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ABSTRACT

This paper presents improvements to two common
confidence interval procedures: the two-stage Stu-
dent’s ¢ intervals and the paired ¢ intervals. Further,
we provide a conservative extension to the paired t
intervals to deal with any finite number of alterna-
tives. Also, we include an approximate procedure
that performs better with large numbers of alterna-
tives. These procedures have been presented in the
literature previously, but special elementary cases, re-
vised notation, and comparison to common methods
should make these procedures accessible to a broader
audience. Numerical examples are included.

1 INTRODUCTION

This paper presents a number of procedures for find-
ing confidence intervals for discrete event simulations.
The procedures listed are revisions and convenience
extensions of those in Matejcik and Nelson (1993).
Each of the procedures (except the sphericity pro-
cedure) are written so that the repetitive calcula-
tions may be done with spreadsheet functions. These
repetitive calculations may be done using average
commands for Z, d, and d;j; using standard devi-
ation commands for s( ); and copying cells of the
form “=b3-c3” down columns for d;; ¢. So, these pro-
cedures are convenient for many users, and the ease
of computation may comfort potential users. Also,
comments and advice are included in the procedurcs
to aid in understanding and implementation.

Each of the multi-system interval procedures is ro-
bust to unequal variances between systems and ex-
ploits common random numbers to achieve more nar-
row confidence intervals. Also, the multi-systems con-
fidence intervals exploit Hsu’s (1984) Multiple Com-
parison with Best (MCB) interval scheme to obtain
better inferences. Explicit statement of Hsu’s MCB
for paired observations may be new in this paper; it
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provides more powerful inference than the commonly
used paired-t procedure. Also, Hsu's MCB intervals
are explicitly stated for finding minimums as well as
maximums, thus saving readers the work of deriv-
ing the minimum format. Additionally, the k-systems
and the paired-t procedures have the intervals using
fewer elements in the maximization operators and no
use of [ ], ( )*, and —( )~.

2 TWO-STAGE INTERVAL PROCEDURE

Pegden, Shannon, and Sadowski (1995) and other
elementary simulation texts include an approximate
multi-stage procedure for finding confidence intervals
for a simulated mean performance parameter, p. 1
call this procedure, the common procedure. In light
of Stein’s methods (see e.g. Wetherhill and Glaze-
brook 1986) this may be shortened to the following
conservative two-stage method.

Two-stage mean interval procedure
1. Choose a Confidence Level 1 — «.

2. Generate nj independent sample observations .\;
from the system simulation model.

3. Compute the common summary statistics:

4. Compute a first-stage half width.

hy = ti—ajzn—15(x)/ /1

Here ¢ is the usual tabled Student’s ¢ value.
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A by i sulliciently small assign o= hyoand pro-

n

ceed (o the Tast step, forming the confidence -
tervals. Otherwise, go to the next step.

G. Scleet a target vadue o < Ny, which would pro-
vide a sulliciently small vadue of h.

. Compute the total required sample size N oand

second stage samiple size ..

/ 2
N = INT |n, - <i> +1
h

ny = N —ny

Although not strictly necessary at this point, it
1s wise to consider the run time required to gen-
erate n- independent sample observations. If the
run time is too long, go back to the previous step
and select a larger value of h.

8. Generate n» independent sample observations .\,
from the system simulation model.

9. Recompute I using the total sample.

10. Finally, form the confidence interval:
l—a<Pr{f—h<pu<i+h}

The above procedure has advantages over the com-
mon procedure. The above procedure is conserva-
tive (probability statement for the confidence interval
can be proven correct when the observations X, are
normally distributed), and the common procedure is
only approximately correct. Sceondly, this procedure
will ferminate in two-stages, while the common pro-
cedure may take more stages. Also the common and
the above procedures have the same first and second
stage sample sizes. And, finally the above procedure
requires that only one standard deviation be com-
puted, while the common procedure requires at least
two be computed.

3 PAIRED-T INTERVAL PROCEDURES

Paired-t procedure provide interval estimates for the
difference of two means px —y1y, when obitaining sai-
ples of .X' and Y using common random numbers. If
the confidence interval excludes zero, we may deter-
mine with probability 1 —a which mean is larger. Ele-
mentary statistics books and introductory simulation
texts include paired-t procedure (see e.g. Pegdon,
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Shannon, and Sadowski 1995). One-stage procedures
are most often presented in texts. Also, a two-stage
procedure analogous to the one the previous section
is also available. 'T'he following procedures use un-
balanced paired-t intervals to better determine which
mean is larger. The procedures may be proved correct
by observing that they are special cases of procedures
from Matejcik and Nelson (1093).

Onec-stage paired-t procedure
L. Choose a Confidence Level 1 — a.

2. Generate Ny, XNo, oo N, and ¥, Y9, .00 Y, us-
ing common random numbers across systems.

3. Compute d, = X; —Y; foralli=1,2,...,n.

4. Compute the common summary statistics:

Compute the “half width”.

h = 1‘1_0,71_1.5((1)/\/5

Here t is the usual tabled Student’s t value. No-
tice, the subscript 1 — «a is indeed correct; our
unbalanced intervals allow us to use a smaller ¢
value than the common procedures.

(W]

6. Finally, form the confidence interval:

l1—a < Pr{min(0, |d|=h) < |px —py | < |d|+h}.

Two-stage paired-t procedure
1. Choose a Confidence Level 1 — a.

2. Generate Ny,...,.\,,, and Y7,...,Y,, using
common random numbers across systems.

3. Compute d; = \; —Yiforalli =1,2....,n1.

4. Compute the common summary statistics:
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5. Compute the first stage “half width”.

hy = ti—an,-15(d)//n
Here t i1s the usual tabled Student’s ¢ value.

6. If hy 1s sufficiently small assign h = hy, and pro-
ceed to the last step, forming the confidence in-
tervals. Otherwise, go to the next step. Note,
we must not compare the means of the systems
in judging if h; 1s sufficiently small.

. Select a target value h < hj, which would pro-
vide a sufficiently small value of h.

~1

8. Compute the total required sample size N and
second stage sample size n».

ny x h 2
v h

no =N —n

N = INT +1

Although not strictly necessary at this point, it
would be wise to consider the run time required
to generate no independent sample observations.
If the run time is too long, go back to the previ-
ous step and select a larger value of h.

9. Generate N4 Xng42, - YN,
and Y5, 41, Yn,+2,- .-, Y v using common random
numbers across systems.

10. Compute d; = X; — Y; forall ¢t = ny +1,n; +
2., N,

11. Recompute d using the total sample.
N
. d;
=25

12. Finally, form the confidence interval:

l1—a < Pr{min(0, |d|—h) < |pux —py| < |d|+1}.

With both of the above procedures if the confidence
interval excludes zero, we may determine with prob-
ability 1 — @ which mean of the two mecans is larger.

4 K SYSTEM PAIRED PROCEDURES

Extending the paired-t procedure to more than two
systems can be done by the all pairwise procedure as
shown in Law and Kelton (1991). Alternatively, we
extend the procedure by forming Hsu’s (1984) Multi-
ple Comparison with the Best (MCB) intervals. Our
procedure is closely related to the Selection procedure

developed by Clark and Yang (1986). M('B provides
interval estimates of ji, —max;»; p; fori =1,2,.. ., k,
when we desire to select the largest system. If system
i s the largest g — maxj»; p; > 0 and if system 7 is
not the largest p; — maxjz; p; < 0. Similarly, if we
find confidence intervals for g; — max;z; p; covering
only positive numbers we may declare system ! the
largest with the same confidence level with which we
formed the intervals. Also, if we find confidence inter-
vals for j1; —max; z; 1; covering only negative numbers
we may reject. system i from consideration as being
the largest with the same confidence level with which
we formed the intervals. Analogous reasoning allows
to make similar statements when seeking the smallest
system and using p; — minjz; p; fori=1,2,... k.

One-stage k system procedure
1. Choose a Confidence Level 1 — «v.

2. Generate independent and identically
distributed sample obser-
vations X117, N1 9,..., N1 0, Noj, Now oo, Vo,

o Nk, Ng oo, Xk n, using common random
numbers across systems.

3. Compute the differences between the systems
(lij'g = ‘\'i'g - ,\'j‘g for all f,j = 1,2‘ . .‘,k and
for all ¢ = 1,2,...n. Observe that d;; r = —dj; ¢
and d;; ¢ = 0 to save calculations.

4. Foralli,j =1,2,.. .k obtain the following sum-
mary statistics:

n

7 dij,e
hi=2
¢
(dijc = dij)*
S(dff):¢z FE

5. Compute the “half width™.

[l—k“_'—l.u-—l (d )
max s(d;;
vn LY
Here t is the usual tabled Student’s ¢ function.
However, unusual probability values are used, so
I provide a short table for o = 0.05 as an ap-
pendix.

h =

6. Finally, if we are interested in selecting the
largest system mean form the following set of
confidence intervals:
l—n<

Pr{min(0, —h 4+ minjz; d;;) < pr; — mMax; z; fi;
< max(0,h + minjx, dyj)or i =1,2,.. .k
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Alternatively, if we arc interested in selecting the
the smallest system mean form the following set
of confidence intervals:

l-a<
Pr{min(0, —h + max; z; d;;) < pt; — minj; p1;
< max(0, h + max; z; d;;) for i = 1,2,k

Two-stage k system procedure
1. Choose a Confidence Level 1 — a.

2. Generate indepen-
dent and identically distributed sample obscrva-
tions ,\'1,1, ‘\'1,'_), RN 1\'1,"], ,\'3'1 , ,\'2'2 oy ,\’2,,“,

oy Xe 1, Nk 2., N n,, using common random
numbers across systems.

3. Compute the differences between the systems
d,‘jy( = 4\—1"[ - 4\']"3 for all i,j = 1, 2, .. .,k and for
all £ = 1,2,...n;. Observe that d;;, = —dji,(
and d;; ¢ = 0 to save calculations.

4. Foralli,j = 1,2,...k obtain the common sum-
mary statistics:

5. Compute the first stage “half width”.

5 ti- e ni-1 (d
= —————— max s(d;;

\/n—l i lJ)
Here t is the usual tabled Student’s t function.
However, unusual probability values are used, so
I provide a short table for a = 0.05 as an ap-
pendix.

6. If hy is sufficiently small assign h = hy, and pro-
ceed to the last step, forming the confidence in-
tervals. Otherwise, go to the next step. Note,
we must not compare the means of our groups in
judging if h; is sufficiently small.

7. Select a sufficiently small target value h < hy.

8. Compute the total required sample size N and
second stage sample size ns.

h\°
ny X <-F>

n.Q:N—nl

N =INT +1
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Although not strictly necessary at this point, it
would be wise to consider the run time required
to generate ny independent sample observations.
If the run time is too long, go back to the previ-
ous step and select a larger value of h, or consider
another technique such as the two-stage proce-
dure from the next section.

9. Generate independent and identically dis-

tributed
sample observations X'y n,41, X1n,42, .-, V1N,
Xomi+1, Noni42,.- Vo N

oo Nk o+ Xk g2, - -5 Nk,N, USIDg common
random numbers across systems.

10. Compute for all dij e = X; 0 — X foralli,j =
1,2,... kf=n+1,n+2,...,N.

11. Recompute d_i]- using the total sample.

N
Czijzzd}\][,e for all i,7=1,2,...k
¢

12. Finally, if we are interested in selecting the
largest system mean form the following set of
confidence intervals:

l-a<
Pr{min(0, —h 4+ min;z; di;) < p; — max;z; 4
< max(0,h+ minjg; d;j)}fori=1,2,...k

Alternatively, if we are interested in selecting the
smallest system mean form the following set of
confidence intervals:

l-—a<
Pr{min(0, —h + max;4; d; ;) < p; — minjz; jj
< max(0,h + max;z; d; j)} for i = 1,2,...k

5 LARGE K INTERVAL PROCEDURE

This final procedure, which also allows the systems
to be simulated under common random numbers and
is fairly robust to unequal variances across systems,
is an extension of Nelson’s (1993) robust MCB proce-
dure. The analogous one stage procedure is available
in Nelson (1993). Although the procedures of the pre-
vious section are correct for any finite number of sys-
tems, this final procedure is better when a large num-
ber of systems are studied. The point at which this
occurs depends on many factors, so I suggest that the
final procedure be used only when the procedures of
the previous section are inadequate. This procedure
assumes that covariance matrix between systems, X,
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has a particular structure known as sphericity, specif-
ically

2+ 77 Y1+ Y1+ Yy
R ¥ + i
Yrtdr e+ 24 + 7

Sphericity implies that
Var[.\'ij - ‘\',gj] = 'ZTQ

for all i # (. In other words, the variances of all
pairwise differences across systems are equal, even
though the marginal variances and covariance may be
unequal. Sphericity generalizes compound symmetry,

which 1s

L p p
Eqpl p
=0

pop 1

Compound symmetry has been assumed by many re-
searchers to account for the effect of common random
numbers.

The procedure below is exact when X satisfies
sphericity. Nelson (1993) showed that an MCB pro-
cedure based on the assumption of sphericity is re-
markably robust to departures from sphericity pro-
vided that the covariances o;; > 0, which is com-
monly assumed and easily verified when common
random numbers are used. In the procedure, ¢ =

,gl__lji_l)(no_l)’% is the (1 — «)-quantile of the max-
imum of a multivariate ¢ random variable of dimen-
sion k —1 with (k —1)(ng — 1) degrees of freedom and
common correlation 1/2; see, for instance, Table 4 in
Hochberg and Tamhane (1987).

Two stage large k sample procedure

T(l—a)

1. Specify h, @ and n;. Let g = k= 1,(k=1)(ng=1),2"

2. Take 1.1.d. sample X;1, X9, ..., Xin, from each
of the k systems using common random numbers
across systems.

3. Compute the approximate sample variance of the
difference

. L . o . oo\ 2
s 2 im b (X = N = X4+ X))

S k—1)(m — 1)

4. Compute the second-stage sample size

N = max {n;,INT ((gS/h)*) + 1} .

fabal

. Take N — ny additional i.i.d. observations from
each system, using common random numbers
across systems.

6. Compute the overall sample means

- 1 N
N, o= N;XU

fori=1,2,... k.

7. When interested in the largest system, simulta-
neously form the MCB confidence intervals

; — IMax i,
pi T €

min(0, ‘_(z —max\; — h ,
( g#i 7 )

max(0, i, - max,‘_('j. + h)
J#L

fori=1,2,... k.

Alternatively, when interested in the smallest
system, simultaneously form the MCB confi-
dence intervals

; —Mminpu; €
Hi e Hj

min(0, .Y;. — min ‘_I] —h),
J#

max(0, X;. — min {] + h)
J#e

fori=1,2,... k.

6 EXAMPLES

Pegdon, Shannon, and Sadowski (1995) provide a
comparison of two material handling priority systems.
I added a third set of numbers to show k systems com-
parisons methods. The following table includes the
raw data: FIFO, and SPT observations from Pegdon,
Shannon, and Sadowski (1995) and a newly added
EDD column. The final three columns are the differ-
ences di; ¢ between the observations, and below are
the summary statistics. This table was prepared us-
ing i spreadsheet..
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Table 1: Material Handling Priority Systeins

FIFO SPT  EDD  dpy dpr dor
S87T 009 9853 032 -0.983  -0.663
3152 1918 3097 1234 0.55  -11.79
.10 123 165.002 181 -0.862  -2.702
L1 13.04 152 1.07 -1.09 -2.16
16.72 1779 18713 -1.07  -1.993  -0.923
T8 1119 25671 1629 2109 -111s1
3105 2161 33.723 1200 0327  -12.113
2296 105 21518 12106 1442 -11.018
1098 1327 12,765 =220 <1785 0.505
11.66 S5 11878 316 -0.218  -3.378
dij 5592 -0.2503 -5.8423

s(d;;)  6.960 1.350  5.6943

We may find a paired-t interval for the difference
between FIFO and SPT. Using our one stage proce-
dure we have

0.95 < PI‘{O < |,U-F]po - ﬂSPTl < 9.620},

Matejcik

7 SUMMARY

Six procedures were listed starting with a two-stage
form of the Student’s ¢ procedure, and concluding
with a sphericity procedure. The procedures inter-
est simulators because they generalize and improve
basic interval procedures, and are accessible to many
uscrs. The improvements for the new procedures in-
clude narrower confidence intervals, fewer stages, ex-
ploitation of common random numbers, robustness to
uncqual variances, and the extension to k systems.

APPENDIX

Table 4: k& System Paired Procedures o = 0.05

which indicates that uprro 1s larger than pgpr. We
have also found the MCB intervals using the one stage
k system procedure for selecting the largest or the
smallest and displayed them in tables 2 and 3 below.

Table 2: 95% CI p; — max;z; p;j

lower | upper
i min; z; d;; | bound | bound
FIFO -0.2503 | -5.22 4.71
SPT -5.8423 | -10.81 0
EDD 02503 | -4.71 5.22

Table 3: 95% CI for y; — minjz; p;

) lower | upper
1 max;#; d;; | bound | bound
FIFO 5.592 0 10.56

SPT -5.592 | -10.56 0
EDD 5.8123 0] 10.81

From the table 2 we declare SPT as not the largest,
but we cannot state which of the other two is the
largest. From the table 3 above we may declare SPT
to be the smallest.

k 2 3 4 5 6 7
F(t) 95| .975 | 983 | .988 99 | 992
v

1 6.31 ) 127 | 19.1 | 255 | 31.8 | 38.2
2 2,021 4.30 | 5.34 | 6.21 | 6.96 | 7.65
3 2.35 ] 3.18 | 3.74 | 4.18 | 4.54 | 4.86
4 2,131 278 | 3.19 | 3.50 | 3.75 | 3.96
b} 2.02 | 2.57 | 291 | 3.16 | 3.36 | 3.53
6 1.94 | 245 2.75 | 2.97 | 3.14 | 3.29
T 1.89 | 2.36 | 2.64 | 2.84 | 3.00 | 3.13
8 1.86 | 2.31 | 2.57 | 2.75 | 2.90 | 3.02
9 1.83 | 226 | 251|269 | 282|293
10 1.81 ] 2.23 | 247 | 2.63 | 2.76 | 2.87
11 1.80 | 2.20 | 2.43 | 2.59 | 2.72 | 2.82
12 1.78 | 2.18 | 2.40 | 2.56 | 2.68 | 2.78
13 177 1 2.16 | 2.38 | 2.53 | 2.65 | 2.75
14 1.76 | 2.14 | 2.36 | 2.51 | 2.62 | 2.72
15 1.75 | 2.13 | 2.34 | 2.49 | 2.60 | 2.69
16 175 | 2.12 | 233 | 247 | 2.58 | 2.67
17 174 | 211 | 2.32 | 2.46 | 2.57 | 2.65
18 1.73 | 2,10 | 2.30 | 2.45 | 2.55 | 2.64
19 1.73 1 2.09 | 2.29 | 2.43 | 2.54 | 2.63
20 1.72 1 2.09 | 2.29 | 2.42 | 2.53 | 2.61
25 L71 | 206 | 2.25 | 2.38 | 2.49 | 2.57
30 1.70 | 2.04 | 2.23 | 2.36 | 2.46 | 2.54
60 1.67 | 2.00 | 2.18 | 2.30 | 2.39 | 2.46
120 | 1.66 | 1.98 | 2.15 | 2.27 | 2.36 | 2.43
00 1.64 | 1.96 | 2.13 | 2.24 | 2.33 | 2.39
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