Proceedings of the 1995 Winter Simulation Conference
ed. C. Alexopoulos, K. Kang, W. R. Lilegdon, and D. Goldsman

SELECTING THE BEST SYSTEM IN STEADY-STATE SIMULATIONS
USING BATCH MEANS

Marvin K. Nakayama

Department of Computer and Information Science
New .Jersey Institute of Technology
Newark, NJ 07102, U.S.A.

ABSTRACT

Suppose that we want to compare k different systems,
where u; denotes the steady-state mean performance
of system 7. Qur goal is to use simulation to pick
the “best” system (i.e., the one with the largest or
smallest steady-state mean). To do this, we present
some two-stage procedures based on the method of
batch means. Qur procedures also construct multiple-
comparisons-with-the-best (MCB) confidence inter-
vals for p; — max;x; p;, ¢ = 1,...,k. Under the as-
sumption of an indifference zone of (absolute or rel-
ative) width 4, we can show that asymptotically (as
4 — 0 with the size of the batches proportional to
1/4?), the joint probability of correctly selecting the
best system and of the MCB confidence intervals si-
multaneously containing p; —max;»; pj, 1 = 1,...,k,
is at least 1 — a, where « is prespecified by the user.

1 INTRODUCTION

Suppose that we want to compare k different systems
(i.e., stochastic processes), where system i has (un-
known) steady-state mean u; and (unknown) asymp-
totic variance g?. We allow for the variances to be
unequal. Our goal is to run independent simulations
of the various systems to determine which has the
largest (or smallest) steady-state mean. For exam-
ple, the different systems may represent various ser-
vice disciplines in a queueing system, and we want to
select the one that will result in the largest steady-
state throughput.

Since the steady-state means are not known and
have to be estimated, we can never be certain that the
system we eventually choose is actually the best one.
Thus, we desire a procedure that (under certain as-
sumptions) will correctly select the best system with
some (prespecified) high probability. Also, we may
be indifferent between two systems if their steady-
state means are very close in value. This leads us
to define an indifference zone (i.e., an interval whose
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upper endpoint is given by the largest steady-state
mean) of width § > 0 (which the user prespecifies),
and we assume that we are equally satisfied with
any system having a mean lying in the indifference
zone. This type of problem formulation has its ori-
gins in the work of Bechhofer (1954). Moreover, we
want to construct simultaneous confidence intervals
for p; —max;z; p;, fori = 1,2,..., k. The confidence
intervals are known as multiple comparisons with the
best (MCB); see Hsu (1984).

In this paper, we propose some two-stage proce-
dures based on the method of batch means for simul-
taneous indifference-zone selection and MCB. It can
be shown (see Nakayama 1995) that asymptotically
(if the batch sizes are proportional to 1/62 and the
indifference-zone width § — 0), the joint probability
that our procedure makes a correct selection (i.e., it
selects the best system or a system whose mean lies
in the indifference zone) and that the true differences
Wi —max;x; pj, t = 1,2,...,k, simultaneously lie in
the MCB confidence intervals is at least 1 — a (which
the user prespecifies). We present procedures for both
absolute- and relative-width indifference zones.

Our two-stage procedure for absolute-width indif-
ference zones generalizes some previous results estab-
lished for i.i.d. normal random variables. Specifically,
Rinott (1978) developed a procedure for absolute-
width indifference-zone selection for i.i.d. normals,
and he proved that the probability of correct selection
is at least 1—a. Matejcik and Nelson (1992) modified
Rinott’s method to also construct MCB confidence
intervals for i.i.d. normals with an absolute-width in-
difference zone, and they proved that the joint prob-
ability of correct selection and simultaneous MCB
coverage is at least 1 — « (also see Hsu 1984). For
a review of these and other procedures, see Golds-
man and Nelson (1994). None of these papers covers
relative-width indifference zones, as we do here.

The rest of the paper has the following organi-
zation. In Section 2 we define the notation used and
state an assumption on the processes being simulated.
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We present our procedures in Section 3. Section 4
contains a brief discussion on how to specify values
for the parameters needed to run our procedures.

2 NOTATION AND ASSUMPTIONS

Suppose that there are k systems, labeled 1,2, ...k,
that we want to compare. For system 1 = 1,2,... k,
let Y; = {Yi(t) : t > 0} € D[0,00) be a real-valued
stochastic process representing the simulation output
of system ¢, where D0, 00) is the space of right conti-
nous functions on [0, 0o) having left limits (see Ethier
and Kurtz 1986 or Glynn 1990 for more details on
the space D[0,0)). Essentially all stochastic pro-
cesses arising in practice have sample paths lying in
D[0, c0).

Let u; and 0? > 0 be the (unknown) steady-
state mean and (unknown) asymptotic variance, re-
spectively, of Y;. We assume that Y;,Ys,..., Yk
are mutually independent. (In practice, this means
that for all ¢ and j with j # 4, the simulations of
systems ¢ and j are generated using non-overlapping
streams of uniform random numbers.) Also, let Y =
(Y1,Y2,...,Ye)and Y(t) = (Ya(2), Ya(t),..., Yi(2)).
Let (1),(2),..., (k) be defined such that p(1) < p) <
--+ < [k, and the exact values of (1), (2),. .., (k) are
unknown to us. In other words, system (j) has the
jth smallest steady-state mean, and our goal is to
determine the value of (k).

To establish our results, we need to assume that
our process Y satisfies a functional central limit the-
orem (FCLT). More specifically, let “=” denote weak
convergence (see Billingsley 1968), and then assume
the following:

A1 There ezist a nonsingular k x k matriz ¥ and a
constant p = (1, pa, - - ., ) € R* such that

Xs=>LB

as & = 0, where B is a k-dimensional standard Brow-
nian motion, X5 = (X146, X2.6,---, Xk.5), and

1 (:/52 Yi(s)ds
Xis(t) = 5 _W_ —pit|, t=>0,

fori=1,2,... k.

The constants u; appearing in Al are precisely
the steady-state means of the process Y. Also, the
elements of ¥ = (0 : 4,5 = 1,...,k) satisfy 0;; =
o?foralli=1,...,k and g;; = 0fori # j. Thus, &
is the asymptotic covariance matrix of the process Y.

Virtually all stochastic systems arising in the “real
world” and having a steady state satisfy the FCLT in

Assumption Al. For example, Assumption A1l holds
if the process Y satisfies any of the following: Y is
regenerative and satisfies suitable moment conditions
(see Glynn and Whitt 1987); Y is a martingale pro-
cess (see Chapter 7 of Ethier and Kurtz 1986); Y sat-
isfies appropriate mixing conditions (see Chapter 7 of
Ethier and Kurtz 1986); or the Y(t) are associated
(see Newman and Wright 1981).

3 OUR PROCEDURES

First we consider an absolute-width indifference zone;
i.e., the indifference zone is defined to be the interval
((k) — 0, pky]- Our goal is to select a system having
a steady-state mean lying in the indifference zone and
to specify simultaneous confidence intervals for u; —
maXi;; Hj, 1= 1,2,.. . ,k‘.

The basic idea of our two-stage procedures is as
follows. In the first stage we run independent simula-
tions of the different systems. We apply the method
of batch means with m batches to the output of each
system, thus yielding an estimate of the variance of
the first-stage sample mean. This is used to com-
pute how many total batches we need to simulate for
each system. In the second stage, we collect the ad-
ditional batches for each system. Finally, we select
the system with the largest overall sample mean as
our choice for the best system (or a system having
a mean lying in the indifference zone) and construct
simultaneous MCB confidence intervals.

More precisely, our two-stage batch means algo-
rithm for absolute-width indifference-zone selection
and MCB is as follows:

Procedure 1

1. Specify the absolute width of the indifference
zone J (where 4 is small); the desired proba-
bility, 1 — «, of simultaneous correct selection
and MCB coverage; and the number of initial
batches m. Let a, solve Rinott’s integral for m,
k, and a. (Wilcox 1984 presents tables for a,.
Note that our notation differs from that used
in Wilcox’s tables. In particular, our m and a,
correspond to his ng and h, respectively.)

2. Independently simulate systems i = 1,2,...,k,
with run lengths T; = T;(d), which are propor-
tional to 1/42. For each system i, group the
output into m (non-overlapping) batches, each
of size T;/m, and compute

Z',' = 7r = i\S S, j Z 11
" Tifm (i=1)Ti/m

which is the sample mean of the jth batch.
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3. For each system ¢ = 1,2,...,k, compute the
sample variance of the m batch means from the
first stage as

2
1 & 1
S,Q = - (Z,"]‘ - Z,‘_k> .
1

—1 m
m ; mn k=1

4. For each system 7 = 1,2,...,k, compute the
total number of batches to collect as

o= [ (225}

5. For the second stage, independently simulate
systems 7 = 1,2,...,k, to collect additional
(non-overlapping) batchesm+1,m+2,... m+
N,.i(8), each of size T;/m, and compute the
batch means Z,"m+1, Zi,m+21 ey Zi.Na‘.‘(tf')'

6. For each system i = 1,2,...,k, compute the
overall sample mean as

1 Na.,i(8)
fai = = O Zig.
N 2

7. Select the system with the largest fi, ;.

8. Simultaneously construct the absolute-precision
MCB confidence intervals

Ia.i(é) = l:([‘a,i - ma?(lla,j - J) P
J#i ’

+
(ﬂa..- — max fia ; + 5) ]
J#i

for pi—max;z;p;, i =1,2,...,k, where ()~ =
min(z,0) and (z)* = max(z,0).

In order to study the asymptotic properties of
Procedure 1, we define k,(d), 1 < k.(8) < k, such
that
1> ka(6);

1 < kq(9).

Hiky — By < 6 for all
k) — M) 26 for all

Thus, we are equally satisfied with selecting any of
the systems (k. (d)), (kqo(8) + 1),..., (k) since each of
their means lies in the indifference zone. On the other
hand, systems (1),(2),..., (ko(d) — 1) have means ly-
ing outside of the indifference zone, and so we do not
want to select one of these. Now define the events

CSa(9)

max i 8) > max i, 5(6)},
{lzka(é)ﬂa,(l)( ) i<lc,,(6)ua'(z)( )}

JC.(8) = {,ui - mjx;ﬁj €1,(0), i = 1,2,...,k}.
j#i

Nakayama

Note that C'S,(d) is the event of a correct selection,
which we define as choosing a system with a mean
lying in the indifference zone. Also, JC,(4) is the
event that all of the true differences p; — max;4; p;,
i=1,2,...,k, are jointly covered by their MCB joint
confidence intervals. Nakayama (1995) establishes
the validity of the following result:

Theorem 1 Assume that Assumption A1 holds and
that the (absolute-width) indifference zone is defined
as the interval () — 6, p)]. Then if Procedure 1
s used,

lim P{CS,(8)NJC,(§)} >1-a.
60

Theorem 1 establishes that asymptotically (as the
width of the indifference zone § — 0 with the batch
sizes proportional to 1/42), the joint probability that
we make a correct selection and that the true differ-
ences simultaneously lie within their MCB confidence
intervals is at least 1 — a.

Procedure 1 above is for the case when the in-
difference zone has an absolute width. However, in
certain settings, we may be equally satisfied with ei-
ther of two systems if the difference in their means is
less than, say, 5%. Thus, we now consider a relative-
width indifference zone defined as the interval (y ) —
5|ﬂ(k)|» l‘(k)]’

Our two-stage batch means algorithm for relative-
width indifference-zone selection and MCB is as fol-
lows:

Procedure 2

1. Specify the relative width of the indifference
zone § (where § is small); the desired proba-
bility, 1 — a, of simultaneous correct selection
and MCB coverage; and the number of initial
batches m. Let a, solve Rinott’s integral for m,
k, and a.

2. Independently simulate systems i = 1,2,...,k,
with run lengths T; = T;(4), which are propor-
tional to 1/62. For each system 4, group the
output into m (non-overlapping) batches, each
of size T;/m, and compute the first m batch
means Zi,h Z,'_Q, ey Z,"m.

3. For each system ¢ = 1,2,... k, compute the
sample mean and the sample variance of the m
batch means from the first stage as

1 m
;= - Zl Zik
J:

and
m
5.2:;
tom—1¢4
7j=1

(Zij — )%,
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respectively.

4. Define o = max(m, fto,-- ., k), and for each
system ¢ = 1,2,... k, compute the total num-
ber of batches to collect as

N,.:(8) = max {m, [(“gf)j } .

5. For the second stage, independently simulate
systems i = 1,2,...,k, to collect additional
(non-overlapping) batches m+1,m+2,... ,m+
N, i(8), each of size T;/m, and compute the
batch means Z; m+1, Zi.m+2,---» Zi.N,.,.v((S)'

6. For each system ¢« = 1,2,...,k, compute the
overall sample mean as

1 N, i(8)
G — Z. .
Hri N;.1(0) I_Z] i

7. Select the system with the largest fi, ;.

8. Simultaneously construct the relative-precision
MCB confidence intervals

I.i(0) = [(ﬂr.i—maxﬂr.j—émaxl/lr,JI) )
Jj#i Jj#i

+
([lr,i - n,]a?(/:lfr.] +4 Iﬂr,il) ]
J#i

for p; — maxjx; p;, 1 =1,2,...,k.

In order to study the asymptotic properties of
Procedure 2, we define k.(6), 1 < k.(8) < k, such
that

1> kr(6);
i< kr(6).

k) — By < Olp|  for all
Hik) = By 2 Olpry|  for all

Thus, we are equally satisfied with selecting any of
the systems (k(8)), (k-(8) + 1),..., (k) since each of
their means lies in the (relative-width) indifference
zone. On the other hand, we do not want to select
any of the systems (1), (2),...,(kr(8) — 1) since their
means lie outside of the indifference zone. Now define
the events

05,(0) = { mo jnin(@) > max. i)}
16,(0) = {s ~mzxi; € 19, i = L2,k
J#1

Nakayama (1995) establishes the validity of the fol-
lowing theorem:

Theorem 2 Assume that Assumption Al holds and
that the (relative-width) indifference zone is defined
as the interval (pk)y — Olpkyl, mery]- Also, assume
that (14) # 0. Then if Procedure 2 is used,

lim P{CS, () N IC, ()} 2 1 -«

From a theoretical standpoint, the formulation of
the asymptotic results in Theorems 1 and 2 may not
be completely appropriate. In particular, we assumed
that the steady-state means pj,po,...,ur are fixed
(and do not change with §), and so taken by itself, the
probability of correct selection (PCS) converges to 1
as 0 — 0 by the strong law of large numbers. Perhaps
a more theoretically interesting result would allow the
steady-state means to vary with §, thereby leading to
a PCS which converges to something strictly less than
1 (and at least 1 — ). (For theorems of this type, see
Damerdji et al. 1995.) However, our Theorems 1
and 2 still have theoretical value since the limiting
coverage probability of our MCB confidence intervals
is strictly less than 1 (and at least 1 — @). (From a
practical standpoint, though, these issues are not a
concern.)

4 SPECIFYING VALUES FOR PARAME-
TERS

To use Procedures 1 and 2 in practice, the user must
specify values for several parameters. These include
the (absolute or relative) width of the indifference
zone 9, the run length of the first stage T; (which
must be proportional to 1/62) for each system, and
the number of initial batches m.

Because of the similarity of Procedures 1 and 2
and the two-stage stopping procedures developed by
Nakayama (1994), it is probably reasonable to as-
sume that appropriate values for the parameters of
Nakayama’s (1994) algorithm are also valid for our
new procedures. Nakayama (1994) suggests that we
should choose 5 < m < 15 and § < 0.025. How-
ever, as Nakayama (1994) notes, selecting a reason-
able value for T; given § is a delicate matter. 1In
the case when simulating queueing systems, though,
Nakayama, (1994) proposes using some of the results
of Whitt (1989a,1989b); for more details, see Sec-
tions 5 and 6 of Nakayama (1994).
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