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ABSTRACT

We study Pure Adaptive Search (PAS), an iterative
optimization algorithm whose next solution is chosen
to be uniformly distributed over the set of feasible
solutions no worse than the current solution. We ex-
tend the results of Patel, Smith, and Zabinsky (1988)
and Zabinsky and Smith (1992). In particular, we
(1) show that PAS converges to the optimal solution
almost surely, (2) show that each PAS iteration re-
duces the expected remaining feasible-region volume
by 50%, and (3) improve the Patel, Smith, and Zabin-
sky (1988) complexity measure for convex problems.

1 INTRODUCTION
We consider the mathematical programming problem

sup z(x) (1)

€S
where z is a k dimensional vector of decision vari-
ables, the feasible region S is a Borel measurable
subset of R*, and - is a bounded measurable ob-
jective function on S. We assume that S is closed
and bounded, and that z is continuous at its optimal
points. Define

z* = arg sup z()
TES

and

*

¥ =supz(zx) .
TES
Then (z*, z*) is the optimal solution of (1).

Various random-search methods have been sug-
gested for solving such problems (see, for early exam-
ples, Anderson 1953, Brooks 1958, Rastrigin 1963 and
Karnopp 1963). Patel, Smith, and Zabinsky (1988)
and Zabinsky and Smith (1992) study PAS, which
moves from the current solution z; to the next solu-
tion z;47 that is generated randomly and uniformly
from the set of all better feasible solutions.
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We extend convergence-rate and complexity-
measure results for Pure Adaptive Search (PAS). In
Section 2 we review PAS, in Section 3 we show almost-
sure convergence of PAS, in Section 4 we show that
each iteration of PAS reduces the expected remaining-
feasible-region volume by 50%, and in Section 5 we
improve complexity bounds.

2 THE PAS METHOD
The PAS method for problem (1) is

Step 0. Set n =0, Sy = S. Select a point Xy € S
and set Zp = z(\Xop);

Step 1. Generate X, 4; uniformly distributed in
Spt1={z: z €5, and z(z) > z(Xa)};

Step 2. Set Zp41 = 2(XNp41),n =n+1. Goto
Step 1.

Here S,41 1s the set of feasible solutions better than
the random current solution X,,, for n = 0,1,....
The sequence of objective-function values z(.\'},) is a
Markov chain, as is any function of z(.\\',,).

A difficult implementation question for PAS is how
best to generate the random variable X', 41 uniformly
distributed over S, 41 in Step 1. Patel, Smith and
Zabinsky (1988) suggested using conventional ap-
proaches, such as the rejection and transformation
techniques such as discussed in Devroye (1986) and
Schmeiser (1980). But efficiently generating random
points in high-dimensional regions is difficult. There-
fore, we view PAS primarily as a theoretical bench-
mark against which other methods can be compared.

3 CONVERGENCE

We show in this subsection that the PAS Markov
chain of objective-function values {Z,, n > 1} con-
verges to the optimal value z* almost surely.
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Proposition 3.1 The PAS Markov chain {Z,, n >
1} converges to the optimal objective-function value
' almost surely.

Solis and Wets (1981) show that a class of global-
search algorithms converge in probability to the
global optimum. Any such algorithm that provides
a monotonic sequence of solutions then converges al-
most surely. We can not use their result directly, how-
ever, because their primary assumption H, — that
the algorithm has a positive probability of returning
to every positive-volume subset 4 of S — 1s not sat-
1sfied by PAS. But nothing is lost in their proof if H.
is relaxed to require only that the algorithm can al-
ways return to the optimal region R, as, as defined in
their paper. Their proof then implies that PAS con-
verges 1n probability to the global optimum. Because
{Z,, n > 1} is monotone, almost sure convergence is
obtained.

4 CONVERGENCE RATES

We now show that each iteration of PAS reduces the
expected remaining volume by one half. Let V], de-
note the volume of S, = S () {z : z(z) > z(\\,,-1)},
the random remaining feasible region. Because V,, is
a function of z(.\'},_1), then {1}, n > 1} is a Markov
chain with initial value V3, the volume of S.

Theorem 4.1 The ratios of PAS volumes

i Vo W

ARTARTARE

are i.i.d. Uniform(0,1) random variables with
Va 1
E ==
(75) =

1 n
EV, = <§) Vo, VYne{l,2..}.

and

Proof: We first show uniformity, then independence.
For all r € [0, 1],

Vo
P ( - < ’I‘) = EP(Vn S Y‘Vn_l | Vn—l)

= E(M#) =Er=r
"n—l

To demonstrate independence, consider an arbitrary
point (r1,72,...,7,) € [0,1]*. Then by the Markov
property

Va Va1 V1
P (Vn—l <7y Vo, =Tpn_1,...,— = r1>
P(Vn < rprp_1-- Vo |

Vaci = rpcitnoo Vo, ..., Vi = mVp)
P(V, < PaPnoy Vo l

Va1 = TpoiTn_2 71 VO)

Because the ratios of the volumes are Uniform(0,1),
this probability equals

PaTno1---T1Vo :7'n:P< Va <7’n>.

Pn—1Tn-2--T1Vo Vo1 ©
% . .
Therefore %, %’, 72, ... are independent Uniform

(0,1) random variables. By the i.i.d. property, the
expected volume after n iterations is

Vo Vet W >

=V
Va1 Voo Vo °

o) - ()

5 COMPLEXITY

EV, :E(
m]

We now improve a complexity bound of Patel, Smith,
and Zabinsky (1988). Let A’y denote the number
of iterations to ensure an m-fold improvement with
probability at least 1 — «, i.e.,

Koym = min

{n: P(Dn< l) >1—a},
n€ef{1,2,..} - m/) —

where D, = (z* — Z,,)/(:* = Zp) is the standardized
remaining objective function after n iterations.

For the standard convex program, Patel, Smith,
and Zabinsky (1988) obtain the bound

g 1
KNam <2(k+1)In {m <1 + ﬁ)}’
Va € (0,1) and V m € (1,00),

via Chebyshev’s inequality. We first obtain a minor
improvement in the bound by using the Cantelli in-
equality in Billingsley (1986, p. 76).

P(X —B(Y) > a) < —aD

>
= Var(X)+ a2

bl
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which implies

Ka,m§2(k+1)ln{m (1-{— 1;0)},
Va € (0,1) and Vm € (1, x).

We more substantially improve the bound by using

the inequality P(D,, > E(D,)/a) < « in Billingsley

(1986, p. 74).

Theorem 5.1 Va € (0,1) and V m € (1,00),
. m
RKam < (k+1)In <E> .

Proof: Since o > 0 and E(D,) > 0, then

E(D,) aD,
n > = >1
P00z 200 =P (gpy 2 )
aD
dP</ —_dp
4/{aDn/E(Dn)21} ~ Ja E(D»)

aE(Dn)
E(D»)

Therefore

P<Dn<w>>l—a.

s

Comparing this inequality to the definition of Kg4 p,
we have E(D,) = a/m. From Patel, Smith, and
Zabinsky (1988) we have E(D,,) < (k/(k+1))"*. Solv-
ing for n yields

Therefore,

Kam < (lc+1)1n<T).

(64
m]

Table 1 gives upper bounds for the number of it-
erations K’y m versus dimension k required to obtain
a million-fold improvement with 99% certainty, the
case considered in Patel, Smith and Zabinsky (1988).
Three integer bounds are shown; the original Patel,

Smith and Zabinsky (1988) bound A7y, the Cantelli-
inequality bound K, and the Theorem 5.1 bound A3.

Specifically
K = {2(k+1)1n{m<1+\/#a)}‘l,
K, = {2(k+l)ln{m<l+ 1;")}]
Ky = [(k+1)1n(%)],

where [s] is the smallest integer not less than s.

Table 1: Upper Bounds for R’y , versus Dimension k
for « = 0.01 and m = 10°

Dimension Number of iterations
k [\'1 ]\'Q I\"g
1 65 65 37
2 98 98 56

10 357 357 203
100 3276 3275 1861
1000 32460 32451 18440
10000 324301 324210 184226

For these values of o and m, the difference between
K, and K5 1s negligible; the difference between K
and K3 is substantial, a reduction of about 43 per-
cent.

The ratios of these numbers of iterations are not
functions of the dimensionality k. For any value of
a, in the limit as m — oo, the ratio A} /K3 = 2; in
Table 1 the ratio is 1.76. Proving that A3 < K for
all values of @ and m is straightforward.
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