Proceedings of the 1995 Winter Simulation Conference
ed. C. Alexopoulos, K. Kang, W. R. Lilegdon, and D. Goldsman

OBJECT-ORIENTED SIMULATION MODELING WITH C++/CSIM17

Herb Schwetman

Mesquite Software, Inc.
3925 West Braker Lane
Austin, TX 78759-5321, USA

ABSTRACT

C++/CSIM17 is toolkit for constructing process-
oriented, discrete-simulation models by writing C++
programs. The use of C++ as the implementation lan-
guage for the model means that the majority of the ob-
ject-oriented techniques and methodologies that have
been developed for C++ programmers can be applied to
the design and implementation of simulation models.

1 INTRODUCTION

Programmers have embraced object-oriented method-
ologies and languages to enhance their ability to design,
implement and deliver powerful, user-friendly applica-
tions to their customers. Those developing simulation
models have the same requirements and, thus, need to
leverage these new tools and technologies to deliver
simulation models to their customers.

C++/CSIM17 is a toolkit for developing process-
oriented, discrete-event simulation models using object-
oriented development methodologies. It provides a C++
interface to the capabilities and features of the proven
CSIM17 toolkit, used by C programmers for many years
(Schwetman 1986, 1988, 1990, 1994).

This paper presents C++/CSIM17. It then shows how
the object-oriented features of C++/CSIM17 can be used
to implement accurate, efficient simulation models of
complex systems. The focus is on using object refine-
ment to add important details to selected components of
a model. Object inheritance is also illustrated.

2 OBJECT-ORIENTED SIMULATION MODELS

Object-oriented design is an approach to designing soft-
ware in terms of objects, where an object is an instance
of a class. A class is a collection of data items and
methods (procedures and functions) which implement a
software "component".

A simulation model of a system is a collection of
simulated resources and entities, all implemented as

529

elements of a computer program. When the program
executes, these elements "model" the operation of the
"real" system. The goal of such a model is to allow the
user to study the dynamic behavior of the system; usu-
ally in an attempt to improve, in some manner, the un-
derlying system.

It is natural to view most simulation models as collec-
tions of software components. Thus, designing simula-
tion models as collections of objects is a natural merging
of object-oriented design with simulation models.

There are several approaches to designing and imple-
menting simulation models of systems. The choice of
which approach to use depends on the justifications and
goals for building the model. In all cases, we assume the
primary goal is to construct a model of a specific system,
where the system could be a "real" system that already
exits or a system that does not exist but is being studied
for some reason (one being that the system is going to be
built in the future).

This paper focuses on designing and implementing
simulation models as computer programs. There are
other approaches which allow modelers to implement
models without directly creating a program. In other
words, someone else has created the program, and the
end user can use that program to design and implement
their specific model. However, in either case (writing a
program or using another program), someone had to
create a computer program which is a realization of the
simulation model.

3 C++/CSIM17

C++ is one programming language that has been used to
realize object-oriented designs of computer software.
C++ is derived from the C programming language which
is widely known and has been in use for many years.
Thus, there is a large base of programmers who can
readily adopt C++. In addition, C++ is widely sup-
ported: C++ compilers are available for almost all com-
puter systems, there are many books which describe C++

530 Schwetman

and its use, and there are tools which help programmers
to design and implement applications using C++.

CSIM17 is a toolkit which C programmers use to im-
plement process-oriented, discrete-event simulation
models of systems. C++/CSIM17 is a similar toolkit
which provides all of the features of CSIM17, but it tar-
gets C++ programmers. Furthermore, it facilitates the
use of object-oriented methodologies in the design and
implementation of these models.

The remainder of this paper presents C++/CSIM17
and gives some examples of models rendered in
C++/CSIM17.

4 C++/CSIM17 PROCESSES AND CLASSES

CSIM17 implements process-oriented, discrete-event
simulation models. In such a model, the active "entities"
of the system are modeled as processes, and the re-
sources of the system are modeled as either facilities or
storages. Mailboxes and events are used to synchronize
or coordinate the behavior of the processes.

C++/CSIM17 provides four C++ classes which corre-
spond to these resources and synchronization features.
These, along with processes are described in the follow-
ing sections.

4.1 Processes

A CSIM17 process is an independent computing entity.
In CSIM17, a process is a procedure which executes a
create statement. Executing this create statement con-
verts a standard C or C++ procedure into a process.
Each CSIM17 process appears to execute in a manner
which is independent of other processes. Furthermore,
processes can appear to execute simultaneously in
simulated time. By using these processes, the modeler is
able to simulate the concurrent activities of the model of
the underlying system.

When activated, a process remains active (executing)
until it executes a hold statement, terminates, or executes
a statement which causes it to wait for some condition in
the model happen (i.e., for some condition to be satis-
fied). These conditions will be described in subsequent
sections.

CSIM17 processes are not system level processes;
rather they are implemented as part of the CSIM17 run-
time environment so as to execute in an efficient man-
ner. A CSIMI17 process preserves the variables which
are local to the process (procedure) across periods of in-
activity. In addition, CSIM17 processes can be invoked
with input parameters, which are passed as function ar-
guments.

4.2 The Facility Class

Facilities are used to model many of the components of
the underlying system. A facility models a component
as a collection of one or more "servers" and a single
queue. A facility object is created by invoking the facil-
ity class constructor method. As with most C++ objects,
the programmer can choose to create either static or dy-
namic objects. In C++/CSIMI17, it is common to use
global, static facility objects. For example, an assembly
station could be established as follows:

facility assembly_station("assmbly");

This creates a facility object known to the program as
assembly station and with the string name "assmbly".
An assembly_station with a single queue and three paral-
lel stations (a multi-server facility in CSIM17 terminol-
ogy) would be established as follows:

facility_ms assembly_station("assmbly", 3);

Processes can use a facility for a specified period of
time by executing the use method in the facility class, as
follows:

assembly_station.use(10.0);
When a process invokes the method
assembly_station.use(10.0),

the status of the server(s) in the assembly station is
tested. If a "free" server is found, that server is assigned
to the process and the process is delayed for 10.0 units
of simulated time. If no "free" server is found, then the
process is "suspended" (made inactive). At some later
time, another process will finish it usage of a server and
will release that server. When this happens, the server
will be assigned to another process which was waiting
for a free server. That suspend process will then be ac-
tivated, enter its usage interval and then continue.

In addition to invoking the use() method, a process
can reserve a server in a facility (invoke the reserve
method); as soon as a server is reserved, the process can
continue, either executing a hold statement or any other
statement. Executing the sequence of statements:

assembly_station.reserve();
hold (5.0),

assembly_station.release ()

is equivalent to executing a single statement

Object-Oriented Simulation with C++/CSIM17 531

assembly_station.use (5.0).
4.3 The Storage Class

A CSIMI17 storage object is established with an amount
of simulated storage. A process can then allocate a part
of this storage. The allocate succeeds when the re-
quested amount of storage is available; if the requested
amount of storage is not available, the process is sus-
pended until other processes have deallocated enough
storage for the suspended request to be satisfied. A stor-
age object named partition with 100 units of storage is
established by invoking the storage class constructor
method, as follows:

storage partition("partition", 100);

A process could allocate five partitions by invoking the
allocate method, as follows:

partition.allocate(5);
4.4 The Mailbox Class

A mailbox object can be used to communicate messages
between processes. A process can send a message to a
mailbox, and some other process can receive that mes-
sage from the mailbox. Messages are either a single-
valued number or a pointer to a dynamic object or
structure. Each mailbox object consists of two queues:
one is the queue of unreceived messages and the other is
the queue of processes waiting to receive a message.

In C++/CSIM17, using a combination of user-defined
messages (classes) and mailbox objects allows the
model builder to design and implement a variety of
powerful, yet flexible inter-process communication
mechanisms. As an example, assume that the program-
mer has already defined a class named item_c, which
embodies the relevant features of an item to be assem-
bled. Then the following statements could be used to
generate an instance of item_c and then send it to the
first assembly station for initial processing; the first step
is establish a mailbox:

mailbox assembly station_in("assmbly in");

Then, in the generator process, the following statements
could be used:

item_c *item;
item = new item(...);
assembly _station_in.send((long) item);

Then, in the assembly station process, the following
statements would be used to receive this item:

item_c *next_item;
assembly_station_in.receive((long*)
&next_item);

Presumably, the methods of item_c could then be used
to extract the features of next item and to modify its
state before passing it on to the next station in the as-
sembly process.

4.5 The Event Class

Event objects can be used to synchronize the activities of
processes. An event is implemented as a two state vari-
able with a queue for processes waiting for the event to
"occur”. A process "tests" the state of the event by exe-
cuting either the wait method or the queue method. If
the event object is the "not occurred" state, all of the of
the processes testing the event will be suspended. When
some other process invokes the set method (putting the
event into the "occurred" state"), all of the waiting proc-
esses and one of the queued processes will be reacti-
vated.

4.6 Other Classes and Procedures

C++/CSIM17 has some other classes which are used to
complete the implementation of each model. These in-
clude classes for collecting data (table, histogram, qtable
and qhistogram) and classes for generating streams of
random numbers (stream). In addition, there are a set of
procedures for generating either an overall report, or
individualized subsets of reports. There are also routines
for controlling the execution of the model and other as-
pects of its operation.

5 OBJECT REFINEMENT

The object-oriented characteristics of C++ and
C++/CSIM17 can help modelers improve or “refine” the
structure of a model as development and implementation
proceed. This can be illustrated via an example. As-
sume that the facility assembly station is as declared
above. Furthermore, assume that an item process named
"part" contains the statement

assembly_station.use(100.0);

meaning that "part" will use the assembly station for
100.0 units of time. At some later stage of the devel-
opment of this model, someone decides that the model
should have a more accurate and more detailed represen-
tation of this assembly process. In other words, describ-

532 Schwetman

ing the operation of this assembly station by simply al-
lowing a specified amount of simulated time to pass is
not good enough.

One way to "improve" the representation of this as-
sembly station is to create a new assembly station which
more accurately reflects the structure and operation of
the "real" assembly station. For the sake of this exam-
ple, assume that the real assembly station has two ma-
chines and that 40 % of the parts require processing at
only the first station while the remaining 60 % of the
parts require processing at both stations. Furthermore,
the amount of processing time required is split in a
"uniform" way over the two machines. The complete
C++/CSIM17 implementation of this revised version is
as follows:

class assembly_station_c {
private:
facility *machinel;
facility *machine2;
public:
assembly_station_c(char* nm)
{ machinel = new facility(nm);
machine2 = new facility(nm);}
~assembly_station_c()
{delete machinel; delete machine2;}
void use(TIME t);
35

void assembly_station_c::use(TIME t)
{
TIME t1;
if(prob() <= 0.40) {
machinel->use(t);
}
else {
t1 = uniform(0.0, t);
machinel->use(tl);
machine2->use(t - t1);
}
}

The three methods in the above class description are
the constructor method, the destructor method and the
use() method. As each instance of assembly_station_c is
created, the constructor methods creates two dynamic
facilities (machinel and machine2). The destructor
method (~assembly_station c) deletes these two facili-
ties when an object is destroyed. The use() method im-
plements the more accurate processing pattern de-
manded by the modeler. In order to make use of this
improved assembly station, the modeler is to make just
one change to the program; the

facility assembly_station("assmbly")
is replaced with

assembly_station_c assembly("assmbly").
6 OBJECT INHERITANCE

C++ allows one class to "inherit" another class. An ex-
ample of this in C++/CSIM17, consider the need to cre-
ate a new kind of facility which collects some detailed
data about response times. This new facility could be
implemented as a regular facility with a CSIM17 table
added. Then, when a request for service is completed,
the response time could be automatically recorded in the
table. The statements for accomplishing this are as fol-
lows:

class facility data : public facility {
private:
table *resp_tm;

public:

facility data(char* nm) : facility(nm) {

resp_tm = new table("fac resp tm");}

~facility_data() { delete resp_tm;}
void use(TIME t);
IR

void facility data::use(TIME t)
{

TIME t1;

tl = clock;

facility::use(t);

resp_tm->record(clock - t1);
}

In this example, the class named facility_data is de-
rived from the base class facility. All of the methods of
the facility class are available to the derived class with
the exception of the “use()” method; the new class de-
fines a new “use()” method.. This use of inheritance of-
fers a convenient way of modifying the behavior of a
base class.

7 SUMMARY

C++/CSIM17 is a powerful toolkit which allows simula-
tion model builders to construct accurate, efficient
models of their systems, while gaining the benefits of
using object-oriented tools and methodologies. Because
these models are written using the C++ programming
language, programmers can quickly learn the CSIM17
syntax and features and can be designing and imple-
menting process-oriented simulation models quickly. In
addition, C++/CSIM17 is supported on many different

Object-Oriented Simulation with C++/CSIM17

system platforms, so moving models to different systems
is very straightforward; most models can be recompiled
and relinked on a new platform with no changes to the
program. These and the many other features of
C++/CSIM17 make this toolkit a good choice when ac-
curate models of large, complex systems are needed.

ACKNOWLEDGMENTS

CSIM is copyrighted by Microelectronics and Computer
Technology Corporation (MCC). CSIM17 is supported
and marketed by Mesquite Software, Inc. under a license
from MCC.

REFERENCES

Schwetman, H. 1986. CSIM: A C-based, process-
oriented simulation language. In Proceedings of the
1986 Winter Simulation Conference, ed. J. Wilson, J.
Henriksen, and S. Roberts, 387 - 396. Washington,
DC.

Schwetman, H. 1988. Using CSIM to model complex
systems. In Proceedings of the 1988 Winter Simula-
tion Conference, ed. M. Abrams, P. Haigh, and J.
Comfort, 246 - 253. San Diego, CA.

Schwetman, H. 1990. Introduction to process-oriented
simulation and CSIM. In Proceedings of the 1990
Winter Simulation Conference, ed. O. Balci, R.
Sadowski, and R. Nance, 154 - 157. New Orleans,
LA.

Schwetman, H. 1994. CSIM17: A simulation model-
building toolkit. In Proceedings of the 1994 Winter
Simulation Conference, ed. J. Tew, S. Manivannan,
D. Sadowski, A. Seila, 464 - 470. Orlando, FL.

AUTHOR BIOGRAPHY

HERB SCHWETMAN is founder and president of
Mesquite Software, Inc. Prior to founding Mesquite
Software in 1994, he was a Senior Member of the
Technical Staff at MCC from 1984 until 1994. From
1972 until 1984, he was a member of the staff of the
Department of Computer Sciences at Purdue University.
He received his Ph.D. in Computer Science from The
University of Texas at Austin in 1970. He has been in-
volved in research into system modeling and simulation
as applied to computer systems since 1968.

533

