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ABSTRACT

This paper investigates the use of analytical queueing
approximations to assist in mitigating the effects of
the initial transient period in steady state GI/G/m
queueing simulations. We investigate using queueing
approximations to stochastically set the initial con-
ditions of the simulation and we develop a new set
of truncation heuristics based on GI/G/m queueing
approximations. The new truncation heuristics are
based on finding the truncation point in the simula-
tion sample path which minimizes the mean squared
error of the point estimator. Given that an approx-
imation can be found, our methodology reduces the
need for pilot runs and can easily be incorporated into
a simulation, with significant results. We present the
performance of the heuristics for replication deletion.
The adaption to batch means is discussed. The result
of our methodology is a less biased and less variable
estimator of the expected wait time in the queue. We
used the Extend™ simulation package for this re-
search on a Macintosh Quadra 840AV. Key Words:
Start-up Techniques, Output Analysis, Trun-
cation Heuristics, Queueing Simulation

1 INTRODUCTION

Suppose we arc interested in estimating a steady state

mean performance parameter, § = E[Y], where Y7, Y5, ...

1s the output sequence of steady state simulation such
that Pr{Y; < y} = Fi(y) = F(y) = Pr{Y <y} as
¢ — oc. We know that each Fj(y) is really dependent
on the initial conditions of the simulation. When we
are interested in steady state performance these un-
representative F;(y) are termed transient distribu-
tions. The problem of determining when F;(y) has
become representative of F'(y), i. e. when the effects
of the initial conditions have worn off, has a long his-
tory in the simulation community, see for example
Wilson and Pritsker (1978a). The period over which
the output process is experiencing the transient dis-
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tributions is known as the warm-up period. Un-
der appropriate ergodic assumptions, we know that
the sample mean, Y, will approach 6 asymptotically:
however, steady state is really an asymptotic concept
which can not be achieved in a finite simulation run.
Thus, because the initial observations are not repre-
sentative of the steady state distribution and because
we have a finite sampling budget, estimators such as
the sample mean will be biased. This bias is termed
initialization bias. Since we can not attain an infi-
nite simulation run, for the purposes of this paper, we
consider steady-state to occur when the simulation
output sequence appears to be covariance stationary.
As defined in Law & Kelton (1991, pg. 280), a dis-
crete time stochastic process is said to be covariance
stationary if the process has the following properties
fori=1,2,...

E[Yj]=0 —oco<f<o0

Var [Y;] = ¢ 0’ <
and Cov (Y;, Yi4;) is independent of i for j = 1,2,

One way to negate the effects of the initial condi-
tions is to use an extremely long run length to over-
whelm the initial “bad” data. The output process
for the waiting times in a M/M/1 queue started from
the empty and idle state is a good example of a pro-
cess with a lengthy transient period which requires
long simulation run length. As Whitt (1989) points
out, we would have to run a M/M/1 queueing model
with a traffic intensity of 0.90, for 13,500,00 obser-
vations to obtain a parameter estimate with 1% ab-
solute error with respect to the true expected value.
This takes approximately 25 hours of real time on a
Quadra 840AV using Extend™. Clearly, long run
lengths translate into unacceptable amounts of real
computing time.

Two other basic approaches have been used to al-
leviate the effects of initialization bias. The first ap-
proach is to try to set the initial conditions of the
simulation to conditions which are more representa-
tive of steady state. We can set the initial conditions
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of a system either deterministically or stochastically.
Kelton (1989) explores both methods for replication
deletion and batch means. Deterministically setting
the initial conditions involves setting the initial state
of the queueing system to a constant value such as
the mode of the steady state distribution and run-
ning either batch means or replication deletion with
this initial condition. The problem with setting the
initial conditions deterministically 1s that it ignores
the other possible states of the system. Stochasti-
cally setting the initial conditions involves sampling
from the steady state distribution to obtain the ini-
tial state. The problem of course with setting initial
conditions is that we do not know the steady state dis-
tribution. Kelton demonstrates how using geometric
and uniform distributions as approximations for the
steady state distribution of the number of customers
in the system can help to alleviate initialization bias.
Whitt (1993) develops approximations for the steady
state distributions of the number in the system. We
propose using these approximations to stochastically
set the initial conditions.

The second approach is to truncate an initial por-
tion of the sample with the remaining data being
used to provide an estimate of the desired perfor-
mance measure. The basic challenge is to determine a
truncation point which controls the initialization bias
without increasing the variance of the estimator. Sev-
eral researchers have developed methods to truncate
initial transient observations. Heuristics by Schruben
(1982), Fishman (1972), Welch (1983), Conway (1963),
Gafarian (1978), Law and Kelton (1983), White and
Minnox (1994) and others differ in their approach to
controlling the initialization bias, but all incorporate
some form of truncation. Schruben’s work is unique
in that it allows for the testing for the presence of
initialization bias. Most truncation heuristics require
pilot runs to determine the characteristics of the out-
put data and an estimate of the truncation point. The
Welch plot allows us to visualize the transient period
across pilot runs and obtain a “guesstimate” of the
average warm-up period, based upon these pilot runs.
The sample paths averaged across pilot runs gives the
simulator a visual clue of where the covariance sta-
tionary phase begins. At that point, the simulator
would clear the statistics (or truncate) and begin a
new estimate. We must not lose sight of the fact that
this is a plot across replications so it is merely an
estimate of the average warm-up period. Pilot run
heuristics do allow us to gain insight to the system
and then use this knowledge to run our experiments.
Nevertheless, the waste of computational budget time
is a shortcoming of pilot run based methods.

The premise behind our methodology is based on
considering what the simulator actually gains by per-

forming pilot runs. We argue that the simulator gains
knowledge about the steady state behavior of the sys-
tem which allows for the picking of truncation point.
As pointed out in the previous paragraph, this knowl-
edge is really sampled knowledge and may fool the
simulator into picking a bad truncation point. We
ask the basic question: Why not use knowledge from
other sources, e. g. appropriate analytical models, to
gain insight into the location of the truncation point?
It 1s the knowledge of where the “leveling” might oc-
cur which allows for the picking of the truncation
point.

Fishman (1972) discusses the penalty of increased
sample variance which may incur from truncation,
even though we may see a decrease in the initializa-
tion bias. He recommends using the mean squared er-
ror(MSE) as an examination of this truncation penalty.
The mean squared error is defined by

£((s-0)]

Bias? 0] + Var [6]

MSE

where 6 is an estimator of §. We consider incorporat-
ing knowledge of where the “leveling” might occur by
using the approximations in Whitt (1993) as the true
mean in a heuristic based upon the MSE criteria.

The rest of this paper is structured as follows.
First, we define what we mean by obtaining a better
estimate and then cover our basic truncation proce-
dures. We then show the sensitivity of the trunca-
tion heuristic to the error of the approximation and
give an example comparison of the performance of the
truncation heuristics versus the untruncated sample
mean. Finally, we summarize our conclusions and
give some ideas for future research.

2 METHODOLOGY

In this section, we explain the basic underlying prin-
ciples of our heuristic in conjunction with the repl-
cation/deletion approach to steady state simulation.
For explanations and results in the area of batch means,
we refer the reader to Delaney (1995). Our method-
ology differs from other truncation heuristics, in that
we assume no knowledge of the system based upon
pilot runs. Whitt shows that derived approximations
for the long-run distribution of the number in a sys-
tem and in a GI/G/m qucuc are quite accurate with
the worst absolute error being about 20%. We show
that with an approximation of even 20% absolute er-
ror relative to the true value we can obtain a “better”
estimate than the simulation run mean. We define
the term “better” to be an estimate that is both pre-
cise(less variable) and accurate(less biased).
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The mean squarcd error criteria considers both
the bias and the variance of the estimator. An es-
timate of the mean squared error of the estimator
would be as follows:

MSE [0] = Bins [0] + Var 0] (1)

Assuming that the true value is known and that the
¥; arc independent, the bias and the variance of the
truncation estimator could be estimated by

Bias [9] = Y(nd)—0 (2)
Var [6] = (_—lT Z Yi-0* )
i=d+1

where n and d represent the total sample size and the
amount of initial data to be deleted and

Z?:d-{-l )'1

Y(n,d) = p—

is the sample mean. Clearly, we do not know the true
value and the data within a simulation run will al-
most surely not be independent. We handle the first
problem by using an approximation. The problem of
dependent data is more difficult. We concede that
more appropriate ways for estimating the variance of
the estimator exist, e. g. batch means, standardized
time series, etc. but we argue for heuristic simplicity.
In any event, better methods to estimate the variance
of the estimator can easily be incorporated into our
methodology and should be considered as future re-
search topics.

Let 6, be an approximation for . This approxi-
mation may come from any source, but for our pur-
poscs we assume that it is available from a corre-
sponding analytical model. Our first heuristic is based
on replacing 6 with 8, in Equations (2) and (3) to ob-
tain an approximate estimate of MSE from Equation
(1) and then finding the value of d which minimizes
the resultant_estinate for the mean squared error.
Let us use, MSE,(n, d) to indicate Equation (1) when
f, has been substituted for § and to indicate that it
is dependent on both n and d. The truncation point,
d* 1s determined by

d* = arg min MS/'\Ea(n.,d)
0<d<n

Using M/S%a(n., d) and the corresponding d* as a trun-
cation point allows us to do the best we can from a
finite output sequence in terms of finding both a less
biased and less variable estimate. We call this trun-
cation heuristic, MSEAT, for mean squared error ap-
proximation truncation. The behavior of MSE,(n, d)
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Figure 1: Illustration of M/STEG(n,d) Behavior

is illustrated in Figure 1. The sample path is based
on n = 10000 and has a unique behavior with a trun-
cation point of d* = 913. We examined the behavior
of MSE,(n, d) over a variety of sample paths for this
case. Other values of d* included d* = 1999 and
d* = 9706. Based on this behavior, it should be clear
that it may be necessary to truncate a significant por-
tion of the sample.

Another way to think of this heuristic is to con-
sider the procedure as picking a subsequence of Y (n, d).
In other words, for each valueof d =0,1,2,...,n—-1,
we have a shorter subsequence from the cumulative
sample mean. We are picking the subsequence which
is closest to the true mean according to the mean
squared error criteria. This causes subsequences which
are close to the true mean to be more likely to be
chosen; however, because we are replacing 6 with 6,
we are picking a subsequence which is close to the
approximation. If the approximation has significant
error with respect to the true mean, then the estimate
of the performance parameter due to truncation may
be worse than the untruncated sample mean.

To test this concern, we ran 41 experiments of 30
replications with 10,000 customers exiting the system
of an M/M/1 queue with common random numbers.
The performance measure of interest is the steady
state expected waiting time in the queue. We used the
true analytical value as the initial “approximation”
and then perturbed the truth incrementally by 0.01
absolute error to give us an absolute error range from
0 to 20%. We note that Whitt’s approximations re-
duce to the exact values for the M/M/1 case. Figure 2
depicts the findings across the 41 experiments. In the
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figure, the upward sloping lines represent the perfor-
mance of the heuristic for positively perturbed val-
ues of §, while the downward sloping lines represent.
performance for negatively perturbed 6,. The bands
represent 95% confidence intervals across the 30 repli-
cations. The final values of 16.34 and 15.97 shown
are for the case of 20% error. The average for the
untruncated sample mean across the 30 replications
was 14.85 with a 95% confidence confidence interval
of (14.75,14.95] indicating clear negative initialization
bias. The significant result was that even with an
approximation absolute error of 20% the truncation
estimate was less biased than the run mean with no
truncation. The fact that the average across 30 sam-
ple paths could not produce an estimate within the
95% confidence band of the negatively perturbed ap-
proximation heuristic is even more significant. We
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Figure 2: Approximation Sensitivity

did note that the strength of the approximation in
the bias and variance equations forced the resultant
estimate towards the approximation. We considered
reducing the strength of our heuristic to let the sam-
ple data have a more determinant impact on the es-
timate. We felt that maintaining the bias equation
and using a different equation for the variance would
lessen the strength of the heuristic, but still allow for
reduced variance and less bias.

White and Minnox (1994) describe a truncation
heuristic based on finding d such that the sample half-
width is minimized. This equates to finding the value
of d which minimizes the sample standard deviation.
While this indeed resulted in an improved estimator,
we found that using it to determine an estimate of the

expected wait time in the queue occasionally resulted
in extremely biased estimates when the sample paths
had small and similar observations at the tail end of
the simulation run. In some sense, it relies too heavily
on sample path information while our basic heuristic
relics too heavily on the approximation. Thus, we felt
that the following heuristic was appropriate.

d* = arg min B/i;s2 [0] + Var [0]

0<d<n
where
Bias [9] = Y(n,d) -6,
— - n Y, = Y(n,d)*
Var[e] _ D icag Y(n,d))
(n—d)n—d—1)

We refer to this heuristic as, MSEASVT, for mean
squared error approximation and sample variance trun-
cation. We used the algorithm given in Figure 3 to ap-
ply MSEASVT during replication/deletion. We find
an optimal d for each replication and its correspond-
ing truncated sample mean. The final point estimator
1s the average across replications of truncated sample
means. Variations of our basic heuristic are also pos-
sible. For example, one might apply the algorithm
over a range of values of 6,. For example, apply the
MSEASVT heuristic for three values 8, —¢,0,,0, + ¢
and average the resultant point estimators. We re-
fer the interested reader to Delaney (1995) for fur-
ther evaluation of these types of heuristics. Our ba-
sic replication/deletion algorithm requires that the
data from within a replication be saved and then an-
alyzed at the end of a replication. For adequately
long run lengths this can be a significant amount of
data. As suggested by an anonymous reviewer, if one
could store all of the data from each replication then
many other variations are also possible. For example,
one might find d* for each replication and use the av-
crage of the d*’s for the truncation point for every
replication. In addition, one could compute the av-
erage MSE(d) curve across the replications and then
find the minimum d for the average curve. These
possibilities remain to be explored.

3 SIMULATION PROGRAM DESCRIPTION

The simulations were performed using the Extend
simulation package. The package allows the simulator
to usec established blocks for discrete and continuous
simulations using drag and drop technology. By sim-
ply connecting blocks, a simulation can be ready to
run within 5 minutes of your first introduction to the
package; however, as with most simulation packages
of this nature more complex modeling and control
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Imitiahize: »;on;
Compute Approximation: fg;
Run Replications:
ysum + 0; minmse = oo
for j « 1 {or
itialize simulation
sum  0; swinsqg 0
for i <~ 1 ton
simulate y[i;
sum 4 sum + y[i);
sumsq — swinsq + yli] * yld);
endfor
for d < 0ton—2
avy — sum/(n —d);
bius ¢« avg — 8g;
var < ((sumsq — suin * sum/f(n — d));
var « var/((n —d) * (n —d = 1));
mse + bias * bias + var,
if mse < minmse
minmse < mse, ybar < avg;
sum + sum — y[d + 1];
sumsq < sumsq — y[d + 1] * y[d + 1];
endfor
ysum < ysum + ybar;
endfor
4. 0 « ysum/r;

S =

(9%

Figure 3: MSEASVT Algorithm

of the simulation requires the simulator to modify
existing blocks to create custom blocks to be used
in the solution process. This is made easier in Ex-
tend since the underlying language is ModL which is
a variant of C. Dialog boxes for user input are also
easy to create. For simulating the GI/G/m queue,
it is simply a matter of utilizing an arrival gencrator
block, a qucue block, and a resource block. Other
blocks were created to stochastically set the imtial
state of the (i1/(/m simulations based upon Whitt’s
approximations, to control the random number seeds,
and to apply the truncation heuristics at the end of a
simulation run. In comparing empty and idle initial
conditions to stochastically set initial conditions, we
utilized common random numbers. Whitt’s approxi-
mation for the expected waiting time in the GI/(:/m
queue is based on a system approximation approach
which modifies the result of the standard M/M/m
queue. The basic functional relationship has the fol-
lowing form

E [I g ] =®(p,c

' 4G1/G)m

S’,a (';‘v 7n)E [I'qu/n:/m]

where p is the traffic intensity, c2 is the coefficient

of variation for the inter-arrival distribution, Cf 1s

the coefficient of variation for the service distribu-
tion, and m is the number of servers. The function
®(p, c2, ci,m) can be thought of as a correction factor
and has a complex form, but is still easy to compute.
Whitt also provides approximations for the steady
state queue length and number in the system distri-
butions. Whitt uses the geometric distribution as the
building block for his queue length distribution. The
reader 1s referred to Whitt (1993) for more on the de-
velopment of these approximations. Algorithms for
implementing Whitt’s approximations and the trun-
cation heuristics are given in Delaney (1995).

4 SIMULATION EXPERIMENTS AND RE-
SULTS

To test our heuristics, we set up a series of non-
standard queueing models with a traffic intensity p >
0.9. We used models other than the M/M/c model
since Whitt’s approximations are exact for that case.
To check our results we used Hillier and Yu (1981)
and Tijms, Seelen and Van Hoorn (1985). We an-
alyzed our models by stochastically setting the ini-
tial conditions and then, with recorded seeds, empty
and idle. We performed this analysis for batch means
and replication deletion. Table 1 is a representative
sample of our experiments for the replication deletion
approach. For further experimental results including
the batch mean comparisons, we refer the reader to
Delaney (1995).

Table 1: Table of Experiments

p = traffic intensity, IC = initial conditions
EI = empty and idle, SS = stochastically set
r = # micro-replications

R = # macro-replications

n = micro-replication run length

Exp | Model p |1C | r n M
1 E,/E,/4 | 0.9 | SS | 30 | 10,000 | 25
2 | E;/E,/4] 0.9 | EI | 30 | 10,000 | 25
3 U/LN/3 | 0.9 | SS | 10 | 30,000 | 25
4 | U/LNJ/3 | 09 | EI | 10 | 30,000 | 25
5 | Eb/E»/4 098 | SS | 10 | 21,000 | 25
6 | Eyu/E,/4 098 | EI | 10 | 21,000 | 25

Table 2 reports the average absolute value of the
bias over the R = 25 macro-replications. In all of
the cases, the average absolute value of the bias for
the truncation heuristics is lower than the run mean’s
average absolute value of the bias. On average across
the experiments, 83% of the time there was a bias re-
duction. For the truncation heuristics roughly 46% of
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the data is being truncated. Table 3 reports the aver-
age half-width across the 25 macro-replications. On
average across the experiments, 97% of the time there
was a reduction in the half-width for the truncation
heuristics as compared to the run mean’s half-width.
The specified coverage probability was 95%. The av-
erage estimated coverage across the experiments for
the run mean was 86.7% while the average across
the truncation heuristics was 63.2%. Some trunca-
tion heuristics had extremely bad coverage, but this
1s due to the extremely small half-width obtained. We
might note that at times when the truncation heuris-
tics increased the bias they did so as compared to the
run mean. This was primarily due to the heuristics
tendency to pick a subsequence which is close to the
approximation. This does not mean that the heuris-
tics gave a bad estimate, only that for that macro-
replication the run mean was closer to the true mean
value. In fact, as shown in Figure 4, the truncation
heuristic was within 2% of the true value significantly
more often than the untruncated sample mean.

Table 2: Bias Macro-Results

b = average absolute bias

hw = half-width for 95% c.i. on b

%dt = % data truncated

ntbr = # times bias reduced given R = 25

Exp Method
1 Run Mean

b+ hw ntbr | %dt
0.27 + 0.10 - 0.00

- MSEAT | 0.11 £ 0.03 18 | 60.82

{ MSEASVT T 0.13 £+ 0.04 18 | 44.97

2 Run Mean 0.26 & 0.08 - 0.00
MSEAT 0.10 £ 0.03 20 | 61.52
MSEASVT | 0.10 & 0.03 20 | 45.25

3 Run Mean 0.08 + 0.02 - 0.00
MSEAT 0.02+0.004 | 24 | 61.53

MSEASVT | 0.02 £ 0.004 | 24 | 44.27
4 Run Mean 0.07 £ 0.02 - 0.00

MSEAT 0.03 +£ 0.004 | 22 | 60.52
MSEASVT | 0.02 £ 0.004 | 22 | 41.52

5 Run Mean | 11.27 £ 3.25 - 0.00
MSEAT 4.09 +£1.40 | 20 | 60.12
MSEASVT | 4.12 & 1.39 20 | 57.66

6 Run Mean | 12.05 4+ 3.20 - 0.00
MSEAT 4.56 + 1.49 20 | 63.00
MSEASVT | 4.55 + 1.48 20 | 59.00

The mean squared error criteria punishes those
subsequences which are far from the approximation
and conversely rewards those close to the approxima-
tion. A different criteria such as the mean absolute
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deviation might be more appropriate. In any case, on
average the performance of the truncation heuristics
was superior to using the untruncated run mean.

5 CONCLUSIONS

We can see from the results that using queueing ap-
proximations to stochastically set the initial condi-
tions of the system reduces the initialization bias of
a performance parameter estimate when we have a
finite computer budget. Although a finite run length
may not get us through a transient period, our results
lead us to believe that stochastically setting the ini-
tial conditions will reduce the size of the transient
period. Additionally, using the approximations to
perform a back-end truncation of output data at the
point where the minimum estimated MSE occurs re-
duces the bias of the estimate. Even if an approx-
imation had an absolute error of 20% with respect
to the true value, it could still produce a point es-
timate closer to the true expected value when com-
pared to the untruncated sample mean. Though the
coverage across the 25 experiments for each model
was not what we desired, one can easily see that the
confidence half-width across each experiment was sig-
nificantly smaller than that of the untruncated run
mean data. This improvement in the precision is the
rcason for the shortage of coverage. We consistently
produced estimates closer to the true value of the
mean.

While we do acknowledge that we should continue
our research with more complex tests on more com-
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plicated queueing systcms, the preliminary findings
of stochastic initialization support the results given
in Kelton (1989). Kelton (1989) found that the ap-
proximation assisted point estimate heuristics with
no pilot runs lessen the possibility of incorrect infer-
ence from output data. Indeed, the F./[F2/4 model
with p = 0.98 demonstrates that if you have an ex-
pected queue length which is large, using Whitt’s ap-
proximations for the steady state distributions allows
us to achieve a significantly better estimate than an
empty and idle system. Using our heuristic trunca-
tion rule then allows us to get a less biased and less
variable estimate due to the large transient phase for
this case. We should also continue our evaluation on
more complex queueing systems such as networks of
queues. We note that software packages already ex-
ist, e. g. MANUPLAN & SIMSTARTER, see Suri et.
al. (1990), which will translate an analytical queue-
ing analysis into a corresponding simulation program.
The queueing analysis could then be used to improve
the simulation estimation process.

Table 3: Half-Width and Coverage Macro-Results

hw = average half-width

hw = half-width for 95% confidence interval on hw
%c = estimated % coverage

nhwr = # half-width reduced given R = 25

f

Exp Method hw + hw nhwr Yoc
1 Run Mean | 0.80 + 0.06 - 96.0
MSEAT 0.21 £ 0.05 25 80.0
MSEASVT | 0.22 4+ 0.05 25 80.0

2 Run Mean | 0.80 + 0.06 - 96.0
MSEAT 0.18 + 0.04 25 60.0
MSEASVT | 0.20 &+ 0.04 25 60.0

3 Run Mean | 0.12 + 0.01 - 88.0
MSEAT 0.01 & 0.008 25 20.0
MSEASVT | 0.02 + 0.008 25 32.0

4 Run Mean 0.12 £ 0.01 - 92.0
MSEAT 0.01 &+ 0.008 25 20.0
MSEASVT | 0.02 & 0.008 23 32.0

5 Run Mean | 19.91 & 2.73 - 76.0
MSEAT 5.85 £ 1.06 23 80.0
MSEASVT | 5.80 & 1.06 23 80.0

6 Run Mean | 19.32 &+ 2.62 - 72.0
MSEAT 6.33 £ 1.04 24 68.0
MSEASVT | 6.23 £ 1.03 24 72.0

The truncation methodologies do lend themselves
to a batch means analysis of one long run; however,
the stochastically set initial condition point of the
one run negates the power of the steady state distri-

bution approximation across multiple sample paths.
The truncation heuristic could be applied to the en-
tire data set in which case there is the potential for
a significant amount of data to be deleted. Applying
batch means to this reduced sample is problematic.
Alternatively, the simulator can reserve part of the
data and only apply the truncation heuristic to the
first part of the data set. For example, the simulator
could apply the heuristic to the first ¥% of the data
and batch the other part of the sample. For more
details of this, we refer the reader to Delaney (1995).

Our methods meet our stated objective of obtain-
ing a “better” estimate of the expected wait time in
the queue. We do not satisfy our implied goal of 95%
coverage across our experiments. We realize, how-
ever, that this is directly attributable to the exact
precision that the heuristics impart. Indeed, the half-
widths produced by replication deletion in combina-
tion with the heuristics incorporating the approxi-
mations was considerably smaller than that with no
truncation. What resulted was a series of estimates
each with an average bias significantly less than the
run means and improved precision. This 1s a very
intriguing result since it implies that there may be
a truncated subsequence which has very good statis-
tical properties. Future research should explore ex-
ploiting this method as a possible variance reduction
technique. The question still remains as to which is
better; better coverage with the possibility of signifi-
cant bias and variance or less coverage with little or
no bias and reduced variance? The decision maker is
the only one who can answer this fundamental ques-
tion. We submit, however, that since statistical anal-
ysis and inferences of output data can lead to errors
based solely on the data, using the less biased and
less variable estimate should ultimately result in bet-
ter decision outcomes.
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