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ABSTRACT

Consider the problem of loss function minimization when
only (possibly noisy) measurements of the loss function
are available. In particular, no measurements of the gradi-
ent of the loss function are assumed available (as required
in the steepest descent or Newton-Raphson algorithms).
Stochastic approximation (SA) algorithms of the multi-
variate Kiefer-Wolfowitz (finite-difference) form have long
been considered for such problems, but with only limited
success. The simultaneous perturbation SA (SPSA) algo-
rithm has successfully addressed one of the major short-
comings of those finite-difference SA algorithms by sig-
nificantly reducing the number of measurements required
in many multivariate problems of practical interest. This
SPSA algorithm displays the classic behavior of first-
order search algorithms by typically exhibiting a steep
initial decline in the loss function followed by a slow de-
cline to the optimum. This paper presents a second-order
SPSA algorithm that is based on estimating both the loss
function gradient and inverse Hessian matrix at each
iteration. The aim of this approach is to emulate the accel-
eration properties associated with deterministic algorithms
of Newton-Raphson form, particularly in the terminal
phase where the first-order SPSA algorithm slows down
in its convergence. This second-order SPSA algorithm
requires only three loss function mecasurements at cach
iteration, independent of the problem dimension. This
paper includes a formal convergence result for this second-
order approach.

1 INTRODUCTION

There has recently been a growing interest in recursive
optimization algorithms of stochastic approximation (SA)
form that do not depend on direct gradient information or
measurements. Rather, these SA algorithms are based on
an approximation to the p-dimensional (say) gradient
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formed from measurements of the objective function. This
interest has been motivated by problems such as the adap-
tive control of complex processes, system optimization
based on computer- and/or labor-intensive simulations, the
training of recurrent neural networks, and the optimiza-
tion of complex queuing and discrete-event systems. The
principal advantage of algorithms that do not require di-
rect gradient measurements is that they do not require
knowledge of the functional relationship between the pa-
rameters being adjusted (optimized) and the objective (say,
loss) function being minimized. Such a relationship, to-
gether with its gradient, can be notoriously difficult to
develop in problem areas such as those mentioned above.

The simultaneous perturbation SA (SPSA) algorithm
in Spall (1988, 1992), which is based on a highly efficient
gradient approximation (requiring only two measurements
of the loss function for any p), is one such gradient-free
algorithm. Theory and examples in these references have
shown that SPSA is generally capable of significantly re-
ducing the total number of loss function measurements
nceded to achieve convergence over other standard SA
algorithms (see also Chin 1994 and Spall and Cristion
1992, 1994). This paper extends the SPSA algorithm to
include sccond-order (Hessian) effects with the aim of
accelerating convergence in a stochastic analogue to the
deterministic Newton-Raphson algorithm. Like the stan-
dard (first-order) SPSA algorithm, this second-order al-
gorithm is simple to implement and requires only a small
number—independent of p—of loss function measure-
ments per iteration. In particular, only three measurements
are required to estimate the loss-function gradient and in-
verse Hessian at cach iteration. The results here represent
an extension and enhancement (relative to the basic ap-
proach, theory, and numerical analysis) of the basic
second-order idea introduced in Spall (1994).

We consider the problem of minimizing a (scalar)
differentiable loss function L(f),where 6 € R, p=>1. A
typical example of L(§) would be some measure of mean-
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square error for the output of a process as a {unction of
some design parameters 6. For most cases of practical
interest, this 1s cquivalent to finding the minimizing 6*
such that

L
atm=2 <o, |
6 y_p- ()

It 1s assumed that measurements of L(f) are available at
various values of 6. These measurcments may or may not
include added random noise. No direct measurements (ei-
ther with or without noise) of g(0) arc assumed available,
such as arc required in the well-known Robbins-Monro
(1951) SA algorithm (which includes algorithms such as
neural network back-propagation, infinitesimal perturba-
tion analysis for discrete event systems, and steepest de-
scent as special cases).

The standard first-order SA algorithms for estimat-
ing 6 involve a simple recursion with, usually, a scalar
gain and an approximation to the gradient based on the
measurements of L(-). The SPSA algorithm mentioned
above requires only two measurements of L(+) to form the
gradient approximation, independent of p (versus 2p in
the standard multivariate finite-difference approximation
considered, e.g., in Sacks 1958, which extends the scalar
algorithm of Kiefer and Wolfowitz 1952). Theory pre-
sented in Spall (1992) and Chin (1994) shows that for large
p the SPSA approach can be much more efficient (in terms
of total number of loss measurements to achieve effective
convergence to 6*) than the finite-difference approach in
many cases of practical interest.

In extending SPSA to a second-order (accelerated)
form, we outline in Section 2 how the gradient and in-
verse Hessian of L(*) can both be estimated on a per-
iteration basis using only three measurements of L(*)
(again, independent of p). With these estimates, we can
then create an SA analogue to the Newton-Raphson algo-
rithm (which, recall, is based on an update step that is
negatively proportional to the inverse Hessian times the
gradient).

Before presenting the approach, let us contrast it with
other second-order SA approaches. Fabian (1971) forms
estimates of the gradient and Hessian for a Newton-
Raphson-type SA algorithm by using, respectively, a finite
difference approximation and a set of differences of finite
difference approximations. This leads to O(p*) measure-
ments of L(+) per update of the 6 estimate, which is
extremely costly when p is large. Ruppert (1985) assumes
that direct measurements of the gradient g(+) are available,
as in Robbins-Monro. He then forms a Hessian estimate
by taking a finite-difference of gradient measurements;
hence O(p) mcasurements of g(+) are required for each
update step in estimating 6. This approach differs from
ours in both its requirements to measure g(*) and in its
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large number of measurements required per iteration. A
type of second-order convergence for SA is reported in
Ruppert (1988) and Polyak and Juditsky (1992) based on
the idea of iterate averaging. However, as discussed in Chin
and Maryak (1995), this approach does not generally pro-
vide accelerated convergence in the SPSA setting. The
algorithm here is in the spirit of adaptive (matrix) gain
SA algorithms such as those considered in Benveniste,
Metivier, and Priouret (1990, Chaps. 3—4) in that a matrix
gain is estimated concurrently with an estimate of the pa-
rameters of interest. It differs, however, in that no direct
observations of the gradient are assumed available.

2 THE APPROACH

The second-order SPSA approach is composed of two
parallel recursions, one for 6 and one for the upper trian-
gular matrix square-root, say S = S(6), of the Hessian of
L(6). (We estimate the square root to ensure that the in-
verse Hessian estimate used in the second-order SPSA
recursion for 6 is positive semidefinite.) The two recur-
sions are, respectively,

ék+| :ék —ak(ggjk)_lék(ék) (23)
§k+l =‘§k _&kék(‘s:k)’ (2b)

where a, d; are non-negative scalar gain coefficients,
8, (6;) is the SP gradient approximation to gi(8,) (see
Spall 1992), and Gk is an observation related to the gradi-
ent of a certain loss function (deﬁned in Equation (3) be-
low) with respect to S. Note that S/ S,\ (which depends on
0,‘ ) represents an estimate of the Hessian matrix of L(8,).
Hence Equation (2a) is a stochastic analogue of the well-
known Newton-Raphson algorithm of deterministic opti-
mization. Since g,(6,) has a known form, the parallel
recursions in Equa}ions (2a)and (2b) can be implemented
once we specify G, which is addressed below.
As discussed in Spall (1988,1992), the SP gradient
approxnmatlon requires two measurements of L(*): v H)and
- These represent measurements at design levels
0,\ + ¢ A and 0,\— crAgrespectively, where ¢ is a positive
scalar and A, represents a user-generated random vector
satisfying certain regularity conditions, e.g., A; being a
vector of independent Bernoulli 1 random variables sat-
isfies these conditions but a vector of uniformly distrib-
uted random variables does not. (The term “SP” comes
from the fact that all elements of ) . are perturbed simul-
taneously in forming g,(6, ). as opposed to the finite dif-
ference form, where they are perturbed one-at-a-time.) To
perform one iteration of Equations (2a) and (2b), one ad-
ditional measurement, say y; . is required; this measure-
ment represents an observation of L(+) at the nominal
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design level 6. For these three measurements, we make
the assumptlon that their corresPondmﬂ noises 61 ), 6}\ i
and f( g = L( OA)+ EA ) satisfy a standard mar-
tingale difference condition for all k (see condition C.2
below). Note that there is no requirement that the noises
be mutually or sequentially independent.

As a means of obtaining an estimate of the square-
root Hessian, we introduce the following loss function to

be minimized:

L(S|o) = l/zE[A[ STsA, - A[H(@)Ak]2 . (3)

where S 1s restricted to be in upper triangular form and
the {A,} are 1.1.d. vectors (see also C.2 below). Note that
L(S|6) is minimized (= 0) at S = H(8)"*, where the expo-
nent, 1/2, represents the upper triangular square root. In
the usual way, the optimal S can be found as a solution to
G(S16) = 9 L(S16)/3S = 0. The classical Robbins-Monro
SA algorithm can then be used to find S once we obtain
an appropriate estimate of the matrix gradient G(S6).

To motivate the form for the estimate of 9 L(S]6)/dS
atS = S;.denoted Gr(Sil8y)in Equation (2b) above, note
that

oATsTsA,
G(SI6) = E{(AZSTSA,\. —A[memk)‘T‘J, (4)

where the matrix gradient is with respect to only the up-
per triangular elements in S. Other elements are fixed at
zero (this assumes for now the validity of the indicated
interchange of derivative and integral, which will be justi-
fied in the proposition below). Then we let

. (+)+() _,(OJ
Gr(Silfy) = { ATSTS,a, + 2T~ }

Ck
5 F)A[:?TSA,( ’ (5)
o5 |
where from Graham (1981, p. 123)
oalsTsa
—kZ Tk _osa,AT (6)
o)

A simple second-order Taylor expansion of both L( 8
* ¢, Ap) about 6, provides the intuition as to why the form
in Equation (5) is chosen as an estimate of the gradient in
Equation (4). This claim is made rigorous in the Proposi-
tion below.

_ We now establish conditions such that the form for
G, will yield an a.s. convergent estimate for 6, and S;.
The Proposition below rests on the following regularity
conditions, most of which are natural extensions of the

conditions in Spall (1992, Prop. 1) for the first-order SPSA
algorithm.

C.0 For almost all 6,. L'V(0) = 0'L/90790790" is
Lipschitz continuous in a neighborhood of 8,
where the size and shape of the neighborhood are
independent of k and the value 6,.

C.1 The standard conditions on «,, ¢, in Spall (1992,
cond. A1) hold, as well as

M8
»G.LI»TS
A
3

Elk >0~&/\‘ —>O,Z&k=

-~
]
o

and 2 — 1> 0
ay.
- 2 A
C2  E(eIBi.0¢)=0, Eel)" < const.. EL(§, % c,A,)?
< const., and A, is symmetrically dlstrlbuted

(about 0) and bounded with EAR < const.
(i=1,2,.

C3 supllék]|<ooa.s.and supIIﬁ,f'II<ooa.s.
k k
C.4  The pair {6*, S*} is an asymptotically stable solu-
tion of the linked differential equations

d{xp(r), x5(0)}
di

= {—(.\'ST.\‘S ) e(xg). - rG(xslxg )}

where ris defined in C.1.

C.5  There exists a compact set contained within the
domain of attraction (see, e.g., Lai 1985) associ-
ated with the linked dlfferentlal equations in C.4
such that {6,\ Sk} lies within the compact set infi-
nitely often for almost all sample points.

Proposition. If conditions C.0-C.5 hold, then
ék —0*as. (73)

5/; — S*as. (7b)

Proof. Let /3 = (0, §k ). Note that Equations (2a) and
(2b) can be written as onc joint SA algorithm for 3, with
gain ay, (so that d, /a, appears before Ck to preserve alge-
braic cquivalence to Equation 2b. Hence, by C.1 and C.3—
C.5, the differential equation method of Kushner and Clark
(1978, pp. 38-39), Metivier and Priouret (1984). or Lai
(1985) can be employed. This method implies that Equa-
tions (7a) and (7b) will hold if the following two pairs of
conditions hold:

(1) (a) IIb,\.(f3k M < const. Yk, by = 0as.

||[3,\,(/3’k I < const. Yk, by, — 0 as.
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n

Z“m

)| 2 ] =0, forany >0
i=k

>nj=0

where by and by denote llu (conditional on BA ) bias terms
for the estimales (SA S 800 and Gy (Sely ) respec-
tively. and e, ¢, denote the corresponding crror terms
(analogous to Spall 1992, Section 3B).

First, (1)(a) follows from C.3 and the fact that the bias
n & (ék y 1s uniformly bounded and O(C,\.z)A Now for (i)(tz),
we know by a straightforward Taylor expansion about §,
that

m=k

(i) (a) hm P[ sup

m

3.a,c(5)

i=k

(b) lnm P[ sup

k—seo m>k

bi(By)= éckE{[(L‘-"(é;.“)- LY@ ® A ® A

(+) (=) _~,.(0)
€, te, 2e
k l\j k

}5/\ ArA |f3A

G

where 0‘ ) lies on the line segment betwecn 0,\ and
6,\ + CkA,\and we employ Equation (5) for the contribu-
tion due to JA]STSA, /9S. By the Lipschitz continuity
assumption in C.0, we know that |IL‘”(0‘+)) 13 0‘ ]l
< (const.)cy. Further, the mean O noise condition in C.2
removes the noise contribution after the "+ sign. Finally,
C.3 guarantees the boundedness of S,\A A .Hence, both
parts of(l)(b) hold (with b,\({j’,\)— O(CA )a S.).

For (i1)(a), we can follow arguments analogous to
Spall ( ]992 Prop. 1) that employ the martingale inequal-
ity in Doob (1953, p. 315) or Kushner and Clark (1978, p.
27). Bneﬂy with [ —(S/\ SA) (g‘(O,\ E(q,\((?,\ )IG,\ ))
we can use assumption C.3 (boundedness of S !'ytogether
with the simple martingale arguments a<50c11ted with
Equation (3.4) in Spall (1992) to conclude that (ii)(a) is
true.

Finally. for (11)(b), we can follow the martingale ideas
above and conclude that the result holds if

lim Y a?Elle]l? =0 (8)

‘e ik

where & = G,;(5,16,)— E(G;(5,16,)|B;). Then. invoking the
boundedness assumptions in C.0, C.2, and C.3, straight-
forward algebra shows that Ellé;|I* = O(c;™*). Hence. by
C.1, Equation (8) holds. Q.E.D.

Remark I. There arc several simple variations on the
form for (}k shown in Equation (5), which might enhance
the performance in certain cases, particularly when the
measurement noises might tend to be large. These involve
taking additional L(-) mecasurements per iteration with the

aim of more than proportionally reducing the number of
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iterations required to achieve effective (practical) conver-
gence to 8%, Two obvious variations are: (i) replace 2)',((0)
in Equation (8) with the sum of two separate measure-
ments of L(6,) (so that Equations (2a) and (2b) now re-
quire four L(+) measurements per iteration instead of three),
or (i1) average several values of ék(and ék(ﬁk)) based
on separate sets of three (or four, as just discussed)
measurements to form an input to the recursion (Equa-
tions (2a) and (2b)) that has lower noise effects. Spall
(1992) cxamines such averaging in the context of stan-
dard SPSA, and finds that it can often be both theoreti-
cally and computationally effective at reducing the total
number of L(-) measurements required to achieve effective
convergence.

Remark 2. Although we estimate the square root of
the Hessian to ensure a positive semidefinite matrix in the
SA update of Equation (2a), the same basic idea can be
used to estimate (say) the Hessian directly (making the
obvious changes to Equations (3) through (6)). This would
allow an examination of the loss surface to ensure that we
are seeking a minimum (not, say, a saddle point) if this
were a concern for a particular application. In fact, using
the same three loss measurements, we could augment the
recursions (Equations (2a) and (2b)) with an additional
recursion (say Equation (2c)) to estimate the Hessian di-
rectly as a way of monitoring that the algorithm in Equa-
tions (2a) and (2b) is yielding a loss minimum.

Remark 3. Using standard numerical methods (e.g.,
Householder 1964, Chap. 5). it is possible to avoid ex-
plicitly calculating the matrix inverse shown in Equation
(2a). This will yield significant computational savings at
greater numerical stability.

3 SMALL-SCALE NUMERICAL STUDY

This section summarizes the results of a preliminary nu-
merical study on the second-order SPSA algorithm of
Equations (2a) and (2b). We will compare its performance
with that of the standard first-order SPSA algorithm in
Spall (1988, 1992). The loss function L(-) we consider is
a fourth-order polynomial with significant interaction
among the p = 10 elements in § (i.e., the Hessian matrix
has significant off-diagonal elements); this makes the loss
function flat near §* and. consequently, the optimization
problem challenging.

Tables I and 2 provide the results for this pre]iminﬁary
study. showing the ratio of the estimation error [/ -0 4
to the initial error {|6y — 6*|| based on an average of five
independent runs (the same 6 was used in all runs, and
represents the standard Euclidean norm). 1SPSA and
2SPSA represent the first-order and second-order SPSA
algorithms, respectively. Table 1 considers the case where
there is no noisc in the measurements of L(+), whilc Table
2 includes Gaussian measurement noise (with a one-sigma
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value that ranges from 3 to over 100 percent of the L(6)
value as @ varies). The left-hand column represents the
total number of measurements used (so with 3000 mea-
surements, 1SPSA has gone through k& = 1500 iterations
while 2SPSA has gone through & = 1000 iterations). The
first two results columns in the tables represent runs with
the same SA gains ay, ¢, tuned numerically to approxi-
mately optimize the performance of the I SPSA algorithm
(the gains satisfied the conditions in the Proposition). The
third results column is based on a (numerical) recalibration
of ay, ¢, to be approximately optimized for the 2SPSA
algorithm (an identical d; sequence was used for both
2SPSA columns). The results in both tables illustrate the
performance of the second-order SPSA approach for a
difficult-to-optimize (i.e.. flat surface) function. As ex-
pected, we see that the ratios (for both ISPSA and 2SPSA)
tend to be lower in the no-noise case of Table 1. Further,
we see that the 2SPSA algorithm provides solutions closer
to 8* both with and without optimal 2SPSA gains. An en-
lightening way to look at the numbers in the tables is to
compare the number of measurements needed to achieve
the same level of accuracy. We see that in the no-noise
case (Table 1). the ratio of number of measurements for
2SPSA:1SPSA ranged from 1:2 to 1:50. In the noisy mea-
surement case (Table 2), the ratios for 2SPSA:1SPSA
ranged from [:2 to 1:20. These ratios offer considerable
promise for practical problems. where p is even larger (say,
as in the neural network—based direct adaptive control
method of Spall and Cristion 1992, 1994, where p can
easily be of order 10% or 10%). In such cases, other second-
order techniques that require a growing (with p) number
of function measurements are likely to become infeasible.

—64l

118, =6l
Table 1: Values of 7= ., with No Measurement Noise

118 - 6 %I
2SPSA 2SPSA
Number of w/1SPSA  w/optimal
measurements I1SPSA gains gains
3,000 0.265 0.287 0.122
15,000 0.184 0.160 0.033
30,000 0.146 0.128 0.018

6, =671 |

Table 2: Values of 77—~ with Measurement Noise

116 — 6+
2SPSA 2SPSA

Number of w/ISPSA w/optimal
measurements 1SPSA gains gains
3,000 0.273 0.292 0.243
15,000 0.184 0.163 0.103
30,000 0.146 0.141 0.097

There are several important practical concerns in
implementing the 2SPSA algorithm. One, of course, in-
volves the choice of SA gains. As in all SA algorithms,
this must be done with some care to ensure good perfor-
mance of the algorithm. Some theoretical guidance is pro-
vided in Fabian (1971) and Chin (1994), but we have found
that empirical experimentation is more effective and easier.
Another practical aspect involves the use of the Hessian
cstimate: in the studies here we found it more effective to
not use the Hessian estimate for the first few (100) itera-
tions in Equations (2a), i.e., still compute SA but replace
S,\SA in Equation (2a) with an identity matrix so that it
then becomes the standard SPSA algorithm for the first
few iterations. This allows the inverse Hessian estimate to
improve while it really is not needed since L(-) is drop-
ping quickly because of the characteristic steep initial de-
cline of the standard SPSA algorithm.

4 CONCLUDING REMARKS

The second-order SPSA algorithm presented above of-
fers considerable potential for accelerating the convergence
of SA algorithms while only requiring loss function mea-
surements (no gradient or higher derivative measurements
are needed). Since it requires only three measurements
per iteration to estimate both the gradient and Hessian—
independent of problem dimension p—it does not impose
a large requirement for data collection and/or computa-
tion as p gets large. Future work will focus on strengthen-
ing the theoretical basis for the approach along the lines
of the efficiency analysis for ISPSA in Spall (1992, Sec-
tion 4) and on running a more sophisticated numerical
study. Nevertheless, the approach as it currently stands
seems powerful and relatively easy to apply for use in dif-
ficult stochastic optimization problems.
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