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ABSTRACT

The linked list and indexed list future event sets are
investigated here. The interaction hold model and the
Jackson network model are the underlying stochastic
models considered. For the interaction hold model
and for the (doubly) linked list, we find, for example,
the mean number of key comparisons performed in
order to find a record’s insertion point into the list;
this is useful when deciding whether to scan from the
head or the tail of the list. The distribution of the
relative position of the to-be-inserted record is also
obtained; for indexed lists this is helpful when de-
ciding the number of sublists and position(s) of the
middle pointer(s). The Jackson network model has
a realistic event logic, but events are restricted to
be exponentially distributed. Because the stationary
probabilities can be computed for this model, it is
then possible to evaluate and compare the (steady-
state) performance of certain future event sets (e.g.,
linked lists scanned from the head or the tail).

1 INTRODUCTION

In a discrete-event simulation, the future event set
(FES), or also simulation calendar, is the data struc-
ture that holds the records of the events scheduled to
occur in the future. Part of the computational effort
in a simulation is devoted to the manipulation of the
FES as records get removed, inserted, updated and
looked at (e.g., for checking certain conditions). See
Devroye (1986). Manipulation of the FES must be
cfficient, especially for large-scale simulations. Be-
cause of the various demands a complex simulation
puts on the FES, it is not evident that in such a var-
ied environment the more modern algorithms (e.g.,
splay trees, binomial queues, etc.) perform uniformly
better than the traditional ones (e.g., indexed lists,
heaps, etc.). Jones (1986) contains an extensive em-
pirical investigation.
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It is clearly of interest to study the performance
of the classical data structures (e.g., linked lists) in
a simulation environment, but the problem is diffi-
cult. There are two general approaches to analyz-
ing the performance of a FES. The first one is to
run various real-world simulations and perhaps arrive
to conclusions based upon the empirical experiments.
The other approach is to assume that the underlying
stochastic system is simple enough so that an analysis
of the FES performance is tractable. This is the ap-
proach taken here. The two stochastic models consid-
ered are the interaction hold model and the Jackson
network model. The former has a simple event logic
but allows for general probability functions, while the
latter has a more realistic event logic, but events are
restricted to be exponentially distributed. We will be
looking at (doubly) linked lists and indexed lists only.

Under the hold model assumption, first considered
for FES performance evaluation by Vaucher (1977),
the underlying stochastic process consists of a fixed
number L of independent renewal processes with
identical event lifetime distributions. Each time an
event triggers a transition (at the end of its lifetime),
its record is removed from the list, the event is then
gencrated anew and its record inserted back into the
FES. The hold model where events may have differ-
ent distribution functions was considered by McCor-
mack and Sargent (1981), and was coined the interac-
tion hold model. A multi-server queue with possibly
nonequivalent servers and with an infinite supply of
customers readily available fits the interaction hold
model framework. But, as previously mentioned, the
interaction hold model does have a simple event logic.
For example, the FES will have constant size L. For
the Jackson network model, introduced in Damerdji
and Glynn (1995), it is possible to numerically com-
pute the stationary probabilities, and one can then
evaluate the performance of certain data structures
(e.g., linked list) under this model.

In a simulation, the FES is typically kept sorted,
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based upon the events’ occurrence times. Whenever a
record is to be inserted into the FES, a scarch is per-
formed to find its insertion point (so the FES stays
sorted). The search is carried out by comparing the
to-be-inserted event’s occurrence time with the occur-
rence times of the successive events in the FES until
the correct insertion point is found. The removal of
the current event’s record and the actual update of
the FES are fixed overhcads. Algorithm efficiency
is measured here in terms of number of comparisons
performed to find the insertion point at a transition.

For the interaction hold model, the clock-vector
across transitions is viewed as a gencral state space
Markov chain, whose stationary distribution can be
derived (see Section 2). The mean of the number
of comparisons per transition for a linked list is pro-
vided, also in Section 2. It is found, for example, that
if the events are all exponentially distributed, it is
strictly better to scan from the head of the list (unless
the rates are all equal in which case it is equivalent
to scan from the tail of the list). Indexed lists, i.e.,
lists with sublists or also buckets, are investigated un-
der the interaction hold model assumption. llere, we
only consider sublists that contain fixed numbers of
records. In the case of an indexed list with two sub-
lists and with exponentially distributed events, ex-
plicit expressions for the number of comparisons per
transition in terms of the event rates are given; see
Section 2. Section 3 contains an example.

The Jackson network model is discussed in Sec-
tion 4. An expression for the expected number of
comparisons per transition in terms of the stationary
probabilities is given for a gencral FES. An exam-
ple illustrates our point. The Jackson network model
is introduced in the hope that something might be
learned (e.g., is it better to scan a linked list from
the head rather than the tail?), and then that the
exponential-case conclusions might carry over to the
general case, at least to some extent. A limited empir-
ical investigation is presented in Section 4. Section 5
is the conclusion.

2 THE INTERACTION HOLD MODEL

The interaction hold model is now described in more
detail. We will have clocks keep track of the events’
residual lifetimes, i.e., the times remaining for the
events to trigger the transition. For each event i, let
Gi(.) be its distribution function and (r;; : j > 1)
its sequence of lifetimes. Let X, = (Xp1,...,Xn,L)
denote the clock-vector reading at the n’th transition
(in fact, at the instant after the transition). The event
that will trigger the next transition has the smallest
clock reading. If event 1, say, triggers the n’th transi-

tion, the clocks corresponding to the other events all
get updated, while event i gets generated anew from
Gi(.). Its clock reading will be 7; n,(n), Where N;(n)
is the number of lifetimes of event ¢ that have been
observed by the n’th transition. We have that

L
Xn= E I [Xn—l,i = j='{1in LXn—l,j] (Xn—l,l
=
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“where I[] is the indicator event. Since the triggering
event is generated anew independently of the past, it
is clear that {X, : n > 0} is a Markov chain, with
state space R{: = {(v1,---,yL) :yi > 0,1 < i <
L}. It is shown in Damerdji and Glynn (1995) that
this gencral state space Markov chain is recurrent in
the sense of Harris (see Meyn and Tweedie 1993 for
a definition), and that its stationary distribution is
given by

L
A
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where G;(.) = 1 — G;(.). Let P; be the probability
measure of the Markov chain on its infinite path space
with initial distribution .

As previously mentioned, efficiency of a FES is
measured here in terms of number of comparisons (in
order to find the correct insertion point) per scan.
Doubly linked lists are considered first. Let Wy be
the random variable that denotes the relative posi-
tion (minus one) of the event-record inserted at the
k’th transition. Let also Yp x (respectively, Yp i) rep-
resent the number of comparisons (minus one) per-
formed at the &’th transition when scanning from the
head (resp., tail)} of the list. For example, if at the
k’th transition, the gencrated event has the second
smallest time, then Wy = 1, Ypr = 1, and Yp =
L—1—-Ypr= L —2. We obtain the following.

Proposition 1.

L

As ©__
E"Yp,l = E —L—— E /\]/ G,(t)GJ(t)dt,
D=1 0

i=1 J#i
where E, is the expectation under Py.
This result is a simplified version of an equation
that appears in McCormack and Sargent (1981). For

identical distributions, see Vaucher (1977). Our goal
now is to investigate whether it is more efficient to
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scan the list from the head or the tail. Certain prop-
ertics of the distributions may be determining in some
cases. This is discussed next.

Definition 1. A distribution function G, with finite
mean 1/X, is said to be ncw better (resp., worse) than
uscd in erpectation (NBUE (NWUE)) if

/OO C(t)dt < () (1/A)CG(x) for allz > 0.

From Barlow and Proschan (1975), it follows that
if two distribution functions G, and ¢, with mecans
1/X\; and 1/X;, are NBUE (resp., NWUE), then

o 1
| Eesonz < 55

Because the expression in Proposition 1 contains such
an integral, the following corollary ensues.

Corollary 1. If the event lifetimes are all NBUE
(resp., NWUE), then

Ee¥enz () 5 WZZA v

=1 j#i

Equality holds when the events are all exponen-
tially distributed (since the exponential distribution
is both NBUE and NWUE). When the distributions
are all NBUE, the lower bound of Corollary 1 comple-
ments McCormack and Sargent (1981), who provide
an upper bound (for general distributions). Consider
the following lemma.

Lemma 1. For any positive and finite numbers Ap,
, AL, we have that

L-1
ZZA +/\ T’

Zl ]'\ez 1 j#1

with equality if and only if \y = ... = AL.

An immediate consequence of Proposition 1 and
Lemma 1 is the following.

Corollary 2. If the events are all exponentially dis-
tributed, it is strictly better to scan from the head of
the list, unless the events have identical rates in which
case it 1s equivalent to scan from the back.

Because the stationary distribution 7 of the
Markov chain is known, it is possible to compute the
distribution P,[W; = .] of the relative position of
the record to be inserted. See Damerdji and Glynn
(1995) for a gencral expression. If the events are all
exponentially distributed, the distribution of W de-
pends only upon the event rates. Let C(g, k) be the

number of possible combinations of size h out of a
sct of size g, Qi(j,n) be the j’th set of size n out
of {1,...,L} — {i}, R;(i,n) be its complement in
{1,...,L} — {i}, and Ty a4(i, 5,n) be the b’th subset
of size a out of Q;(i,n) — {q}.

Proposition 2. If the events are all exponentially

distributed, we have, forn=1,...,L — 1, that
XL: 22 C(L-1,n)
Pr|Wy =n]= C {
i Tl j=1
-1 n—1
(e X 07 S puse
ve R;(i,n) 9€Q;(i,n) a=0
C(n-1,a)
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Also, we have that Pr[W; = 0] = (ZiLzlz\f)/
2
L
(Zi:l’\i) :

In an indexed list, i.e., a list with sublists, the
middle pointers point to certain records (possibly
dummy records) in the list chosen depending upon
the strategy followed. One approach is to keep the
sublists with constant sizes. Another strategy is to
have the middle records chosen based upon their
event times of occurrence. This was the setting of
Engelbrecht-Wiggans and Maxwell (1978) and Davey
and Vaucher (1980). Here, the former approach is in-
vestigated, and so each sublist will have a fixed num-
ber of records.

For simplicity of analysis, consider now an indexed
list with two sublists only. Let m be the middle
record, i.e., the record such that the (unique here)
middle pointer is pointing to. Because of the two-
way links, four search strategics are possible: the first
(resp. sccond) sublist can be scanned forward from
the head (resp. middle) pointer or backward from the
middle (resp. tail) pointer. Let Zpp,k(m), Zpgx(m),
Zpr,x(m), and Zpp x(m) be the number of compar-
isons (minus one) performed at the k’th transition in
order to find the correct insertion point for the differ-
ent strategies. Explicit expressions can be obtained.
For example,

m—2 L-1
ExZppi(m)= 1+ Z na(n)+ Z (n—=m+1)a(n),
n=0 n=m-—1

where a(n) = Pr[W; = n|. Sce Damerdji and Glynn
(1995) for the other three strategies. It is then possi-
ble to optimize with respect to m, and also compare
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the performances for the four strategies. An example
is given in the next section. Lists with more than two
sublists can be similarly investigated.

3 AN EXAMPLE

We consider here an interaction hold model with ten
exponentially distributed events, split into two equal-
size groups: events 1 thru 5 have rates \; = ... =
As = 1.0, while events 6 thru 10 haverates \g = ... =
A10. Three experiments are conducted: Mg is chosen
such that 1/A¢ = 1.0 in the first one (the two groups
are equal), 1/A¢ = 2.0 in the second one (the two
groups are rather different), and 1/xg = 10.0 in the
last experiment (the two groups are very dilferent).

Table 1: Linked List

/36 | 1.0 | 2.0 | 10.0
E.Yr, | 4.500 | 4.222 | 2.826
E.Yp, | 4.500 | 4.778 | 6.174

For the third experiment, i.e., when the two groups
are very different, it is scen from Table (1) that it is
far better to scan the list from the head pointer. From
Table (2), the probabilities of the relative position of
the inserted record are equal in the first experiment
because of the memoryless property of the exponen-
tial distribution and by symmetry. Note that the
probabilities are decreasing (relative to the position)
for the second and third experiments. For the third
experiment for example, it is almost ten times more
likely that the newly inserted record be at the top
of the list rather than the bottom (0.166 vs. 0.018).
This stresses again that, at least in the exponential
case, it is better to scan a linked list from the head
rather than the tail.

Once the distribution of W is obtained, it is strai-
ghtforward to compute ErZpp1(m), ExZrp,1(m),
ExZpri1(m), and ExZgp1(m) for m = 3,...,9, and
optimize over m for ecach strategy. Let mpp, mppg,
mpp, and mpp be the respective optimum. For
the second and third experiments, it is found that
the best strategy is forward-forward, closely followed
by backward-forward. Backward-backward was the
worst strategy. For the third experiment and for the
forward-forward strategy, the fourth record is the op-
timal middle record; in that case the first sublist con-
tains three records, while the second sublist contains
seven records. The first sublist has size smaller than
50% that of the second one. Comparing the best
performance for indexed list and regular linked list
for the third experiment (ErZpp(m) = 2.299 and

Table 2: Distribution of W

/X6 | 1.0 | 2.0 [ 10.0
a(0) | .100 | .111 | .166
a(1) | .100 | .109 | .164
a(2) | .100 | .108 | .160
a(3) | .100 | .106 | .153
a(4) | .100 | .104 | .140
a(5) | .100 | .101 | .095
a(6) [ .100 | .098 | .052
a(7) | .100 | .093 | .028
a(8) | .100 | .087 | .020
a(9) | 100 | .078 | .018

Table 3: Indexed List with Two Sublists
L 1/ | 1.0 ] 2.0 [ 10.0 ]

mie 6 6 1
ExZppa(m®) | 3.000 | 2.924 | 2.299
mpg 6 6 6
ExZgp,1(m*) | 3.000 | 3.040 | 3.120
My 6 6 4
ExZgra(m*) | 3.000 | 2.957 | 2.312
min 6 6 6
E.Zppa(m’) | 3.000 | 3.073 | 3.248

ExYr, = 2.826), it is not evident that the indexed
list far outperforms the regular list given the overhead
associated with maintaining the indexed list.

4 THE JACKSON NETWORK MODEL

Open and closed Jackson queueing networks are pro-
posed as stochastic models for FES performance eval-
uation. As previously mentioned, these queueing net-
work systems have a reasonably complex event logic,
although only exponentially distributed event times
are considered. When simulating a Markovian sys-
tem such as a Jackson network, one need not even
use a calendar (from the properties of the exponen-
tial distribution). This class of stochastic models is
proposed in the hope that what might be learned in
the exponential case extends to the general case, at
least to some extent.

Only open networks are discussed here. There are
d single-scrver stations with external arrival rate \; to
station i. Service at station 4 is with rate u; and is on
a first-in-first-out basis. Upon service completion, the
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customer departs the system with probability pio or
is routed to station j with probability p;;. The state
of the system can be described by @ = (ug,...,uad),
where u; is the number of customers at station . If
ex is the k-unit vector, the state changes from @ to
@ + e; if an external arrival to station ¢ occurs, from
i to @ — e; if a departure from station 7 to the outside
system occurs, and from @ to @ — ¢; + ¢; if an end of
service at station 7 occurs and the departing customer
is routed to station j.

Let x(.) be the stationary distribution, which is
given by

d
(@) = [0 = ao/wa) e/ i),

1=1

where a = (ay, ..., aq) is a vector solution to the traf-
fic equations. Let A; and S; be a station ¢ generic ex-
ternal interarrival time and service time, respectively.
For any state i, let b(w) be the set of busy servers in
that state. A general expression for the steady-state
expected number of comparisons per transition for a
general FES can be provided by conditioning on the
first two states of the system. We have that

E[# comparisons/transition] =

(S0 3 i) |

e b(w)

Z Z E[#|S;]1nipijx (4)

Uui=lu;=0 T=ti-ei+te;

LD R

Tu225u;>1 T=iu-e;+e;j

+ Z Z E[#|Sl, then Sj]l"ipij)((ﬁ)

wu, 22;u;=0 v=iu-e, te,

+ Z Z E[#lSz]/tszoX(ﬂ)

Uu; 22 v=u-—e;

+ Y > E#A, then Sr (@)

i, =0 v=1u+te,

+ Y Y Baba@).

wu; 21 v=u+te,;

E[#|Siuipijx (@)

We are assuming here that if an external arrival oc-
curs to an empty station, the next interarrival time is
generated and inserted into the FES before the service
time. Also, when a departure from a station with a
nonempty qucue to an empty station occurs, the ser-
vice time of the first awaiting customer is gencrated
(and inserted) before the service time of the arriving
customer.

As previously mentioned, it is possible to compute
the stationary probabilities. In order to evaluate the

Table 4: Linked List, Open Jackson Network

) 10 | 1.0 | 1.0 | 1.0 | 1.0
| 1.2 | 2.0 | 100 | 2.0 | 100
s | 12 | 20 | 100 | 3.0 | 5.0
F ] 1.883 | 1.611 | 1.154 | 1.522 | 1.216
B | 1.893 | 1.722 | 1.645 | 1.700 | 1.650
Fron | 1.982 | 1.498 | 1.000 | 1.000 | 1.000
Biow | 1.350 | 1.500 | 1.666 | 1.666 | 1.666

Fso | 2.182 | 1.490 | 1.000 | 1.319 | 1.000
Bsow | 1.399 | 1.527 | 1.666 | 1.574 | 1.666

performance of a FES, it suffices then to compute the
inner expected values. A similar analysis for closed
networks follows (see Damerdji and Glynn 1995). An
example for an open network and for the linked list
is now given.

Consider a two-station in tandem with external ar-
rivals to the first station only. It follows then that
Ao = 0 and pyo = poo = 1. Let X\ be the arrival rate
to station 1, fixed to 1. For the stationary probabili-
tics to exist, it must be that u; > 1 and pg > 1. For
all the values of p; and ug tried, we find that it is
better to scan from the head of the list rather its tail.
See Table (1), where F (resp. B) denotes the expected
number of comparisons per transition when scanning
from the head (resp. tail) of the list. For example,
for u3 = po = 10, it is far better to scan from the
head rather than the tail (F = 1.154 and B = 1.645).
When the rates are closer to one another, it is only
slightly better to scan {rom the head.

We now empirically investigate whether results for
the exponential case do extend to the nonexponential
one. Uniform distributions are considered in the two
experiments performed. If r is the rate of an event
in the exponential case (and so 1/r is the mean),
the uniform distributions U (a, b) for that event are
such b — a = 10% of the mean in the first experi-
ment and 50% of the mean in the second. The life-
time distributions have then a small variance in the
former case and a large variance in the latter. The
tandem-queue was then simulated over one million
transitions. Let Fygg, élo%, }350%, and B50% be the
respective estimates of the expected number of com-
parisons per scan. Sce Table (4) for the results. When
the rates arc all close to one another (e.g., A = 1,
p1 = p2 = 1.2), it is better to scan from the back of
the list. We note that when it is far more efficient to
scan from the head in the exponential case, it is also
better to scan from the head in the nonexponential
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case as well. When it is not far more efficient to scan
from the head in the exponential case, we note that
it is better to scan from the back of the list in the
nonexponential case.

5 CONCLUSION

Performance evaluation of linked lists and indexed
lists has been investigated here. The stochastic mod-
els considered, namely the interaction hold model and
the Jackson network model are very different. The
former has a simple event logic but allows for general
distribution functions, while the latter has a more
complex event logic, but distribution functions are
exponential. Our analytic and empirical results sug-
gest that in a simulation with different types of dis-
tribution functions with the short events frequently
regenerated upon transition, it is often better to scan
a linked list from the head rather than from the tail.
However, there will also be situations where it is bet-
ter to scan from the back of the list. For example,
if the distributions are Uniform (100,120), Triangu-
lar (90,95,110), and Normal (120,5), it would seem
better to scan from the back of the list.
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