Proceedings of the 1995 Winter Simulation Conference
ed. C. Alexopoulos, K. Kang, W. R. Lilegdon, and D. Goldsman

CREATING SIMULATION RUNTIMES FOR PROFIT

CIiff B. King

F&H Simulations, Inc.
P.O. Box 658
Orem, Utah 84059-0658, U.S.A.

ABSTRACT

The creation of runtimes in the simulation industry is
fast becoming a profitable venture for many business
consultants. The majority of small companies lack the
expertise and the resources to build their own
simulation model. Under these circumstances, it is in
the company’s best interest to hire an outside
consultant. The consultant develops a runtime custom
made to meet the needs of the client. Now the client has
a powerful tool that they can use as part of their ongoing
decision making.

The consultant who completes a simulation project,
shows the results, gives a few suggestions, and then
leaves, deprives the client of the real benefits of
simulation; that is, dynamic decision making. On the
other hand, the consultant who, in addition to providing
the usual consulting services, develops a simulation
runtime for the client to use as future decisions have to
be made, greatly enhances the overall consulting
service. As the effort required to generate simulation
runtimes decreases, more consultants will start using
them in their practice, and more people will begin using
simulation in their business. With proper training, and
a well-built simulation runtime, everyone from plant
managers to accountants can take advantage of
simulation for what it is -- a decision making tool.

1 INTRODUCTION

The Taylor II Simulation software allows the interactive
creation of custom runtimes. The runtime can easily be
set up within the Taylor II menu system, and then saved
as a separate executable program. It can be developed
to have a defined menu structure all of its own, or at any
point in the application, branch into the standard menu
structure of Taylor II. Custom input screens particular
to the industry or company targeted can be created to
prompt the user for the exact information needed (i.e.,
number of AGV's, speed of conveyors, or batch size for

405

an oven). Predefined reports and graphs can be set up
for easy access through a single menu selection.

2 APPROACH

The runtime development kit is integrated in Taylor II,
but after one has developed and tested the application,
one can run the application as a separate stand alone
program. Runtime applications are developed using
hierarchically structured sequences of actions. In other
words, one defines the action that will occur, the level it
will occur at, and the level the application will go to
when the action is complete.

The following is a conceptual example of what is
meant by “hierarchically structured sequences”. This is
an example of a possible runtime application to help
with weekly staffing decisions at a bank planning to
offer a flexible work schedule for their employees.

Level 1. Main Menu: Modify/Run/Results/Exit
Level 11. Modify Menu: Arrival Rates/Tellers/
Transactions /Service Times

Level 111. Arrival Rates: Define/Edit

Level 112. Tellers: Choose Employees/ Define
Schedules

Level 113. Transactions: Define/Edit

Level 114. Service Times: Define/Edit

Level 12. Run Menu: Number of Iterations/Length of
Simulation

Level 13. Results Menu: Reports/Graphs

Level 14. Run Menu: Save/Quit

Notice how the application starts at level 1, and
depending on the menu item chosen, the application
may advance to levels 11, 12, 13, and 14. If Modify is
chosen, the application advances to level 11, if Tellers is
chosen next, then the application advances to level 112.
Of course the proper Taylor commands must be defined
at each level in order to get the action desired from the

406

chosen menu item. This will be explained in detail
now.

To develop a runtime in Taylor II, one first selects
<Options> from the main menu, and then selects
<Runkit>. This will bring up three menu selections to
choose from:

<Define> To develop the runtime
application
<Test> To run and test the application

while in Taylor 11

<File> To save or retrieve an
application (runtimes are saved
separately from models).

After selecting <Define>, a window pops up in which
one can develop one’s runtime application. The
window contains a table of three columns and multiple
rows. Each row represents a level in the runtime
application. The three columns are labeled: Level,
Action, and Parameters. At each row one will define
the current level number, the number of the level to go
to when the action is complete, the action itself, and any
parameters associated with the action. By hitting
<Enter> when the Action field is highlighted, one is
presented with a list of available actions to choose from.
The type of action chosen will determine what
parameters must be entered. For instance, if Menu was
chosen as an action, one would be asked to type in the
menu selections separated by commas in the Parameters
field.

The general concept is as follows: the system always
starts at row number 1, level 1. At this level a certain
action is performed (sometimes needing parameters),
and after this the system goes to the next level. How is
the next level determined? It depends. There are two
kinds of actions: those that generate a new level, and
those that do not. If an action does not generate a new
level, the system jumps to a level specified in the Level
field, otherwise the system jumps to the level generated
by the action. At this new level the same procedure is
followed.

I will now discuss the three columns in the pop up
window (Level, Action, Parameters):

[Level]
Two values are shown: the level, and (between brackets)
the next level. If one hits <Enter> one can edit the level
(except at row 1 where the level is always level 1). One
is free to number the levels the way one prefers, but
some structure is recommended.

If one presses <F8>, one can edit the next level (the
level that is jumped to after the action at the current
level is executed). Normally one will not edit the next

King

level; by default it is 1, so the system will always return
to the main menu (normally the action at level 1 is the
main menu).

If the action specified at the current level is an action
of the type that generates the next level, the manually
set next level is overruled. This is indicated by <1...>,
Actions generate hierarchically structured next levels.
For instance, if one is at level 3 now, a menu action
(with four menu options) will generate levels 31, 32, 33,
34. If one is at level 33 a menu action would generate
331, 332. 333, and 334.

[Action]

As mentioned there are some actions that generate a
next level and some that do not. Actions that generate a
next level are:

-Menu
next level: (current level * 10) + X
X: escape=0, first option=1,
second option=2, third option=3,...
-Dialog
next level: (current level * 10) + X
X: escape=0, first option=1.
second option=2
-Sure
next level: (current level * 10) + X
X: escape=0, Ok=1
-TLI setlevel
next level: X
X: number returned as a

result of a TLI expression

Some other actions are:

-Data Entry Taylor standard input windows
-Data Entry User user defined input windows
-TLI to execute TLI expressions
-Quit to quit the application
-Wait to wait for user response
-Message to show a message

All the remaining actions are standard Taylor menus.
One can define menu access at different levels. For
example: if one chooses ...Detail... as an action, the user
gets in the <Detail> menu of Taylor II, and will follow
the Taylor II structure from there on. But one can also
define ...Detail Elem Nr... as an action, which is much
more specific: the user gets into the editing window for
a specific element immediately.

[Parameters]
Depending on which action one chooses, one may have
to specify some extra information in the Parameter field.

Simulation for Profit

For example: if one defines the action Menu, one will
have to list the menu options in the Parameter ficld. If
one chooses ...Detail Elem Nr... one has to specify the
element number in the Parameter field. And if one
defines the Quit action, one does not have to specify

anything.
3 SUMMARY

Taylor II Simulation allows for interactive development
of stand alone runtime applications. Programming
skills are not required because of the unique pop up
editing window with a pick list of available actions for
defining the runtime application. The creation of
runtimes is an effective way of getting more people to
use simulation in their work. If the user does not have
to build the simulation model. but only needs to input
data as prompted for it, and then correctly evaluate the
results, simulation can be used by people who have
neither the time nor the expertise to build their own
model. As always, guidance by a consultant or a key
person within the organization is necessary to ensure
proper simulation techniques are followed. The
development of a successful runtime will prove
profitable for both the creator of the runtime and the end
user of the runtime.

AUTHOR BIOGRAPHY

CLIFF B. KING is the current director of customer
services at F&H Simulations, Inc. He is a member of
the Institute of Industrial Engineers. Formerly he was
the program manager of Morton International's
Japanese automotive airbag programs. He received his
B.S. in Mechanical Engineering from Brigham Young
University.

407

