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ABSTRACT

We develop and evaluate procedures for estimating
and simulating nonhomogeneous Poisson processes
(NHPPs) having an exponential rate function, where
the exponent may include a polynomial component
or some trigonometric components or both. Max-
imum likelihood estimates of the unknown contin-
uous parameters of the rate function are obtained
numerically, and the degree of the polynomial rate
component is determined by a likelihood ratio test.
The experimental performance evaluation for this es-
timation procedure involves applying the procedure
to 100 independent replications of nine selected point
processes that possess up to four trigonometric rate
components together with a polynomial rate compo-
nent whose degree ranges from zero to three. On
each replication of each process, the fitting procedure
is applied to estimate the parameters of the process;
and then the corresponding estimates of the rate and
mean-value functions are computed over the obser-
vation interval. Evaluation of the fitting procedure
is based on plotted tolerance bands for the rate and
mean-value functions together with summary statis-
tics for the maximum and average absolute estimation
errors 1n these functions over the observation interval.
The experimental results provide substantial evidence
of the numerical stability and usefulness of the fitting
procedure in simulation applications.

1 INTRODUCTION

In many simulation studies, we encounter time se-
ries of events having long-term trends or multiply

374

periodic behavior. For example in analyzing the ar-
rival streams of liver-transplant donors and patients
for the UNOS Liver Allocation Model (Pritsker et al.
1995), we found some arrival rates to exhibit signif-
icant growth over time as well as daily, semiweekly,
weekly, and annual effects—that is, cyclic patterns
of behavior with periods of 1, 3.5, 7, and 365 days,
respectively. In this paper we propose methods for
estimating and simulating such arrival processes.

The scope of this paper encompasses three main
objectives. The first objective is to introduce a time-
dependent arrival-process model that is sufficiently
flexible to represent a wide variety of input processes
arising in large-scale simulation experiments. In par-
ticular, we seek an model that accommodates both
long-term trends and multiply periodic behavior. The
second objective is to formulate and implement a
methodology for using our input model in simula-
tion experiments. More specifically, we formulate and
implement methods for estimating model parameters
from time series data and for simulating the arrival
process corresponding to a given set of model param-
eters. The third objective is to carry out and sum-
marize a systematic experimental performance eval-
uation of our estimation and simulation procedures.

The proposed time-dependent arrival process is a
nonhomogeneous Poisson process (NHPP) with an
Exponential-Polynomial-Trigonometric (EPT) rate
function having Multiple Periodicities—that is, a rate
function of the class we shall label EPTMP. Using
an exponential rate function is a convenient means
of ensuring that the instantaneous arrival rate is al-
ways positive. If the arrival rate includes a long-term
evolutionary trend, then this trend is naturally rep-
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resented in the exponent of the rate function by a
polynomial component of appropriate degree. Finally
if the arrival rate includes some periodic effects, then
each periodic effect is naturally represented in the ex-
ponent of the rate function by a trigonometric com-
ponent with the appropriate oscillation frequency, os-
cillation amplitude, and phase delay.

In Section 2 of this paper we describe the for-
mulation and implementation of our procedures for
(a) estimating thc parameters of an NHPP with an
EPTMP-type rate function, and (b) simulating the
arrival process represented by such a model. Maxi-
mum likelihood estimates of the continuous model pa-
rameters are computed by a Newton-Raphson search.
The simulation procedure generates event times ac-
cording to the specified EPTMP-type rate function
by the method of piecewise inversion. This simula-
tion procedure facilitates the application of standard
variance reduction techniques (e.g., common random
numbers and antithetic variates). Both the estima-
tion and simulation procedures are implemented in
portable, public-domain computer programs that are
available on request.

In Section 3 of this paper we present the experi-
mental performance evaluation of the proposed pro-
cedures for estimating and simulating NHPPs with
EPTMP-type rate functions. To study the proper-
ties of the estimation procedure for many types of
time-dependent arrival behavior encountered 1n prac-
tice, we present the results of applying the estimation
procedure to 100 independent replications of nine se-
lected Poisson processes. In terms of a time unit of
one year, the performance evaluation includes NHPPs
with up to four periodic rate components representing
biennial, annual, semiannual, and quarterly effects;
moreover the study includes NHPPs with rate com-
ponents representing trends over time that are con-
stant, linear, quadratic, and cubic, respectively. The
performance evaluation is based on visual inspection
of tolerance bands for the rate and mean-value func-
tions as well as summary statistics for the maximum
and average absolute errors in these functions over
the observation interval.

In Section 4 of this paper we recapitulate our main
findings and recommend directions for future work.
Most of this paper is based on Kuhl (1994).

2 METHODS FOR ESTIMATING AND
SIMULATING NHPPs

2.1 Basic Nomenclature

A nonhomogeneous Poisson process {N(t) :t > 0} is
a generalization of a Poisson process in which the in-

stantanecous arrival rate A(¢) at time t is a nonnegative
integrable function of time. The mean-value function
(or the integrated rate function) of the NHPP is de-
fined by

¢
wu(t) = E[N(1)] :/ A(z)dz for all ¢ > 0.
0

An EPTMP-type rate function has the form

A(t) = exp{h(t;m,p, ©)} (1)

with
m A P
h(t;m,p,©) = Zait’ + Z Yk sin(wkt + ¢ ),
i=0 k=1

where:

G): [QOyah"'vaWL)'yl)’"17py¢1:~":¢p)w1:"'1wp]

1s the vector of continuous parameters. The first
m + 1 terms in hA(t;m,p, ©) define a degree-m poly-
nomial function representing the general trend over
time. The next p terms in h(t;m,p, ©) are trigono-
metric functions representing cyclic effects exhibited
by the process.

In many simulation applications, the frequencies
are known from prior information; however, there
1s a large class of applications for which such prior
information is either unavailable or incomplete. To
develop a completely general technique for model-
ing and simulating an NHPP with an EPT-type rate
function, (that is, a rate function of the form (1) in
which p = 1), Lee, Wilson, and Crawford (1991) as-
sumed that the oscillation frequency is unknown and
must be estimated along with all of the other pa-
rameters of the rate function. To further generalize
this estimation procedure to include multiple cyclic
effects, we assume that the frequencies, amplitudes,
and phases in the EPTMP-type rate function (1) are
unknown. In the case that the frequencies are known,
the w-components (that is, the last p components) of
the vector © can be dropped before applying the pa-
raimeter estimation technique.

Suppose a sequence of n events are observed at the
epochs t; <ty < --- < t, in a fixed time interval
(0, S] as a realization of an NHPP with a rate func-
tion of the form (1). The log-likelihood function of
O, given N(S) =n and t = (t1,t2,...,t,), 18

m P n
LOInt) = > oTi+ Y Y yesin(wit; + or)
1=0

k=135=1

s
—/ exp{h(z;m,p,©)}d=, (2)
0
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where T; = Z’-':l l; for i =0,1,...,m; see Cox and
Lewis (1966). Following the procedure of Lee, Wil-
son, and (‘rawford (1991), we see that the elements of
© can be determined by conditioning the estimation
of ® on a fixed value of m and solving the system
of likelihood cquations given in Appendix A of Kuhl
(1990 via the Newton-Raphson method. However,
general numerical techniques such as the Newton-
Raphson method have proven to be unstable when
they are applied to the system of likelihood equa-
tions outside of a fairly small neighborhood of the
optimal solution. 'I'herclore, good initial estimates of
the parameters must be obtained to establish reason-
able starting values for the Newton-Raphson proce-
dure. As detailed in Subsections 2.2 and 2.3 below,
our procedure for computing initial parameter esti-
mates is a natural extension to the case of multiply
periodic behavior of the analogous procedure devel-
oped by Lee, Wilson, and Crawford (1991) for the
case of a single periodic rate component. Finally, the
appropriate value of m is determined using the like-
lihood ratio test discussed in Subsection 2.4.

2.2 Computing Initial Estimates for
Trigonometric Parameters

The initial estimates for the frequencies {wi, ..., wp}
can be obtained either from prior information about
the process or from a standard spectral analysis of the
series of events (Lewis 1970). For some illustrative
examples, see Kuhl (1994).

Based on the initial estimates of the frequencies
{wi,...,wp}, the respective initial estimates of the
amplitudes {y1,...,7,} and the phases {¢1,..., ¢}
can be determined as follows. Assuming temporarily
that there is no long-term evolutionary trend over
the observation interval (0, S], we see that the rate
function for this multiply periodic process has the
form

I'I
At) = exp|a+ Y i sin(wel + i) (3)
k=1
for t € (0, S]; and the log-likelihood function is
L(O]|n, t)
s r
= na —¢e" / exp lz Yesin(wez + @) | d:
J0 k=1
P n
+Y D vesin(wity + i), (1)

k=1j=1

where n is the number of arrivals in (0, 5].
A key hypothesis of our approach is that we can
obtain good initial estimates of the parameters of the

EPTMP-type rate function by estimating the param-
eters of each periodic component independently. The
basis for this approach is the following approxima-
tion,

S P
/ {H explye sin(wg = + ¢L)]} dz (5)

k=1

P 5
~ H {S—I/P / exp[ye sin(wgz + ¢r)] d:} .

k=1 0

IKuhl (1994) provides a heuristic justification for (5).
As shown in Kuhl (1994), each factor on the right-
hand side of (5) can be written as

S
S'l/”/ explyi sin(wy z + ¢x)] d= = SPTVIPL(5;),
0

(6)
k = 1,2,...,p, where I;(-) is a modified Bessel
function of the first kind of order j for j = 0,1
(Abramowitz and Stegun 1965). We combine (5) and
(6) and insert the result into the formula (4) for the
log-likelihood function; moreover in (4) we use the
familiar addition formula

sin(witj + @) = sin(¢y) cos(wit;) + cos(¢y ) sin(wyt;)

to obtain the following approximation to the log-
likelihood function,

L(O|n,t)
) P
~ na-—e*SP! H Io(yk) + Z Ye sin(@r ) A(w)
k= k=
) 1 1
+ >y cos(i) Blwi) | (7)

k=1
where, for k =1,2,...,p,

n

A(wk) = Z cos(wktj), (8)
j=1
and
B(wy) = Z sin(wit;) . (9)
j=1

To obtain initial estimates for the parameters, we
calculate the following partial derivatives of the ap-
proximate log-likelihood function (7) with respect to
each parameter and set the partial derivatives equal
to zero. Thus we obtain

dL(O|n, t) oot T
—ga  =n-—es? 1EIO(7k):0; (10)
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and for k =1,2,...,p, we have

0L(O|n,t) " _acp-1 P ‘
Ok = —e*SPT L () 111 lo(y;)  (11)
Ak
+ cos(¢i)B(wr) + sin(d)k)A(wk) =0
and
L ‘
% Yk cos( @k ) A(wr)

=7k sin(¢y) B(wi)
—_— (12)

Starting from equations (10)-(12) and applying ar-
guments similar to those given in Lee, Wilson, and
Crawford (1991) for each periodic rate component
separately, we obtain the following initial estimates
for the phase and amplitude of each periodic compo-
nent:

T -1 Awy)
¢r = tan [ " ]

k=1,2,....p, (13

B(ws)
and
o . (3 A2 (wi) + B2
¢ 1s solution of I(A’k) = \/ (i) + B(wx) (14)
To(7k) ng
for k =1,2,...,p, where ny is the number of events

in the time interval

wiS | 27
(0’ b—an—k] /

and |z| represents the greatest integer < = for all real
z. Notice that in equation (14), the respective defini-
tions (8) and (9) for A(wg) and B(wy) are modified
slightly so that the upper limit n on these summations
1s replaced by ni. Moreover, notice in (13) and (14)
that the initial estimates of the amplitude and phase
for each periodic rate component depend only on the
initial estimate of the frequency for that component.

2.3 Computing Initial Values for Polynomial
Coefficients

To determine initial values for the coefficients
{a; :7=0,1,...,m} of the polynomial rate compo-
nent, we use a generalized version of the moment
matching procedure presented by Lee, Wilson, and
Crawford (1991). The first m+ 1 moments of the rate
function (1) over the interval (0,.5] have the form

S . S .
/ :l/\(z)dz:/ " exp{h(z;m,p,©)}dz (15)
0 0

for i = 0,1,...,m. Setting 0L(O|n,t)/0a; = 0 in
the log-likelihood function (2) for ¢ = 0,1,...,m and
solving for T; yields

S
Ti:/ :iexp{h(z;7n,p,@)}dl (16)
0

for ¢ = 0,1,...,m. Initially, the procedure deter-
mines the coefficients {¢;:7=0,1,...,m} of an or-
dinary polynomial Z?:o c; 27 of degree m whose first
m+1 moments match those of exp{h(z; m,p, ©)} over
the interval (0, S]. From (16), it follows that we seek
coefficients {c; : j = 0,1,...,m} yielding

S m m i4q
X . Gt
Ti:/ 2t ch:] d::Z?]* (17)
0 j=0 i=o’ +i+1
for i = 0,1,...,m. The linear system of equations

(17) 1s solved to obtain initial estimates for the poly-
nomial coefficients {c; }.

In the next step, the first m + 1 moments of the
function log(Z;nzo cj:J) over the interval (0, 5] are
matched with the moments of hA(z;m, p, ©) to deter-
mine the initial values for {a; : ¢ = 0,1,...,m}. This
yields the equation system

s m
/ = log Z ¢; |dz (18)
0 iz

S m P
/ b Zajzj +Z~yk sin(wgz + ¢p) | dz
0 .
j=0

k=1
m P47 P
_ aj5'1+]+1 o
— Z 1+]+1 +kz=:17kMSln(lvb)wky¢k))

7=0

fori=0,1,...,m, where

S
Man(i, S: wi, de) = / S sin(wi s + é) d-,
0

the 7th moment of sin(wyt + ¢5) over the interval
(0, S]. Equation system (18) can be rewritten as

m

.S
/ ' log Z ;) |d=
0 F

j=0

P
=D e Mainli, S; wi, $)
k=1

m , y
.Sl+J+1
= Yy (19)

j=0 ! + J + 1
fori =0,1,...,m. Solving the linear equation system
(19) yields initial estimates of {o; :7=0,...,m}.
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These initial estimates of the polynomial parameters
along with the initial estimates of the trigonometric
parameters provide a reasonable starting point for
the Newton-Raphson scheme. Howcver, this start-
ing point does not guarantee the convergence of the
Newton-Raphson method to the global optimum of
the log-likelihood function (2).

2.4 Computing Final Parameter Estimates

The final parameter estimates for a specified degree
m of the polynomial trend are determined using the
Newton-Raphson method. Let ém denote the fi-
nal estimate of © yielded by the Newton-Raphson
method for a fixed degree m of the polynomial rate
component. To determine the appropriate degree of
the polynomial to include in the rate function (1),
we will use an extension of the likelihood ratio test
proposed by Lee, Wilson, and Crawford (1991). This
statistical test has the null hypothesis that m is the
true degree of the underlying EPTMP-type rate func-
tion. Under the null hypothesis, the test statistic

2[,cm+1 (é’mH ‘n,t) — L (ém‘n,t)J (20)

is asymptotically chi-square with one degree of free-
dom as S (and consequently n) tend to infinity; and
we exploit (20) to assess the importance of successive
increments of the likelihood function as the degree of
the estimated trend component is repeatedly incre-
mented by one. The degree of the fitted EPTMP-type
rate function is determined to be the smallest value of
m for which the difference (20) is not significant at a
prespecified level of significance. The corresponding
vector ©,, provides the final parameter estimates for
the underlying NHPP.

To estimate the parameters of an NHPP having
an EPTMP-type rate function based on an observed
series of event times using the method detailed in
this section, we developed the public-domain soft-
ware package mp3mle. The structure and operation
of mp3mle are detailed in Kuhl (1994).

2.5 Simulating NHPPs

Once a rate function is estimated for the NHPP, the
public-domain computer program mp3sim can be used
to simulate independent replications of the process.
The structure and operation of mp3sim are discussed
in Kuhl (1994). This program simulates an NHPP
with an EPTMP-type rate function over the interval
(0, 5] using the method of piecewise inversion.

With the conventional method of inversion (Brat-
ley, Fox, and Schrage 1987) for an NHPP having rate
function A(z), = € [0, 5], the cumulative distribution

function of the next event time 7,4, conditioned on
the observed value ; = t; of the current event time
is given by

F

T.+1|T.

{ l—exp[— ftt. )\(:)dz] , ift >t

0, otherwise.

(tlt,‘) = PI‘{Ti.H S t|T,; = ti}

Thus to sample 7;4; by inversion given 7; = t;, we
generate a random number U;4; from the uniform
distribution on the unit interval (0,1) and we com-
pute

rp1 = F2L (Ui ft).

T.+1|T.

This amounts to solving for 7;4; in the equation
Tit1
/ /\(:)d::—ln(l—U,-+1).
t,

The value of 7;,4; can be determined using a search
procedure over the interval (¢;, 5).

The method of piecewise inversion uses a regularly
spaced partition of preevaluated points on the mean-
value function to identify rapidly the regular subin-
terval containing the next event. A modified bisection
search is used to estimate the time of the next event
with sufficient accuracy so that either

(a) The absolute difference between the exact and
estimated times of the next event is less than a
user-specified tolerance; or

(b) When compared to the target value of the mean-
value function at the exact time of the next
event, the mean-value function at the estimated
time of the next event has a relative error less
than a user-specified tolerance.

Linear interpolation is used on the first six iterations
of the modified bisection search to accelerate the es-
timation of the next event time. Because the piece-
wise inversion algorithm always starts from the be-
ginning of a regular subinterval to estimate the next
event time, errors incurred in estimating the current
or previous event times are not propagated to the
next event time.

3 EXPERIMENTATION

3.1 Generation of Experimental Data

To evaluate the procedure for fitting an EPTMP-type
rate function to a nonhomogeneous Poisson process
having multiple cyclic effects, we chose nine NHPPs
which represent processes having up to four cyclic
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components or a general trend over time or both.
Cases 1-6 are NHPPs in which the rate function is an
EPTMP-type function. Cases 7-9 are NHPPs with
polynomial-trigonometric rate functions having mul-
tiple periodicities (that is, rate functions of the class
we shall label PTMP) and the form

m r
At) =Y ot + ) gk sin(wet + ¢x) (21)
1=0 k=1

for all t € (0, S]. For cases 1-6, the parameters for
the polynomial function and the first trigonometric
component are taken directly from the experimenta-
tion done by Johnson, Lee, and Wilson (1994) on the
estimation of an EPT-type rate function. Cases 1-4
consist of exponential rate functions with two peri-
odic components. Case 1 does not contain a general
trend over time. Cases 2, 3, and 4 contain general
trends which are represented by polynomials of de-
gree 1, 2, and 3, respectively. Rate functions of type
EPTMP with three and four periodic components are
utilized in cases 5 and 6, respectively. The rate func-
tions of type PTMP 1n cases 7, 8, and 9 consist of
2, 3, and 4 cyclic components, respectively; and the
rate functions contain no general trend.

The parameters of the rate function for each case
are shown in Table 1. The frequencies used in the ex-
perimentation are expressed in radians per unit time
such that w; = 27, wy = 47, w3 = 87, and wy = 7
radians per unit time. If the time period is expressed
as one year, then these frequencies represent annual,
semiannual, quarterly, and biennial effects, respec-
tively.

Realizations of the selected NHPPs were generated
over the interval (0, S] using the program mp3sim. For
each case, A" = 100 independent replications were
simulated over the interval (0,12]. On each replica-
tion, an EPTMP-type rate function was fitted to the
observed series of event times. For all of the appl-
cations of the estimation procedure, the initial esti-
mates of the frequencies were set equal to the ac-
tual frequencies with which the events were gener-
ated. In contrast to the experimentation presented
by Johnson, Lee, and Wilson (1994) which treated
the oscillation frequency as a known parameter, we
are assuming the oscillation frequencies are unknown
parameters that mp3mle must cstimate. Estimating
the frequencies is fundamentally more difficult than
assuming the frequencies are known, and the selected
cases 1-9 constitute a more stringent test of the ca-
pabilities of the estimation procedure. A significance
level of 10% was used for the likelihood ratio test (20)
in each case; and the maximum degree of the fitted
polynomial was set to four on every application of
mp3mle.

3.2 Formulation of Performance Measures

To cvaluate the performance of mp3mle, we used both
visual-subjective and numerical goodness-of-fit crite-
ria. The numerical performance measures were first
formulated and used by Johnson, Lee, and Wilson
(1994) to evaluate the procedure for estimating an
EPT-type rate function. These include absolute mea-
sures of error for each experiment and relative per-
formance measures that can he compared across the
different experiments. For replication k of a given
case, the estimated rate function is denoted by Xk(t)
and the estimated mean-value function is denoted by
fi(t). The average absolute error in the estimation
of the rate function A(t) on the kth replication is

1[5~
=g | ‘/\k(t)—)\(t)‘dt, (22)

and the mazimum absolute erroris
5 Emax{‘Xk(t)—~/\(t)‘ ;05t55} (23)

for k = 1,...,A. A performance measure for the
deviation of the estimated mean-value function from

u(t) is

1 S

A= g () = ()] dt, (24)

and the corresponding maximum deviation is

a; = max{[m0) - po| s0<e<sp29)

fork=1,..., K.

Johnson, Lee, and Wilson (1994) developed ag-
gregate performance measures based on (22)-(25)
that are computed over all replications of a given
experiment. The sample mean of the observations
{6x : k=1,... R} is denoted by &; and the corre-
sponding sample coefficient of variation Vs i1s given
by

| K 172
\:’,s:[]\,_lg(ék—é)] /5. (26)

The statistics &* and Vs« are computed similarly from
the observations {6} : k = 1,..., A'}. Following John-
son, Lee, and Wilson (1994), we also report

g *
Qs = ——— and Qs = ———
n(S)/S n(S)/S
since normalizing by the theoretical average arrival
rate over (0, S] facilitates comparison of results for
different rate functions.

(27)

| >
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Table 1: Parameters of NHPPs Used in the Experimental Evaluation

Case 1 2 3 4 5 6 7 8 9
g 3.6269 3.6269 3.6269 3.6269 3.6269 3.6269  35.0000 35.0000 35.0000
1 — 0.1000 —0.1000 —0.4743 — — — — —
o S — 0.0200 0.0873 — — — — —
a3 — — — —=0.0041 - — — — —
o8 1.0592 1.0592 1.0592 1.0592 1.0592 1.0592  10.0000 10.0000  10.0000
1 —-0.6193 —0.6193 —-0.6193 —0.6193 -0.6193 -0.6193 —-0.6193 —0.6193 —0.6193
wi 6.2831 (5.2831 6.2831 6.2831 6.2831 6.2831 6.2831 6.2831 6.2831
Yo 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 10.0000 10.0000  10.0000
b 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 —-0.6193 —0.6193 —0.6193
wo 12.5664 12.5664 12.5664 12.5664 12.5664 12.5664 12.5664 12.5664 12.5664
¥3 — — — — 0.2500 0.2500 — 10.0000 10.0000
3 — — — — 0.2500 0.2500 — —0.6193 —-0.6193
w3 — — — —  25.1327  25.1327 — 25.1327  25.1327
Y4 — — — — — 0.7500 — — 4.0000
Pa — — — — — 0.7000 — — —0.6193
Wy — — — — — 3.1416 — — 3.1416

Aggregate performance measures analogous to
(26)-(27) are also reported for the errors {A;} and
{A}} incurred in estimating the mean-value function.
In particular, when Ay (respectively, A} ) replaces 6
in the formulas for & and Vj, we obtain the definitions
of A and Va (respectively, A* and Va.). Moreover,
the analogues of Qs and Q- are

A A*
Qar=————— and Qa- =

1 S 1 S
. 0

where the overall average error estimates A and A*
are expressed as percentages of the average level of
the mean-value function over the observation interval
(0, S]. We remark that the definitions for Qo and
Qa- given here differ from the definitions for these
quantities used in Johnson, Lee, and Wilson (1994),
where A and A* were expressed as percentages of the
average level of the rate function.

In addition to numerical performance measures,
graphical methods are used to provide a visual means
of determining the quality of the estimates. For each
case, the underlying theoretical rate (respectively,
mean-value) function is graphed along with a toler-
ance band for the estimated rate (respectively, mean-
value) function. The approximate tolerance band was
obtained as follows for the rate function A(t). For a

fixed time t € (0, 5], let
X(l)(t) < X(Q)(t) << X(K)(t)

denote the ordered estimates of A(t) obtained on all
R replications of the estimation procedure. Then, the
following approximate 100(1 — 3)% tolerance interval
for A(t) is obtained:

At s 2 (t), X(fA"{l-/a/'z}])(i)] ,

where [z] denotes the smallest integer greater than
or equal to z. For example, if A = 50 and g = 0.10,
then the estimated 90% tolerance interval for A(t) at a

single fized time ¢ € (0, S is [X(a,(t), X(48)(t)]  Sim-

ilarly, tolerance intervals are obtained for the mean-
value function p(t) at a fixed time ¢t € (0, S].

3.3 Presentation of Results

The statistical results on the estimation of A(t) and
p(t) for each experimental case are shown in Table
2. Figures 1 and 2 are respectively the graphs of
90% tolerance bands for the rate function and mean-
value function in Case 1; and Figures 3 and 4 are
respectively the graphs of 90% tolerance bands for
the rate function and mean-value function in Case 3.

A complete set of figures for all cases is given in Kuhl
(1994).
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Table 2: Statistics Describing the Errors in Estimating A(t) and p(t), t € (0, 12]

Case /1( ﬁ) g V5 Q,s _(S—* Ve

Qs+ A Va Qa A Va. Qa-

8 43 032 0.09 166 043
2 1126 6.3 0.25 0.07 32.1 0.37
3 967 6.3 0.32 0.08 454 041
4 396 55 0.33 0.17 26.7 0.40
5 599 5.3 0.22 0.11 239 0.30
6 714 6.7 026 0.11 414 0.29
T 420 3.9 0.28 0.11 132 0.31
8 420 49 0.22 0.14 189 0.1
9 420 56 0.17 0.16 22.7 0.29

034 11.8 0.70 0.039 236 065 0.079
0.3 15.0 057 0.032 36.1 0.48 0.078
056 13.1 063 0.038 334 060 0.097
0.81 139 058 0.075 27.9 0.52 0.150
0.48 123 0.66 0.040 25.3 0.60 0.083
0.70 142 071 0.037 282 057 0.074
0.38 104 081 0.049 20.1 0.73 0.095
054 104 0.81 0.049 206 0.71 0.097
065 105 081 0.049 21.0 0.70 0.098

Arrival Rate

-
-

)
0 2 4 6 8 10 12
Time t
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3.4 Analysis of Results

The numerical results in Table 2 scem to be reason-
able values for the sclected measures of performance.
To evaluate the estimation procedurc in general, the
normalized statistics can be used. All of the values
of these normalized statistics are within the ranges of
values presented by Johnson, Lee, and Wilson (1994)
for the casc of one periodic component. However,
some subtle trends do exist in the values of the nor-
malized statistics for these experimental cases. The
statistics @5 and Qs increase slightly as the number
of periodic components p increases. Also, (Qse tends
to increasc as the degree m of the true underlying
polynomial trend component increases. The normal-
ized statistics Qa and @a- for evaluating the esti-
mate of the mean-value function also increase slightly
as m increases, and these values are stable as p in-
creases. In addition, the normalized error measures
for Cases 7, 8, and 9 (which have PTMP-type rate
functions of the form (21)) are generally higher than
the corresponding measures for Cases 1, 5, 6 (which
have EPTMP-type rate functions with the same val-
ues of m and p, respectively). Thus, the PTMP-
type rate functions are more difficult to fit than the
EPTMP-type rate functions.

Plots of the 90% tolerance bands about the rate
function indicate that mp3mle is consistently able to
fit a reasonable EPTMP-type rate function to the
data. However, the plots seem to have the widest
tolerance band at the peaks of the rate function. In
addition, the plots of the rate function show that the
accuracy of the estimation procedure decreases as the
number of periodic components increases. This may
be due to the key approximation (5), which in gen-
cral becomes less accurate as p increases. Such a
breakdown of (5) may degrade the accuracy of the ini-
tial parameter estimates. Thus, the Newton-Raphson
procedure may yield a suboptimal solution estimate
of the parameter vector ©.

The plots of the rate functions also indicate that
the estimation procedure has more difficulty fitting an
EPTMP-type ratc function to the underlying PTMP-
type rate functions in cases 7, 8, and 9. In particular,
the peaks and valleys of the rate function exhibit wide
tolerance bands for the fitted rate function. Parallel-
ing the explanation given by Johnson, Lee and Wil-
son (1994), the major causc of this “ballooning” of
the tolerance bands is the symmetrical behavior of
the underlying PTMP-type rate function about the
polynomial trend, compared to the asymmetric be-
havior of the fitted EPTMP-type rate function about
the corresponding exponential-polynomial function.
The error caused by this asymmetric behavior is com-

pounded with the addition of more periodic compo-
nents. However, the numerical measures and plots
do show that an EPTMP-type rate function can be
used to approximate reasonably an NHPP with an
underlying PTMP-type rate function.

From the plots of tolerance bands for the mean
value functions, one can see that each tolerance in-
terval grows steadily over time in each case. This be-
havior is expected. Since the error is cumulative, the
estimation error increases as the mean-value function
increases.

4 CONCLUSIONS AND
RECOMMENDATIONS

The main contributions of this work are summarized
as follows.

o We have introduced an EPTMP-type rate func-
tion, which is sufficiently flexible to model a wide
variety of input processes that arise in large-scale
simulation experiments.

e We have formulated methodologies for estimat-
ing parameters of an NHPP with a EPTMP-type
rate function and for simulating such a process.
Our procedure for obtaining the initial parame-
ter estimates can effectively handle up to four pe-
riodic rate components, yielding starting values
that are close to the maximum likelihood esti-
mates obtained by the Newton-Raphson method
while requiring substantially less computer time
than the Newton-Raphson method.

e In building the UNOS Liver Allocation Model,
Pritsker et al. (1995) successfully applied mp3mle
and mp3sim to the liver-donor arrival streams at
64 organ procurement organizations and to the
liver-patient arrival streams at 111 transplant
centers in the United States.

e The estimation procedure and the simulation
procedure are implemented in portable, numer-
ically robust software packages which are in the
public domain and are available on request.

There are several directions in which this research
should be extended.

e The main enhancement to the estimation proce-
dure should be to automate the spectral analysis
required to obtain the initial estimates of the fre-
quencies {wy th=1,2,...,p}.

e The program mp3mle should be enhanced to han-
dle more than four periodic rate components and
to compute and print the standard errors for each
element of ém.
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