-
ulation language Simula.

536

2.2 Modeling

SIMPLE++ as an object oriented system brings the object
oriented approach and its benefits to the simulation user.
Due to their development history most common simula-
tion systems are cither conventional (Banks 1994) or are
merely object based and/or incorporate limitations in the
use of hierarchy (Pegden 1992). SIMPLE++ in contrast
was designed and developed to incorporate the full fea-
tures of object orientation internally and for its modeling
and simulation environment.

The basis for modeling any system is a library of
classes containing all necessary clements and tools to
build a model. The default class library of SIMPLE++
shown below contains the following categories of generic
objects: processors, movable units, data storage, inter-
faces, controls, and user interface elements. Being a gen-
eral purpose simulation tool, the classes are not domain
restricted but can be used to represent any type of mate-
rial or information flow.

u%?: B3
- =
ad i =) [
B [nwoaraf ~ TEXT

Figure 3: Class Library with Generic Objects for
Modeling

Models are being built with these classes by graphi-
cally inserting instances of the required objects into an
empty frame and interconnecting them as necessary.
Every model being built that way is again contained in
the library as a new user-defined class. It can then be used
to create even more complex models on the next higher
hierarchical level. In this way sets of domain specific
application objects can easily be built making the model-
ing environment extremely tailorable to any field of
application. Examples of existing application objects
include manufacturing, assembly, chemical processes,
transportation and distribution, and business process
reengineering.

Figure 4 gives an example of a user defined object
representing a processing element with an input buffer,
single processor and output buffer. It may, for instance,

Geuder

be used as a machine for a manutacturing model or as a
department for a business process model. Two serial pro-
cessors for the buffers and one single processor are
employed to construct the new building block. The flow
of material or information is determined by the directed
connections between these objects.

%—%“»«H*- =

InBuffer SingleProc OutBuffer

Figure 4: Example of a User-defined Object and
the Icon Created for it

Using the built-in picture editor, a new icon together
with the corresponding animation structure may be
created for that application object. It can then be used in
the same way as any other basic or user defined class in
the library. A next higher level representing, for example,
an entire production line may be modelled using this new
class. The following figure shows an example for such a
line containing basic conveyor elements and the above
designed buffered processor.

RN
o B

- = L
q —9‘(:—19_3 -\\COHVZ / S>>
onv l”_—| (=] Conv4
—als

Conv3

Figure 5: A Simple Production Line Containing
Basic and User-defined Objects

2.3 Hierarchy

The above example already showed the application of
hierarchy in a model. The production line above will
again be used as part of a next higher level while it itself
consists of lower level hierarchical elements. In
SIMPLE++ the number of levels is unlimited and models
can grow as detailed as necessary by adding further lay-
ers.

Stepwise refinement of models is supported as further
hierarchical levels can be added at any time during the
development of a simulation model. By this, prototyping
can easily be done. Fairly coarse models of a real life sys-
tem may be created first and more detail is added incre-
mentally wherever necessary and appropriate. Vice versa
models can be aggregated to more complex structures.
With each model being represented as a class in the

Object-Oriented Modeling with Simple++ 537

library, it can also be exported and imported into another
class library to combine the work of several users
working in parallel on a large system.

A top-down and a bottom-up approach and any com-
bination thereof are possible as either incremental refine-
ment or aggregation of lower hierarchical levels is
inherently supported. As the hierarchy is implemented in
a fully integrated manner, the different layers can be
“exploded” at any time. That is, during modeling or dur-
ing a simulation run lower levels may be opened and the
behavior of the model may be observed on different lev-
els of detail.

In conjunction with the user definable dialogue boxes
different views of the system can easily be generated. For
presentations to top management, for instance, only the
top level may be relevant together with the results from
simulation experiments. For regular users, e.g. engineers,
the behavior of specific lower level parts may be of inter-
est while model developers will need to have full access
and control. With hierarchy and dialogue boxes the infor-
mation to be presented can be defined and irrelevant
information and complexity be hidden.

presentations: top level, results |

standard user: access to all but lowest layers

developer: full access to all levels

increasing level of detail >

Figure 6: Different Views of the Model are Supported
by Hierarchy and User-defined Dialogues

2.4 Inheritance

Inheritance as a major characteristic of object orientation
is a key factor for efficient modeling. In most models a
number of components are used repeatedly. Examples for
these are single conveyor elements in an entire transpor-
tation system or aisles of a high bay warehouse. In an
object oriented model these repeatedly used units will be
instances (children) of a single class (parent) and will
inherit its structure and properties.

In contrast to conventional copies of a template, all
these instances can now be changed automatically by
modifying the class. Without the inheritance relation
changes need to be made repeatedly to all copies which is
a tedious and error prone exercise. Inheritance on the
other hand provides for easy and efficient modeling and
maintenance and leads to a major increase in productivity
(see also Figure 1).

SIMPLE++ as a fully object oriented system incorpo-
rates this inheritance for instances of a class as well as for

subclasses being derived from a top level class. If neces-
sary, the inheritance relation can be overridden by local
changes to an object’s properties. If necessary at a later
time the inheritance relation can be switched on again,
causing the corresponding properties to be changed back
to the parent’s values.

2.5 Flexibility

Standard domain restricted simulation environments usu-
ally offer a set of strategies and rules that can be selected
for a specific behavior of the model (Lilegdon 1994).
Thereby common operation rules can easily be included
in a model. However, this comes at the expense of the
flexibility to model the behavior or the real system as
closely as it is possible with simulation programming
languages.

SIMPLE++ offers the easy to use graphical modeling
environment of domain restricted simulators, yet it also
incorporates a complete object oriented programming
language called SInTALK. Most of the modeling will
usually be graphical, relying on the default behavior of
the basic objects. However, specific rules for material or
information flow or decision rules for actions to be taken
can be implemented as closely as necessary.

Together with the list classes for complex data struc-
tures, e.g. queues and tables, and the available interfaces
SimTALK eliminates the need to link externally written
program code to the model. As full access to any model
component is possible by program statements, the model
may even be changed by a program. In this way a simula-
tion model may not only be created interactively but also
by program code. Using the interfaces discussed below,
simulation models can thereby even be created by exter-
nal programs and SIMPLE++ can be completely inte-
grated into another application.

The flexibility available by the generic objects and the
integrated programming language can be used to tailor
the modeling environment exactly to the relevant field of
application. The application objects being created this
way can then be exported and imported to reuse them in
future projects.

3 MODEL VERIFICATION AND VALIDATION

A very important step in every simulation project is the
verification and validation of the model, 1.e. the proof that
the model is operating in its intended manner and that it
correctly represents the real system (Gogg 1992). This
task has to a great extent to be performed interactively by
the user and thus contributes considerably to the overall
cost of a simulation study. It must therefore be supported
by the system as far as possible. Again, object orientation
of the modeling environment makes this process very

538

efficient and controllable. Apart from the inherent trans-
parency of the model gained by the class structure, vali-
dation in SIMPLE++ is actively supported by an
integrated modeling, animation and simulation environ-
ment together with a method debugger and an event
debugger.

3.1 Animation

A major feature of modern simulation systems is an ani-
mation component by which the behavior of the model
can directly be observed. In SIMPLE++ this animation is
integrated with the model. Animation structures are
defined for the icons or pictorial representations of an
object and are automatically updated during the simula-
tion run. The animation thereby gives a first method to
check the intended behavior of the model.

3.2 Integration

With conventional systems a cycle of modeling, compil-
ing, running the model, and looking at results often is the
standard procedure. This is not the case for a truly inte-
grated system. Instead, the model can be run directly and
modeling can even continue while the simulation is run-
ning. Also any model element or attribute is fully accessi-
ble at any time during the simulation run. In conjunction
with the animation, the accurate behavior of a model can
be ensured and may even be influenced directly. In Figure
7 the difference between the conventional and integrated
systems is depicted.

conventional system integrated environment

modelmg\ modeling
evaluation compilation /
1 ; evaluation simulation
ammwulatlon animation

Figure 7: No Development Cycle is Necessary for an
Integrated Simulation System

3.3 Incremental Testing

Taking advantage of the object orientation and hierarchy,
each object can also be tested stand alone. Using a bot-
tom up approach, the single components and hierarchy
levels from which the model is built are already tested as
soon as they are constructed. This incremental test and
modeling makes the complexity of the model’s function-

Geuder

ality manageable. With the ever increasing complexity of
today’s systems the modular and hierarchical testing is a
necessary prerequisite for a proper validation of a model.

3.4 Event and Method Debugger

For a proof of a model’s correct behavior a closer look at
single events of a discrete event simulation system may
be necessary. While most systems allow a step by step
execution of a model, finding an error by stepping
through the events can prove to be a tedious task. Support
of this process by an integrated event debugger is
extremely helpful in this context.

The event debugger in SIMPLE++ allows one to view
the list of scheduled events with all corresponding infor-
mation. Breakpoints may be set for any of these events
causing the simulation run to stop prior to its execution.
A very powerful feature is the possibility to specify tem-
plates for events by which the simulation can be stopped
whenever any event for which the template fits is sched-
uled to take place. The templates are freely configurable
with possible examples being ‘any disruption’ or ‘a dis-
ruption for a specific workcentre’ or the ‘movement of a
specific type of object within a given time frame’.

Furthermore a method debugger is built into
SIMPLE++ by which the strategies and rules imple-
mented in SINTALK can be controlled step by step.
Being completely integrated, full access to any compo-
nent of the model is guaranteed at any time while the
event or method debugger is active.

4 SIMULATION AND EVALUATION

Like most commercial simulators SIMPLE++ is a dis-
crete event simulation system. This means that the behav-
ior of individual entities representing objects or groups of
objects are considered. Events are scheduled for any
point in time something ‘happens’ with one of these enti-
ties. Thus time in a discrete event system does not pro-
ceed linearly but in irregular intervals (see Pidd 1994 for
further details). In SIMPLE++ the events are scheduled,
controlled and executed by a so called Eventcontroller. It
allows one to reset, initialize, and start the simulation run
as well as stop it at any time and proceed step by step.
One part of the evaluation of a simulation run obvi-
ously is the animation by which the overall behavior and
performance of the real world system being modelled can
be inspected. The built in bar graph, numerical display or
the plotter may also be applied to visualize values or
sequences of values which are important to the user.
Usually more important, however, are the statistical
values gained from a number of simulation runs. With
SIMPLE++, a large number of statistical data are
automatically collected by default. Such data is collected

Object-Oriented Modeling with Simple++ 539

for individual stationary objects and movable units, or
even for entire classes of objects. Taking advantage of
object orientation, the collection of statistical valucs can
also be controlled by the classes and gathering of statisti-
cal data can be reset, enabled or disabled for all instances
by inheritance.

The statistical data being collected may be processed
further as they can be accessed via attributes of the corre-
sponding objects. Thus the utilization of processors, for
instance, may be used in control rules determining the
flow of material. Also, they can be used to calculate any
other type of values being relevant for evaluation. Statis-
tics can also be written to an internal table or to an exter-
nal file, from which the data can, for instance, easily be
imported into spreadsheets or word processors to allow
creation of reports or presentations.

5 INTERFACES AND ADDITIONAL FEATURES

Simulation models in many cases are not used stand
alone, but need to be integrated with existing IT solu-
tions. This may either be a true seamless integration or it
may be a connection for data exchange. Standard inter-
faces are therefore a viable component of a simulation
system.

A set of different interfaces is available in SIMPLE++
for connection to other programs. The most common way
to exchange data is by ASCII data transfer. Also, a file
interface is available to write data to and read it from a
file.

Often data needs to be imported from external data
bases. For this reason an SQL-interface is provided which
allows direct access to all major relational data bases to
either retrieve data or write data into the data base. As an
example, order and resource allocation data may be read
from an MRP system into a simulation model while
schedules generated by the simulation run are exported.
This can be done automatically using the available inter-
faces and thus reduces the amount of work necessary to
provide required data.

Apart from the fairly simple data exchange a simula-
tion model may be integrated into another application
more directly using the connectivity of modern multi-
tasking systems. The remote procedure calls of UNIX
and the dynamic data exchange (DDE) capabilities of
Windows NT are supported and allow one to create a
seamless environment of modular applications supple-
menting each other. A SIMPLE++ simulation model
may, for example, provide a dynamic component for
static layout programs or business reengineering pro-
grams or may serve as a monitoring component for a pro-
cess control application.

6 APPLICATION AREAS

Being a general purpose simulation system SIMPLE++ is
employed for a wide variety of applications. The generic
objects together with the hierarchy and object orientation
allow to adapt the modeling environment by graphically
creating application specific objects. Due to the built-in
programming language these may be tailored exactly to
the required functionality. These application objects are
contained as classes in the class library and may be used
like the basic objects shipped with SIMPLE++.

Class libraries from different application areas are
already available and a selection of them are shipped
with SIMPLE++. Examples are AGV systems, personnel
pool, standard strategies, warehousing, shop floor con-
trol, and process industry. Objects of the different
domains can be imported into one library and may be
used jointly in simulation models. In addition, these
classes are open for the user and can therefore still be
adapted or enhanced to fulfill project specific require-
ments (Geuder 1995).

Discrete event simulation is so far mostly used as an
off-line planning and optimizing tool. It is mainly utilized
to determine the performance of planned systems prior to
their construction or to evaluate changes to existing sys-
tems. With growing computing power, models that are
created for these type of off-line planning are increas-
ingly used for on-line tasks controlling daily operations.
Thanks to its openness and flexibility SIMPLE++ also
supports this type of applications and is used for e.g.
scheduling and monitoring tasks to a growing extent.

7 CONCLUSION

Simulation has proved to be a powerful tool for evaluat-
ing and optimizing the performance of complex real
world systems. The advances in computer hardware and
the modern user interfaces for graphical modeling help to
increase the popularity and widespread use of simulation.
The limiting factor, however, often is the complexity of
today’s systems and the missing flexibility of domain
restricted simulators.

Object orientation is an approach which provides the
necessary means to control the complexity of simulation
systems. SIMPLE++ as a fully object oriented discrete
event simulation system brings the benefits of object ori-
entation to the simulation user. Being fully object ori-
ented, 1t incorporates inheritance, modularity and
hicrarchy and thereby leads to higher productivity, reus-
ability and improved maintenance. The necessary flexi-
bility is achieved by an integrated programming language
which allows to exactly specify decision rules or strate-
gies.

540 Geuder

REFERENCES

AESOP GmbH. 1995. SIMPLE++ reference manual ver-
sion 3.0. Stuttgart, Germany.

Banks, J. 1994. Software for simulation. In Proceedings
of the 1994 Winter Simulation Conference, ed. J. D.
Tew, S. Manivannan, D. A. Sadowski, and A. F. Seila,
26-33. Orlando, Florida.

Geuder, D. 1995. Modular application objects: closing
the gap between flexibility and ease of use. In Pro-
ceedings of the 1995 European Simulation Confer-
ence, Vienna, Austria (accepted).

Gogg, T. J. and Mott, J. 1992. Improve quality and pro-
ductivity with simulation. JMI Consulting Group.

Lilegdon, W. R. 1994. Manufacturing decision making
with factor In Proceedings of the 1994 Winter Simu-
lation Conference, ed. J. D. Tew, S. Manivannan, D.
A. Sadowski, and A. F. Seila, 420-426. Orlando,
Florida.

Pidd, M. 1994. An introduction to computer simulation.
In Proceedings of the 1994 Winter Simulation Confer-
ence, ed. J. D. Tew, S. Manivannan, D. A. Sadowski,
and A. F. Seila, 7-14. Orlando, Florida.

Pegden, C. D. and Davis, D. A. 1992. ARENA: a
SIMAN/Cinema-based hierarchical modeling system.
In Proceedings of the 1992 Winter Simulation Confer-
ence, ed. J. J. Swain, D. Goldsman, R. C. Crain and .
R. Wilson, 390-399. Arlington, Virginia.

Schmid, B. 1994. Simulationssysteme der 5. Generation.
In Fortschritte in der Simulationstechnik vol. 6, Ber-
lin.

AUTHOR BIOGRAPHY

DIETMAR F. GEUDER is currently a product manager
in the sales and marketing division of AESOP GmbH.
After a year of graduate studies of artificial intelligence at
the University of Colorado at Boulder he earned his
diploma in computer science at the University of Erlan-
gen with a minor in industrial engineering. Since joining
AESOP he has worked in development, consulting, and
training and did project work in the area of transportation
systems and shop floor control.

