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ABSTRACT

Most research in computer simulation sensitivity
analysis can be classified as steady state sensitivity
analysis. This paper considers an approach to tran-
stent sensitivity analysis, i.e., an approach to study
the transient behavior of a performance measure in
response to changes in one or more input factors. We
examine the issue of factor magnitude change (or fac-
tor amplitude) selection and how the choice of factor
amplitudes impacts the overall analysis. We also con-
sider a control variate variance reduction scheme de-
signed to improve performance when small amplitude
changes are used. A tandem queue example illus-
trates the results.

1 INTRODUCTION

Sensitivity analysis is an important area of research
in computer simulation of stochastic discrete event
dynamic systems. Most of the research that has been
done on this topic can be classified as steady state
sensitivity analysis because it considers the long-run
or steady state impact of input factor changes on
an output performance measure. This paper con-
siders an approach to sensitivity analysis introduced
in Morrice and Gupta (1994) and developed in Mor-
rice (1995). The approach analyzes the short-term or
transient behavior of a performance measure result-
ing from changes in one or more input factors. Since
the approach studies transient behavior, it is referred
to as transient sensitivity analysis.

Morrice (1995) provides a methodology for chang-
ing factors simultaneously during a single set of simu-
lation runs. Such simultaneous variation offers poten-
tial computational efficiencies relative to other meth-
ods that require multiple sets of simulation runs for
transient sensitivity analysis information. However,
simultaneous variation during a single run can also
be seriously constrained by such things as the stabil-
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ity of the system (for example, traffic intensity being
less than one) and the requirement for a factor to re-
main positive (for example, service rate in a queueing
model). Constraints of this type have direct impact
on the factor amplitude, i.e., the magnitude by which
factors can be changed.

This paper focuses on the selection of factor ampli-
tudes for the method proposed by Morrice (1995). In
addition, a control variate variance reduction scheme
developed by Jacobson (1993) is considered for cases
when small amplitudes are selected. The remainder
of the paper is organized in the following manner.
Section 2 contains model assumptions and necessary
background material. Section 3 illustrates the am-
plitude selection problem and discusses issues related
to this problem. Section 4 provides an example and
section 5 contains concluding remarks.

2 MODEL ASSUMPTIONS AND BACK-
GROUND

Using the modeling assumptions of Morrice (1995),
consider a simulation model with continuous input
factors, X¢(t), k= 1,..., K, and a scalar output re-
sponse Y (t) fort = 0,..., N —1. The quantity ¢ is an
observation index. Examples include the simulation
time clock and a job (or customer) sequence number
(Hazra, Morrice, and Park 1995). The sample size
is represented by N. Although the exact functional
relationship between the X (t) and Y (¢) is unknown,
we assume that this relationship is approximately de-
scribed by the following metamodel:

qk

K
Y(6) =33 hi(n)Xi(t — 1) +£(t)

k=1r=0

(1)

The quantity ¢ is a positive integer that represents
the lag length in the k-th memory filter. The quantity
hi(r) is the r-th coefficient (unknown) in the k-th
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memory filter. It satisfies the property,

oo

> lhi(r)] < 00

r=0
The term {¢(t)} is included to model uncertainty.
It is a zero-mean, covariance stationary, random
process with autocovariance function ¥(|i — j|) =
Cov(e(7), £(4))-

The inner summation of unknown coefficients in (1)
models the dynamic or transient relationship between
Y (¢) and the Xi(t). It is included to mimic behavior
often found in, for example, queueing models of man-
ufacturing systems: namely, the current value of the
output is dependent upon the current and past val-
ues of the input factors. Transient sensitivity analysis
is designed to estimate the transient relationship be-
tween Y (t) and the X (t), i.e., the {hx(r)}.

In Morrice’s procedure, the factors are varied ac-
cording to

Nk
Xi(t) = 2 + ai Y _ cos(2mwiit), (2)
=1
for k = 1,2,..., K, within a run of the simulation

model. The quantity z; is a fixed value set at the
beginning of the simulation run (nominal level), ay is
the oscillation amplitude (range over which the factor
is changed) and wii = vgi/N for viy € {1,..., [ N/2]}
is the oscillation frequency (rate at which the factor is
changed). The values for x4, ax, and wy; are selected
by the user. The wji; must be chosen uniquely for
each Xi(t) because the impacts of factors on Y(t)
are distinguished by frequency.

Upon substituting (2) into (1), the metamodel re-
lationship can be rewritten as

Y(t)—ﬁo+22ﬁk

=1r=0 =1

E cos(2mwii(t — 1)) +€(t).

(3)
where
K g
=35 k()
k=1r=0
andfork=1,2,... K
ﬂk(r) = akhi(r). (4)

Employing a well-known trigonometric identity,
cos(2rwii(t — 7)) = cos(2mwyit) cos(2mwyr)
+ sin(27wyt) sin(2mwyr),
(3) can be rewritten as
K n,

Y(t) = Bo+ Y [Ae(wk)cos(2mwirt)

k=11=1
+ By (wir) sin(2mwyt)] + €(t) (5)

where
k(wki) Zﬁk(r ) cos(2mwiT)
r=0
and
(L3
Bk(wkl) = z ﬁk(r) sin(27ruk,r).
r=0

Morrice (1995) uses the following procedure to get
an estimate of the {hi(r)}:

1. Make M simulation runs of length N observa-
tions.

2. On each run vary Xi(t), k=1,2,...
ing to (2).

, K, accord-

3. Average the N observations across the M runs.

4. Transform the resulting N observations to the
frequency domain.

5. Fit a polynomial regression model to (5) in
the frequency domain using the weighted least
squares procedure described in Morrice and
Bardhan (1995). The regression model produces
estimates of the functions A(wi) and B(wg).

6. Apply an inverse cosine and sine transform to
A(wg) and B(wy) to get estimates of the {8k (r)}.

7. Rescale the {B8x(r)} to get the {hi(r)}.

3 AMPLITUDE CONSIDERATIONS

Varying the factors simultaneously according to (2)
can be challenging in practice due to practical con-
straints on the system being modeled. For example,
if factor X (t) is constrained to positive values, then
zy, ar and the {wy;} must be chosen to satisfy this
constraint. Another possible constraint on (2) is the
stability of the system being modeled. For example,
in a queueing system, arrival and service rates must
yield a traffic intensity that is less than one for the
system to be stable. The queueing literature provides
some limited theoretical guidance on how to choose
factor levels according to (2) depending on how t is
chosen (Whitt 1991 and Morrice, Gajulapalli, and
Tayur 1994). In general, simulation can be used to
empirically verify the stability of the system.

The quantity zj is usually chosen as the center
point of the experimental region. Morrice (1995) pro-
vides some discussion on the selection of the {wg},
but additional research is required on this topic. This
paper focuses on the issue of the selection of the {a;}.
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The selection of aj is governed by conflicting objec-
tives. Jacobson (1993) notes this for harmonic gra-
dient estimates. On the one hand, the quantity ak
determines the strength of the signal associated with
Xi(t). A signal must be chosen strong enough to
ensure that it is not masked by random noise in the
simulation output if the {hx(r)} are nonzero. This re-
quirement supports choosing aj as large as possible.
On the other hand, a; cannot increase without bound
due to the positivity and stability constraints men-
tioned above. In fact, such constraints can become
more restrictive as additional cosinusoidal terms are
added to (2). For example, as more terms are added
to (2), a positive factor level can be ensured by re-
ducing a;. Having the flexibility to include additional
terms in (2) is desirable because more observations of
the Ax(wk) and Bi(wg) functions may be necessary
for the regression analysis. This type of flexibility
dictates choosing aj as small as possible.

A key to satisfying both requirements is to reduce
the variance in the noise process. With a reduced
variance, a weaker signal (i.e., a signal with a reduced
amplitude) becomes sufficient to overcome the noise
masking problem. As a result, more flexibility is pro-
vided for adding more terms to (2). Morrice (1995)
considers a crude form of variance reduction by aver-
aging observations across independently seeded sim-
ulation replicates. The next section considers a con-
trol variate variance reduction scheme suggested by
Jacobson (1993).

4 EXAMPLE

To illustrate the effect of choosing smaller amplitude
values, an example from Morrice (1995) is used. Con-
sider a three work station assembly line model where
the interarrival times and the service times on all
three work stations are exponential. Buffer capacity
between each work station is assumed to be infinite
and jobs are processed on a first-come, first-serve ba-
sis. The four factors in this model are the mean in-
terarrival time, X;, mean service time for the first
station, X5, mean service time for the second sta-
tion, X3, and mean service time for the third station,
X4. Only factors X; X, and X4 will be changed
to illustrate transient sensitivity analysis. The out-
put response, Y, is the waiting time in the system
and its expected value is the performance measure of
interest.

The following three scenarios are used to illustrate
transient sensitivity analysis:

1. The quantity X; is changed from 9 to 11, X, is
fixed at 6, and X4 is fixed at 6.
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Figure 1: Mean Waiting Time Trajectory After
Changing the Mean Interarrival Time

2. The quantity X is fixed at 10, X, is changed
from 5 to 7, and X4 is fixed at 6.

3. The quantity X, is fixed at 10, X is fixed at 6,
and X4 is changed from 5 to 7.

In all scenarios, X3 is set at 7. All three scenarios are
assumed to be in steady state before the changes are
made. The transient behavior in E[Y] is its readjust-
ment to steady state after the changes are made.
Scenarios 1, 2, and 3 are depicted in figures 1, 2,
and 3, respectively. The simulation trajectory in fig-
ure 1 is generated by averaging the system waiting
time of 800 service completions over 5000 runs. The
system is started empty and idle and the mean inter-
arrival time is changed from 9 to 11 after the 525th
arrival. The number 525 is used because it is de-
termined, by inspection, that the initial transient in
the mean waiting time has ended by customer ser-
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Figure 2: Mean Waiting Time Trajectory After
Changing Mean Service Time on the First Station

vice completion 500. The simulation trajectories in
figures 2 and 3 are generated in a similar manner ex-
cept that they are based on 5000 runs of 510 service
completions and the factor change is made after the
250th service at the corresponding work station. As
before, 250 is chosen, by inspection, to be a point be-
yond the transient period attributable to the initial
conditions. For all scenarios, the simulation trajecto-
ries are used as benchmarks.

The results for Method 1 are from Morrice (1995).
The results for this method in all three figures are
generated by two sets of simulation runs. On the
first set, the system waiting time from 4596 service
completions are averaged across 500 runs. In order to
mitigate the effects of an initial transient, each run
is warmed up for 500 customer service completions
with the factors set at the following nominal values:
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Figure 3: Mean Waiting Time Trajectory After
Changing Mean Service Time on the Third Station

X1(t) = 10, X2(t) = 6, X3(t) = 7, X4(t) = 6. Then,
the first 500 observations are discarded. The value
500 was chosen from the time domain simulation re-
sults for the simulation trajectories. After the 500-th
service completion, the index ¢ in (2) is reset to zero
and for the remainder of each run the factors are var-
ied according to:

X:(t) =10+ Z cos(2mw;t),

w68,
Xo(t) =6+ Z cos(2mwat),
wa€S,
and
Xa(t) =6+ E cos(2mwat).
weeSq
where

S, = {5,505,1005, 1505, 2005},
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Sy = {9,509,1009, 1509, 2009},
Ss = {11,511,1011, 1511, 2011},

and the elements of each frequency set are divided
by 4096. Only five cosine terms are chosen for each
parameter so that X,(t) and X4(t) are guaranteed
to be positive. In order to obtain more observations
for the {Ax(wr)} and {Bk(wk)}, an additional set of
runs is required. The second set of runs consists of
another 500 independently seeded runs of 4596 service
completions. At the 501-st observation, ¢ is reset to
zero and the factors are varied according to:

Xi(t) =10+ E cos(21rwllt),

! !
w, €S

Xo(t) =6+ E cos(27rwl2t),

w;fS;
and ,
X4(t) =6+ Z cos(2mwgt)
w;eS:
where

S, = {255, 755,1255, 1755},
S, = {259,759, 1259, 1759},
S, = {261,761,1261,1761},

and the elements of each frequency set are divided by
4096. Morrice (1995) transforms the data from each
set of runs to the frequency domain separately. The
two resulting data sets are combined into one data set
in the frequency domain. Then the last three steps in
the procedure described in section 2 are used to get
estimates of the {Br(r)}.

The purpose of Method 2 is to eliminate the need
for a second set of simulation runs. Method 2 has
exactly the same run time set-up as the first set of
runs on Method 1 except that the factors are varied
according to

Xy(t) =1040.5 ) cos(2mdt),

&1551

Xo(t)=64+0.5 Z cos(2rdat),

@3¢e8,
and
Xs(t) = 6405 Y cos(2niyt)
WeeSy
where

Sy = {5, 255,505,755, 1005, 1255, 1505, 1755, 2005},
Sy = {9,259, 509,759, 1009, 1259, 1509, 1759, 2009},

Sy = {11,261,511,761,1011,1261,1511, 1761, 2011},

and the elements of each frequency set are divided by
4096. Notice that reducing the amplitude to 0.5 for
each factor facilitates choosing more cosine terms for
X,(t) and X4(t) and thus eliminates the need to do
the second set of runs required by Method 1.

For all three scenarios, Method 2 provides com-
parable results to Method 1. In particular, relative
to Method 1, Method 2 provides slightly degraded
results for scenarios 1 and 3, but slightly improved
results for scenario 2. These results are encouraging
because Method 2 requires half the number of obser-
vations of Method 1.

Method 3 relies on two sets of runs. The first set are
those from Method 2. The second set has exactly the
same experimental setup as the first set of runs ex-
cept that the factors are fixed at their nominal levels.
This is called a control run. Common random num-
ber streams are used between the two sets of runs.
Then the performance measure from the second set
of runs is used as a control variate for the first set of
runs. This is implemented by simply taking a differ-
ence between the data series from the first and second
sets of runs. The resulting data series is then used in
the transient sensitivity analysis procedure described
in section 2 to produce the results for Method 3.

The figures illustrate that the control variate
scheme does provide some improvement in the results.
In particular, Method 3 provides uniform improve-
ment over the results provided by Method 2.

5 CONCLUSIONS

In this paper, we have considered issues governing
amplitude selection in transient sensitivity analysis.
We have illustrated empirically that using smaller
amplitudes offers potential for a more efficient exper-
imental design. A key component of this strategy
1s the use of variance reduction techniques to reduce
noise that often masks low amplitude signals in the
simulation output.

Future research includes exploring the use of other
types of variance reduction schemes. For example, we
will consider using a control variate from a control
run that oscillates factors according to (2) with an
amplitude of {—a.} (Jacobson 1993).
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