Proceedings of the 1995 Winter Simulation Conference

ed. C. Alexopoulos, K. Kang, W. R. Lilegdon, and D. Goldsman

ON THE SIMULTANEOUS CONSTRUCTION OF SAMPLE PATHS

Enver Yiicesan

INSEAD
Technology Management Area
Boulevard de Constance
77305 Fontainebleau Cedex, FRANCE

ABSTRACT

Sensitivity analysis and optimization within stochastic
discrete event simulation require the ability to rapidly
estimate performance measures under different parameter
values. One technique, termed “rapid learning,” aims at
enumerating all possible sample paths under different
parameter values of the model based on the observed
sample path under the nominal parameter value. There
are two necessary conditions for this capability:
observabiliry, which asserts that every state observed in
the nominal path is always richer in terms of feasible
events than the states observed in the constructed paths,
and constructabiliry, which, in addition to observability,
requires that the lifetime of an event has the same
distribution as its residual life. This paper asserts that
the verification of the observability condition is an NP-
hard search problem. This result, in turn, implies that it
is algorithmically not possible to find parameter values
satisfying observability; hence, it encourages the
development of heuristic procedures. Further
implications are also discussed.

1 INTRODUCTION

Most techniques used in simulation output analysis are
adopted from statistics and optimization. Comparing
alternative system designs (Yiicesan 1994), ranking and
selection (Goldsman and Nelson 1994), sensitivity
analysis, response surface methodology (Kleijnen 1987),
optimization (Jacobson and Schruben 1989, Healy and
Schruben 1991) are activities in simulation analysis
where principles from statistics and mathematical
programming are widely used.

These techniques require the ability to rapidly
estimate performance measures under different parameter
values. In naive simulation, this requirement is satisfied
by conducting a set of replications under every possible
parameter value, which, for complex models, can be a
slow exercise. Considerable effort has been expanded to
expedite the estimation process. On the one hand,
parallel simulation offers one feasible approach. For
example, Schruben (1992) runs parallel replications in
SIGMA. In a parallel computing environment,

357

Sheldon H. Jacobson

Department of Industrial & Systems Engr.
Virginia Polytechnic Institute and
State University
Blacksburg, Virginia, 24061-0118 U.S.A.

Heidelberger (1988) describes the correct analysis of the
replications, each executed on a separate processor.

On the other hand, techniques that take advantage of
the special characteristics of a simulated environment
have also been proposed for quick estimation of
performance measures under different parameter values.
Frequency Domain Methodology (Schruben and Cogliano
1987) modifies the values of the parameters during a run
to assess their impact on the performance measure of
interest. Such information can then be used for
sensitivity analysis or as part of an optimization scheme.
Infinitesimal Perturbation Analysis (IPA) (Ho et al.
1979) is another approach which, in one run, assesses the
impact of a small change in the parameter values on the
performance measure. The application of IPA to
sensitivity analysis or to optimization is immediate.
Neither technique can handle discrete parameter values;
appropriate modifications have to be incorporated.

Another technique, termed “rapid learning,” aims at
enumerating (perhaps in parallel) all possible sample
paths under different parameter values of the model based
on the observed sample path under the nominal parameter
value (Cassandras and Strickland 1989). This technique
can be applied to the analysis of systems with discrete
parameters. Moreover, the system under study may not
necessarily be a simulation model, but a real system in
operation. That is, the technique can be utilized on line.

There are two necessary conditions for this
capability: observability, which asserts that every state
observed in the nominal path is always richer in terms of
feasible events than the states observed in the constructed
paths, and constructability, which, in addition to
observability, requires that the lifetime of an event has
the same cumulative distribution function (cdf) as its
residual life. The objective of this paper is to show that
the verification of the observability condition is an NP-
hard search problem. This result, in turn, implies that it
is algorithmically not possible to find parameter values
satisfying observability; hence, it encourages the
development of heuristic procedures.

The theory of computational complexiry provides a
well-defined framework to assess the tractability of
decision problems (Garey and Johnson 1979). A decision
problem is one whose solution is either "yes" or "no.”

358 Yicesan and Jacobson

In general, we are interested in finding the most
“efficient" algorithm to solve a problem. Typicaily, the
fastest algorithm is considered as the most efficient. We
then define the time complexity function for an
algorithm as the maximum amount of time needed by the
algorithm to solve a problem instance of a particular
size, which represents a worst-case performance criterion.

Note that the size of a problem instance is defined as
the amount of input data needed to describe the instance.
Various encoding schemes are possible to describe a
problem instance. The most widely accepted scheme,
which is the one adopted here, is the number of tape cells
on a Turing machine.

A polynomial-time algorithm is one whose time
complexity function is O(p(n)), where p is a polynomial
function and n denotes the size of the problem instance.
Any algorithm whose time complexity function cannot
be so bounded is called an exponential-time algorithm.
Given the explosive growth rates for exponential
complexity functions, polynomial-time algorithms are
much more desirable from a practical point of view. Itis
well accepted that a problem is not "well-solved" until a
polynomial-time algorithm has been found for it (Garey
and Johnson 1979; p. 8).

Decision problems in the class NP are those
problems for which a potential solution can be verified in
polynomial time in the size of the problem instance.
The complete problems for this class (that is, NP-
complete problems) are the hardest problems in NP such
that, if one such problem could be solved in polynomial
time, then all problems in NP could be solved in
polynomial time. Moreover, NP-hard problems are
search problems which are provably at least as hard as
NP-complete decision problems.

Using the definitions in Jacobson and Yiicesan
(1995), we assume that the size of a discrete event
simulation model specification is n. This is the number
of tape cells on a Turing machine required to represent a
model implementation of the model specification such
that it can be executed. Note that model
implementations are not unique, in that there are several
possible model implementations associated with each
model specification. Any event of the model
specification is also assumed to be executable in
polynomial time in n; that is, p,(n). This assumption
restricts our work to a subclass of simulation models.
Such a subclass, however, contains all of the relevant
simulation models from a practical point of view, as
models whose events could take an exponential amount
of time to execute would not have much use in a
simulation study. These assumptions will be used in all
the subsequent theorems, unless it is otherwise stated.

To define the problem in a precise fashion, an
appropriate modeling framework must be provided. This
is done in Section 2, where the principal issues in
modeling discrete event dynamic systems (DEDS) are
also discussed. The conditions of observability and
constructability are defined in Section 3. Section 4

discusses the implications of the results and draws further
conclusions.

2 MODELING DISCRETE
DYNAMIC SYSTEMS

EVENT

Physical phenomena have been successfully characterized
and analyzed using the Continuous-Variable Dynamic
System (CVDS) framework. Within this framework,
system states are depicted by continuous variables which
change with respect to time. Hence, physical quantities
such as velocity, temperature, acceleration, and flow can
be modeled using differential or difference equations. In
the absence of closed-form solutions, efficient numerical
techniques exist for solving these equations.

Man-made systems such as flexible manufacturing
systems or telecommunication networks do not fit within
the CVDS framework. This is because system states are
often depicted by discrete variables, and that they change
with the occurrence of asynchronous events. For the
characterization of such systems, a Discrete Event
Dynamic System (DEDS) framework has been proposed.
Finite-state automata (Hopcroft and Ullmann 1979,
Chapter 2), Petri Nets (Peterson 1977), Generalized
Semi-Markov Processes (GSMP) (Glynn 1989), and
event graphs (Schruben and Yiicesan 1993) have been
proposed for performance analysis of DEDS. Although
closely related, none of these approaches have received
the universal acceptance enjoyed by the differential
equations framework for CVDS.

For instance, a finite-state automaton can be
modified to depict DEDS. To that end, a state automaton
is defined as a five-tuple (E, X, T, f, xq), where

E is a countable event set,

X is a countable state space,

I'(x) is the set of feasible or enabled events

defined for all x € X and ['(x) & E,
f is a state transition function, a mapping of the
form f: X X E - X,

Xo 1s an initial state, xg € X.
This construct is also referred to as a Generalized Semi-
Markov Scheme (GSMS) (Glasserman and Yao 1992).
A state automaton can be further augmented through the
incorporation of a clock structure, which is used to
compute the clock sequences for all events. Every event
i € T'(x) has a residual lifetime y; indicating the amount
of time left until its occurrence. For event i, y; initially
assumes a lifetime value determined by an externally
provided clock structure v;. The resulting structure is
called a timed state automaton and denoted by (E, X, T, f,
Xg,» V), where V = (v, :ie E}. This structure can be
made stochastic by associating transition probabilities
with the state transition function and distribution
functions with the clock structure. The resulting
stochastic timed state automaton can be used to generate
a GSMP.

Sample Paths 359

Based on the stochastic timed state automaton
framework, a DEDS can be viewed as a dynamic system
where the input is a set of event lifetime sequences and
the output is a sequence of time-stamped events. For
example, the dynamic behavior of a single-server
queueing system can be obtained by simply specifying a
set of interarrival times and a set of service times. The
state transition function of the automaton then generates
a sequence of events with their corresponding times of
occurrence. Suppose 6 is a parameter that may affect the
output either through the event lifetimes or through the
state transition mechanism. For instance, 6 could
represent the arrival rate of the customers, or the queue
capacity, or the queue discipline.

Adopting the notation of Cassandras (1993a, p.
683), let £(B) be the output sequence of time-stamped
events, {Xy(8)} be the corresponding sequence of states,
and L(E(9)) be a performance measure of interest.
Suppose 6 can assume values from a finite set © = {8y,
0, ..., 8n}. From an optimization perspective, it may
be interesting to select that value of 6 that maximizes the
expected value of the performance measure, J(8) =
E{L(E(8))}. Alternatively, one might also be interested
in conducting sensitivity analysis to determine the
impact of different values of 8 on the expected value of
the performance measure, J(6).

In a stochastic environment, these are difficult tasks
(Law and Kelton 1991, p. 679). Simulation seems to be
the most flexible approach. However, naive simulation,
where the system is run under each parameter value, 6,
i=0,1,2,...,m, is extremely time consuming so as to
make this approach infeasible for complex models. More
sophisticated techniques have been proposed to reduce the
computational burden while increasing the reliability of
the estimates (Jacobson and Schruben 1989). A recent
idea, termed “rapid learning,” (Cassandras and Strickland
1989) tries to reconstruct the sample paths (perhaps in
parallel) under 6y, 85, ..., O, based on a single sample
path observed under 6,. For example, in the analysis of
a capacitated single-server queueing system, the nominal
path could be observed under a system capacity of 5 and
other sample paths can be reconstructed under system
capacities of 4, 3, 2, and 1, respectively. While this
example emphasizes the applicability of the technique in
dealing with discrete parameters such as system capacity
or size of buffers, one can in general think of such
parameters as a set of discrete control actions to manage a
DEDS.

More specifically, the sample path constructability
problem is defined as follows: using the inputs together
with the nominal sample path, £(6,), construct all other
output sequences, &(0,), &(6,), ..., £(8), under different
system parameters, 0, 8y, ..., O,. In other words, is it
possible to construct sample paths £(8)), £(85), .., §(6m)
from the information contained in the observed (nominal)
sample path £(89)? This is indeed possible under certain
conditions.

3 NECESSARY CONDITIONS

Given the stochastic timed state automaton framework,
the system evolves by the occurrence of events. In state
X, the set of feasible events, I'(x) is scanned to determine
the triggering event, the one with the smallest clock
value. The execution of this event may force the system
to change state and other clock values to be updated.
There are therefore two important issues to verify for
sample path constructability: the state structure of the
system (or, more specifically, I'(x)) and the clock values
(or, more specifically, event lifetime distributions).
These issues are summarized under two conditions,
observability and constructability (Cassandras and
Strickland 1989). Let E(X(6)) represent the set of
feasible events (the future events list) in state X, (9),
k=0,1,2,... . The conditions are then defined as follows:

Observability: For 0, # 6, £(8,,) is observable with
respect to &(0g), if E(Xyx(0m)) S E(X(8p)) for all
k=0,1,2,... .

The sample paths are coupled in the sense that the
same event sequence drives both of them. The condition
asserts that every state observed in the nominal path is
always “richer” in terms of feasible events than the states
observed in the constructed path. For example, an
M/M/1/2 system is observable with respect to an
M/M/1/3 system, but not vice versa. To see this, let the
state in this queueing system be described by Q, the
number of customers in the system. In the M/M/1/3
system, £(Q=2) = {ARV, DEPT]}, representing a new
customer arrival and a departure, respectively. Within the
M/M/1/2 system, however, E(Q=2) = {DEPT}, as no
new arrivals are admitted into the system. Hence, the
former system has a larger number of feasible events in
this state.

Observability addresses the structural aspects of
determining the triggering event in some state. It does
not, however, address the issue of whether the clock
values observed on the nominal path can be used on the
constructed path. This, in turn, is done by the
constructability condition.

Constructability: For 8, # 8y, £(0,,) is constructable
with respect to &(8y), if

(1) BX(Op)) & EXi(Bp)) for all
k=0,1,2,...,

(2) H(t, 71 (8); Om) = H(t, 2;(6p); 6o) for
alli € EXy(8p)), k=0,1,2,...,

where H(t, z;,0);) denotes the cdf of the
clock value of event i, given its age z; ;(6).

The first part of the condition is observability. The
second part imposes some restrictions on event lifetimes.
More specifically, it requires the lifetime (or the clock

360 Yucesan and Jacobson

value) of an event to have the same cdf as its residual
lifetime. This is trivially satisfied when the lifetime
densities follow the exponential distribution, which has
the memoryless property. In this case, observability
implies constructability. In general, it is a fairly
restrictive requirement. We assert that the verification of
the observability condition is a hard problem as well. To
this end, we will first introduce the following search
problem:

OBSERVABILITY
Instance; A discrete event simulation model specification
with an associated model implementation,
a model parameter, 6,
a set of event lifetime sequences, and
a nominal sample path with a set of observed
states, X](eo), X2(eo), oo X,,(Oo)
Question: Find a parameter value 6, such that

EX(8)) & E(Xy(6p)) for all k=0,12,... .

In simple terms, the search problem seeks a model
parameter 8, # 6, such that the sample path constructed
under this parameter has always fewer feasible events in
each state than the states in the nominal sample path.
Therefore, £(6,) is observable with respect to £(6y).

THEOREM: OBSERVABILITY is NP-hard.

Proof: A polynomial Turing reduction is constructed to
show that OBSERVABILITY is NP-hard (Yiicesan and
Jacobson 1995). []

4 CONCLUSIONS

Cassandras (1993a, p. 688) states that “the validity of
observability is sometimes easy to check by inspecting
the state transition diagrams of the system under 6 and
8,." We have shown that this is in general an NP-hard
search problem. Our result encourages the study of
special cases and easy instances of this problem and the
design of heuristic algorithms for these cases.

One such technique is the standard clock approach
(Vakili 1991) applied to birth-and-death processes.
Within this class of models, the distributional
requirements of constructability are readily satisfied due
to the memoryless property of the exponential
distribution. Observability, on the other hand, is
achieved by forcing all events to be feasible in all states
through the uniformization of the underlying process.
This is analogous to modeling birth-and-death processes
with a single event node in SIGMA (Schruben 1992, p.
219). One should note, however, that a uniformized
process might generate a large number of fictitious
events, which do not affect the state of the system, before
a real event induces a change in the system state. This
may compromise the speed of the technique.

The augmented system analysis (ASA) approach
(Cassandras and Strickland 1989) is designed to avoid the
generation of fictitious events. This method, which
applies to Markovian systems, suspends the construction

of the additional sample paths as soon as the
observability condition is violated. The constructed path
remains suspended until the nominal path enters a state
in which the condition is satisfied again. The
probabilistic structure of the constructed path is not
disturbed by the suspension due to the memoryless
property. Such an approach is referred to as event
matching.

The Markovian requirement is relaxed through an age
matching algorithm. In this approach, when the
observability condition is violated, the construction of
further sample paths are suspended and all events with
nonexponential lifetime distributions are saved. When
the nominal sample path enters a state where
observability is once again satisfied, the construction
resumes only if the clock values of the nonexponential
events on the nominal path match the saved values on
the constructed paths.

ASA seems to apply for discrete parameters that
affect the state transition mechanism, but do not alter
event times. The major drawback of this approach is that
the system may remain suspended for long periods of
time. Furthermore, the overhead needed to monitor the
constructed paths for event or age matching algorithms
may be prohibitive for complex systems.

A special application of ASA to the traffic
smoothing problem in high-speed communication
networks is discussed in Cassandras (1993b). In this
case, ASA not only provides a convenient mechanism to
investigate the structural properties of smoothing
techniques such as the leaky bucket (LB) scheme (Turner
1986), but also allows the use of these properties in
establishing key relationships for the LB scheme.

Adopting the computational complexity perspective
enables several seemingly different problems in
simulation modeling and analysis to be cast in a single
unifying framework (Jacobson and Yiicesan 1995). In
particular, such problems are equivalent or equally
difficult, from the computational complexity point of
view. Using this perspective, a consequence of this
result presented here is that algorithms that solve the
observability problem are likely to be enumerative in
nature. Such enumerative algorithms tend to execute in
exponential time in the size of the problem instance.
This, in turn, supports the development of polynomial-
time heuristic procedures as well as the identification of
special cases that are polynomially solvable. Further
research is in progress to gain new insights from such
problems as well as to identify other related problems
that may have an impact on the way discrete-event
simulation models are constructed and analyzed.

ACKNOWLEDGEMENTS

The research of the second author is supported in part by
the National Science Foundation (DMI-9409266) and the
Air Force Office of Scientific Research (F49620-95-1-
0124).

Sample Paths 361

REFERENCES

Cassandras, C.G. 1993a. Discrete Event Systems:
Modeling and Performance Analysis, Irwin,
Homewood, IL.

Cassandras, C.G. 1993b. Rapid learning techniques for
DES: Some recent results and applications to traffic
smoothing, Proceedings of the 12th IFAC World
Congress 3:323-326.

Cassandras, C.G., and S.G. Strickland. 1989. Sample
path properties of timed discrete event systems,
Proceedings of the IEEE 77:59-71.

Garey, M.R., and D.S. Johnson. 1979. Computers and
Intractability: A Guide to the Theory of NP-
Completeness, Freeman & Co., New York, NY.

Glasserman, P., and D.D.Yao. 1992. Monotonicity in

generalized semi-Markov processes, Mathematics of
Operations Research 17(1):1-21.

Glynn, P. 1989. A GSMP formalism for discrete event
systems, Proceedings of the IEEE 77:14-23.

Goldsman, D., and B.L. Nelson. 1994. Ranking,
selection, and multiple comparisons in computer
simulation, Proceedings of the 1994 Winter
Simulation Conference, eds. J. D. Tew, S.
Manivannan, D. A. Sadowski, and A. F. Seila, 192-
199.

Healy, K., and L. Schruben. 1991. Retrospective
simulation response optimization, Proceedings of
the 1991 Winter Simulation Conference, eds. B. L.
Nelson, W. D. Kelton, and G. M. Clark, 901-906.

Heidelberger, P. 1988. Discrete event simulation and
parallel processing: statistical properties, SIAM
Journal of Statistical Computing 9.6:1114-1132.

Ho, Y.C., M.A. Eyler, and D.T. Chien. 1979. A
gradient technique for general buffer storage design in
a serial production line, International Journal of
Production Research 17:557-580.

Hopcroft, J.E., and J.D. Ullmann. 1979. Introduction to
Automata Theory, Languages, and Computation,
Addison Wesley, Reading, MA.

Jacobson, S.H., and L. Schruben. 1989. Techniques for
simulation response optimization, Operations
Research Letters 8:1-9.

Jacobson, S.H., and E. Yiicesan. 1995. Intractability
results in discrete event simulation, Recherche
Operationnelle 29.3:1-17.

Kleijnen, J.P.C. 1987. Statistical Tools for Simulation
Practitioners, Dekker, New York, NY.

Law, AM., and W.D. Kelton. 1991. Simulation
Modeling and Analysis, 2nd edition, McGraw-Hill,
New York, NY.

Peterson, J. L. 1977. Petri nets, Computing Surveys
9.3, 223-252.

Schruben, L. 1992. SIGMA: A Graphical Simulation
Modeling Program, The Scientific Press, San
Fransisco, CA.

Schruben, L., and V.J. Cogliano. 1987. An experimental
procedure for simulation response surface model

identification, Communications of the ACM
30.8:716-730.

Schruben, L., and E. Yiicesan. 1993. Modeling
paradigms for discrete event simulation, Operations
Research Lertters 13:265-275.

Turner, J.S. 1986. New directions in communications (or
which way to the information age?), [EEE
Communications Magazine 24.10:8-15.

Vakili, P. 1991. A standard clock technique for efficient
simulation, Operations Research Letters 10:445-452.

Yiicesan, E. 1994. Comparing alternative system
configurations using simulation: a non-parametric
approach, Annals of Operations Research 53:471-
484.

Yiicesan, E., and S.H. Jacobson. 1995. On the parallel
generation of sample paths, Working Paper,
INSEAD. Fontainebleau, France.

AUTHOR BIOGRAPHIES

ENVER YUCESAN is an Associate Professor of
Operations Research at the European Institute of
Business Administration, INSEAD, in Fontainebleau,
France. He holds an undergraduate degree in Industrial
Engineering from Purdue University, and a M.S. and a
Ph.D. in Operations Research from Cornell University.

SHELDON H. JACOBSON is an Assistant
Professor in the Department of Industrial and Systems
Engineering at Virginia Polytechnic Institute and State
University (Virginia Tech). Before joining Virginia
Tech, he served for five years on the faculty in the
Department of Operations Research at Case Western
Reserve University. He has a B.Sc. and M.Sc. in
Mathematics from McGill University, and a Ph.D. in
Operations Research from Cornell University. He has
served as the Advanced Tutorial Track Coordinator at
both the 1994 and the 1995 Winter Simulation
Conferences. He also served as the Doctoral Colloquium
Coordinator at both the 1993 and 1994 Winter
Simulation Conferences. At present, he is the Treasurer
for the INFORMS College on Simulation. His research
interests include simulation optimization and sensitivity
analysis, frequency domain approaches to analyzing
simulation outputs, and issues related to the complexity
of analyzing structural properties of discrete event
simulation models.

