Proceedings of the 1995 Winter Simulation Conference

ed. C. Alexopoulos, K. Kang, W. R. Lilczdon, and D. Goldsman

BUILDING REUSABLE SIMULATORS
USING HIERARCHICAL EVENT GRAPHS

Lee W. Schruben
Cornell University
Ithaca, NY 14850

ABSTRACT

Hierarchical event graphs are an easy way to build
special purpose simulators. At the lowest level, event
graphs are created to represent particular components of
the system being simulated, steps in a process flow, or
hyper-events. These low-level graphs can then be
viewed as different classes of vertices that make up the
next higher level graph. A special purpose simulation
toolkit is thus developed.

1 INTRODUCTION

Three very different types of hierarchical event-graph
simulation toolkits are discussed in this article: a Petri
Net simulator that is used to teach the activity-scanning
approach to simulation modeling, SIMAN and GPSS
network simulators that are used to teach process-
interaction modeling and introduce these languages, and
a industrial process simulator called QUALPLAN that is
used for planning quality inspection systems.

2 ELEMENTS OF AN EVENT GRAPH

A discrete event model of a system can be created by
defining a set of state variables that describe the system,
a set of events that will change the values of these state
variables, and the relationships between the events. An
event graph (Schruben 1983) has vertices (nodes)
representing elementary events connected by directed
edges (arrows) representing the cause-and-effect
relationships between the events. Each event vertex is
associated with the state changes that happen when the
event occurs. Each edge is associated with the
conditions and time delays that govern how one event
might cause another event to occur in the future. Only
one basic modeling object provides enough modeling
power to simulate any discrete event system (Yucesan
1993).

2.1 Event Graph Elements and Behavior

472

In complete detail, an object in an event graph would
appear as follows:

{S=1(S}

{S=1{S)

The detailed behaviors of the basic elements of an event
graph are defined as follows:

1. Edges: After each occurrence of event A, if condition
(i) is then true, event B will be scheduled to occur after
a delay of t. Potential time ties are broken with event B
receiving an execution priority, p.

2. Vertices: Whenever event B occurs, the state
variable(s) in the set of event parameter(s) j will be
assigned the values of the expression(s) k computed
when B was scheduled. The state of the system will then
change from S to fg(S). The edge conditions for all
edges exiting B will then be tested and those found true
will have their destination events scheduled.

Also, to make certain modeling tasks easier, events are
allowed to cancel one another; an event cancellation
edge is represented in an event graph as with a dashed
arrow. Vertices can schedule or cancel further instances
of themselves.

All of the elements of the event graph can be
statements or expressions; for instance, event execution
priorities, p, can be real-valued expressions allowing for
dynamic state-dependent event sequencing.

There are two fundamental features of a simulation
model that distinguish it from other types of computer
programs. First, there is the ability to represent the



Building Reusable Simulators . 473

passage of time; second, there is the ability to represent
randomness. Thus, two variables (actually functions
without arguments) are reserved for use by the event
graph to represent the dynamic and stochastic behavior
in a model: CLK, which is the current simulated time,
and RND, which is a random number.

2.2 Event Graph Simulation

Associated with each event vertex in an event graph is a
number (which is initially the order in which the
vertices in the graph were created). When an event
graph (or sub-graph) simulation is "run", the lowest
numbered vertex will always be the first vertex
executed. The event graph simulation run is stopped
when the highest numbered event vertex is executed.
(Software implementations of event graph modeling
may allow different types of stopping criteria.) It is
useful in what follows to think of an event graph as a
function that maps the "initial" system state S (input)
into a real valued number (output). By using the C
construct of allowing a state to be the address of a
variable, an event graph function can be quite general.

3 HIERARCHICAL EVENT GRAPHS
3.1 Graph Elements as Sub-Graphs

A possible hierarchy for event graph models is to use
event graphs as elements of a higher level event graph.
For example, the delay time on an edge might be the
output value of a lower-level event graph simulation.
This might be used, say, when running a factory
simulation. The delay time for a machining process
might be the output from the event graph of a more
detailed machine simulation. The machine level
simulation might be run whenever there is a change in
the operation.

3.2 Nested Event Graphs

The approach to hierarchical event graphs used here is
to allow each vertex in an event graph to itself be an
event sub-graph. Edges into this sub-graph/vertex will
connect to the lowest numbered vertex in the sub-graph.
Edges exiting this sub-graph/vertex will originate at the
highest numbered vertex in the sub-graph. The sub-
graph can be grouped into a single vertex and treated
just as if it were a conventional vertex. With this vertex
numbering scheme and entering and exiting rule for
sub-graph/vertices, executing a sub-graph/vertex is
exactly equivalent to running the sub-graph simulation.
The sub-graph/vertices are essentially the same as the
"super events" in the seminal article by Som and

Sargent (1989). In the remainder of this paper several
examples of event graph simulations are presented.

4 APETRINET SIMULATOR

A special purpose simulator of generalized timed Petri
Nets (Peterson 1985) was created as a hierarchical event
graph. This Petri Net simulator is used in an
undergraduate simulation course to introduce students to
the activity scanning approach to simulation modeling.
Figure 1 shows a Petri Net representing two tandem
multi-server queues.

», Figure 1: A Petri Net Simulation ‘
S SIMAN and GPSS SIMULATORS

Sub-graphs are created representing various SIMAN
and GPSS modeling blocks. An example of the SIMAN

(Pegden 1986) simulator of primary and overflow
processing resources is shown in Figure 2.

e

ooant Grapd SBLAMY MO dUimalsion Ganphi

33
“\ ‘Flle " ﬁdli gim gidiﬂen' Znumﬁlndm “Help

Figure 2: A Simulator of a SIMAN Model



474 Schruben

6 QUALPLAN

The QUALPLAN process planning tool is a high-level
process simulator designed specifically to aid in
planning quality inspection in production operations.
Once a flowchart description of the process flow is
determined, quality inspections can be added to improve
the average outgoing quality level (AOQL) of the
finished products. QUALPLAN is intended to be
flexible and easy to learn and use.

A basic QUALPLAN modeling session might look
as follows: (Note that various data (*.DAT) files are

open.)

Figure 3: A Qualplan Working Session

QUALPLAN is a commercial simulator that is used to
design quality inspection systems. It allows modeling
different process routes for multiple products and
contains eight basic high level modeling blocks.
Transparent to the user, these blocks are themselves
multiple level event graphs. The modeling blocks
included are:

W% STEP: This is a generic processing step. Each
STEP is associated with a record in the data file
STEP. DAT. This data file completely specifies:
processing time distributions,
number of parallel resources available,
step yield,
probability of detecting an incoming flaw,
minimum batch size,
maximum batch size,
resource failure time distributions, and
resource repair time distributions.
These data files can be edited while a model runs.

\a CHECK: This is a generic inspection step. A

CHECK block points to a particular record in the
CHECK. DAT file which specifies rules and probabilities
for sampling a product, the probability of detecting a
flaw in a sampled product, and the probability of being
able to rework a detected flaw.

$” ENTER: These blocks are where new jobs enter
the system. The data file, ENTER. DAT, contains initial
delays and inter-event time distributions as well as the
average incoming quality of jobs received at the block
and probability distributions for part types and routings.

EXIT and SCRAP: These blocks are
where jobs exit the system. Cycle time, WIP, and
quality level statistics are automatically generated in an
EXIT block.

’ TRANSPORT: A transport block has an associated
delay time probability distribution in a data file.
M CHANGE: When a job enters this block, is
attributes can be changed. Job attributes include
AGE (time since it entered the system),
GONOGO (good or flawed),
JID (job ID number), and
JOBTYPE (type of job).

START: This is used to initiate the simulation.
7 SUMMARY

Two approaches to hierarchical event graphs are
suggested. One of these methods was used to implement
different types of simulators using an activity (Petri Net)
world view, a process (SIMAN or GPSS) world view, or
for a specialized application in quality control. The
variety of these applications illustrate the generality of
hierarchical event graphs in modeling different systems
and offer examples of modeling with different
simulation world views.

ACKNOWLEDGMENT

I am grateful to the National Science Foundation for
sponsoring a research project of which this paper is a
part. Though these simulators appear and behave very
differently, all were created using the same event graph
paradigm and software, SIGMA for Windows
(Schruben 1994). QUALPLAN is an example of a
special purpose simulator built using the SIGMA



Building Reusable Simulators

simulator design tool kit and can be easily extended and
modified with SIGMA.

REFERENCES

Pegden, C. D. 1986. Introduction to SIMAN, 2nd ed.,
Systems Modeling Corp.

Peterson, J. L. 1977. Petri Nets. Computing Surveys,
9(3), 223-252.

Schruben, L. 1983. Simulation modeling with event
graph models. Communications of the Association of
Computing Machinery 26(11), 957-963.

Schruben, L. 1994, Graphical Simulation Modeling and
Analysis using SIGMA for Windows (3rd ed.), The
Scientific Press, Danvers, MA.

Som T. K. and R G. Sargent, 1989. A formal
development of event graph models as an aid to
structured and efficient simulation programs. ORSA
J. on Comput. 1, 107-125.

Yucesan, E. 1993. On the modeling power of simulation
graphs, Technical Report, INSEAD, Fontainebleau,
France.

AUTHOR BIOGRAPHY

LEE SCHRUBEN is on the faculty of the School of
Operations Research and Industrial Engineering at
Comnell University. He received his undergraduate
degree in engineering from Cornell and a Ph.D. is from
Yale. His research interests are in statistical design and
analysis of simulation experiments and in graphical
simulation modeling methods.

475



